organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tetra­methyl­ammonium) oxalate monohydrate

aCollege of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 September 2009; accepted 26 September 2009; online 3 October 2009)

In the crystal structure of the title hydrated salt, 2C4H12N+·C2O42−·H2O, the two independent cations, the anion and the water mol­ecule all lie on special positions of m site symmetry. In both cations, the mirror plane passes through the nitrogen atom and two methyl groups; in the anion, the mirror plane passes through two carbon and two oxygen atoms. The anions and water mol­ecules inter­act by O—H⋯O hydrogen bonding, forming a chain running along the b axis.

Related literature

For the crystal structure of tetra­methyl­ammonium hydrogen oxalate, see: Mascal et al. (2000[Mascal, M., Marjo, C. E. & Blake, A. J. (2000). Chem. Commun. pp. 1591-1592.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H12N+·C2O42−·H2O

  • Mr = 254.33

  • Orthorhombic, P n m a

  • a = 24.614 (4) Å

  • b = 6.738 (1) Å

  • c = 8.633 (2) Å

  • V = 1431.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Bruker APEX2 diffractometer

  • Absorption correction: none

  • 3915 measured reflections

  • 1367 independent reflections

  • 1043 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.164

  • S = 1.01

  • 1367 reflections

  • 99 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯O3 0.95 (3) 1.82 (3) 2.764 (2) 171 (3)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of tetramethylammonium hydrogen oxalate, see: Mascal et al. (2000).

Experimental top

Oxalic acid (0.126 g, 1 mmol) was dissolved in a water-ethanol (1:2 v/v) mixture and a 25% solution of tetramethylammonium hydroxide was added to neutralize the acid. Colorless block crystals were separated after several weeks.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.5U(C). The water H-atom was freely refined.

