organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-6-((1R)-1-{[(R)-(2-chloro­phen­yl)(cyclo­pent­yl)meth­yl]amino}eth­yl)phenol

aSchool of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, People's Republic of China, bJincheng Pharmaceutical Co Ltd, Shandong