Structure description top

For the crystal structure of tetramethylammonium hydrogen oxalate, see: Mascal et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of 2[(CH3)4N](C2O4).H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Bis(tetramethylammonium) oxalate monohydrate top
Crystal data top
2C4H12N+·C2O42·H2OF(000) = 560
Mr = 254.33Dx = 1.180 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1201 reflections
a = 24.614 (4) Åθ = 2.5–25.0°
b = 6.738 (1) ŵ = 0.09 mm1
c = 8.633 (2) ÅT = 293 K
V = 1431.8 (4) Å3Block, colorless
Z = 40.50 × 0.10 × 0.10 mm
Data collection top
Bruker APEX2
diffractometer
1043 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
φ and ω scansh = 2911
3915 measured reflectionsk = 88
1367 independent reflectionsl = 108
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0847P)2 + 0.5757P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1367 reflectionsΔρmax = 0.25 e Å3
99 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (5)
Crystal data top
2C4H12N+·C2O42·H2OV = 1431.8 (4) Å3
Mr = 254.33Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 24.614 (4) ŵ = 0.09 mm1
b = 6.738 (1) ÅT = 293 K
c = 8.633 (2) Å0.50 × 0.10 × 0.10 mm
Data collection top
Bruker APEX2
diffractometer
1043 reflections with I > 2σ(I)
3915 measured reflectionsRint = 0.024
1367 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.164H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.25 e Å3
1367 reflectionsΔρmin = 0.25 e Å3
99 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.29989 (10)0.75000.4672 (3)0.0944 (10)
O20.38001 (14)0.75000.3510 (3)0.1103 (12)
O30.38835 (9)0.5888 (4)0.6773 (3)0.1216 (10)
O1W0.40771 (12)0.25000.8491 (3)0.0790 (8)
H10.3983 (11)0.358 (4)0.784 (3)0.098 (9)*
N10.04672 (8)0.75000.7763 (3)0.0442 (6)
N20.27226 (8)0.75001.0044 (2)0.0372 (6)
C10.02478 (11)0.5681 (4)0.7022 (3)0.0864 (9)
H1A0.01410.56650.71210.130*
H1B0.03970.45310.75220.130*
H1C0.03450.56690.59450.130*
C20.10673 (11)0.75000.7595 (5)0.0679 (10)
H2A0.12180.85790.81810.102*0.50
H2B0.11610.76540.65220.102*0.50
H2C0.12110.62670.79740.102*0.50
C30.03268 (14)0.75000.9431 (3)0.0652 (9)
H3A0.00600.73790.95480.098*0.50
H3B0.04470.87190.98940.098*0.50
H3C0.05020.64020.99320.098*0.50
C40.30685 (10)0.5697 (3)1.0196 (3)0.0620 (7)
H4A0.32470.57081.11850.093*
H4B0.33360.56890.93870.093*
H4C0.28460.45331.01130.093*
C50.22984 (12)0.75001.1282 (3)0.0522 (8)
H5A0.24590.71161.22490.078*0.50
H5B0.20160.65771.10140.078*0.50
H5C0.21470.88071.13770.078*0.50
C60.24524 (12)0.75000.8504 (3)0.0548 (8)
H6A0.22190.86360.84230.082*0.50
H6B0.22410.63110.83910.082*0.50
H6C0.27230.75540.77040.082*0.5
C70.35047 (12)0.75000.4666 (3)0.0486 (7)
C80.37795 (10)0.75000.6197 (3)0.0479 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0651 (17)0.124 (3)0.0938 (19)0.0000.0318 (14)0.000
O20.134 (3)0.146 (3)0.0503 (15)0.0000.0259 (16)0.000
O30.1149 (17)0.126 (2)0.1237 (18)0.0185 (14)0.0231 (13)0.0734 (15)
O1W0.113 (2)0.0643 (16)0.0591 (15)0.0000.0145 (14)0.000
N10.0386 (12)0.0467 (13)0.0473 (13)0.0000.0020 (9)0.000
N20.0416 (11)0.0366 (11)0.0334 (11)0.0000.0011 (9)0.000
C10.0809 (17)0.093 (2)0.0849 (17)0.0298 (16)0.0007 (14)0.0317 (15)
C20.0404 (15)0.060 (2)0.103 (3)0.0000.0112 (16)0.000
C30.069 (2)0.078 (2)0.0486 (17)0.0000.0046 (15)0.000
C40.0677 (13)0.0551 (14)0.0631 (13)0.0215 (11)0.0031 (10)0.0016 (11)
C50.0562 (17)0.0583 (18)0.0419 (15)0.0000.0097 (12)0.000
C60.0586 (17)0.071 (2)0.0352 (14)0.0000.0093 (12)0.000
C70.0614 (18)0.0383 (15)0.0461 (15)0.0000.0003 (13)0.000
C80.0356 (14)0.0592 (18)0.0489 (15)0.0000.0053 (11)0.000
Geometric parameters (Å, º) top
O1—C71.245 (4)C2—H2B0.9600
O2—C71.235 (4)C2—H2C0.9600
O3—C81.222 (2)C3—H3A0.9600
O1W—H10.95 (3)C3—H3B0.9600
N1—C31.481 (3)C3—H3C0.9600
N1—C21.484 (3)C4—H4A0.9600
N1—C11.484 (3)C4—H4B0.9600
N1—C1i1.484 (3)C4—H4C0.9600
N2—C61.487 (3)C5—H5A0.9600
N2—C41.489 (2)C5—H5B0.9600
N2—C4i1.489 (2)C5—H5C0.9600
N2—C51.494 (3)C6—H6A0.9600
C1—H1A0.9600C6—H6B0.9600
C1—H1B0.9600C6—H6C0.9600
C1—H1C0.9600C7—C81.484 (4)
C2—H2A0.9600C8—O3i1.222 (2)
C3—N1—C2109.1 (3)N1—C3—H3C109.5
C3—N1—C1109.52 (16)H3A—C3—H3C109.5
C2—N1—C1108.66 (17)H3B—C3—H3C109.5
C3—N1—C1i109.52 (16)N2—C4—H4A109.5
C2—N1—C1i108.66 (17)N2—C4—H4B109.5
C1—N1—C1i111.3 (3)H4A—C4—H4B109.5
C6—N2—C4109.54 (13)N2—C4—H4C109.5
C6—N2—C4i109.54 (13)H4A—C4—H4C109.5
C4—N2—C4i109.3 (2)H4B—C4—H4C109.5
C6—N2—C5109.1 (2)N2—C5—H5A109.5
C4—N2—C5109.68 (14)N2—C5—H5B109.5
C4i—N2—C5109.68 (14)H5A—C5—H5B109.5
N1—C1—H1A109.5N2—C5—H5C109.5
N1—C1—H1B109.5H5A—C5—H5C109.5
H1A—C1—H1B109.5H5B—C5—H5C109.5
N1—C1—H1C109.5N2—C6—H6A109.5
H1A—C1—H1C109.5N2—C6—H6B109.5
H1B—C1—H1C109.5H6A—C6—H6B109.5
N1—C2—H2A109.5N2—C6—H6C109.5
N1—C2—H2B109.5H6A—C6—H6C109.5
H2A—C2—H2B109.5H6B—C6—H6C109.5
N1—C2—H2C109.5O2—C7—O1126.3 (3)
H2A—C2—H2C109.5O2—C7—C8116.8 (3)
H2B—C2—H2C109.5O1—C7—C8116.9 (3)
N1—C3—H3A109.5O3i—C8—O3125.5 (3)
N1—C3—H3B109.5O3i—C8—C7117.26 (17)
H3A—C3—H3B109.5O3—C8—C7117.26 (17)
O2—C7—C8—O3i89.9 (2)O2—C7—C8—O389.9 (2)
O1—C7—C8—O3i90.1 (2)O1—C7—C8—O390.1 (2)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O30.95 (3)1.82 (3)2.764 (2)171 (3)

Experimental details

Crystal data
Chemical formula2C4H12N+·C2O42·H2O
Mr254.33
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)24.614 (4), 6.738 (1), 8.633 (2)
V3)1431.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerBruker APEX2
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3915, 1367, 1043
Rint0.024
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.164, 1.01
No. of reflections1367
No. of parameters99
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O30.95 (3)1.82 (3)2.764 (2)171 (3)
 

Acknowledgements

We thank Beijing Normal University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMascal, M., Marjo, C. E. & Blake, A. J. (2000). Chem. Commun. pp. 1591–1592.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds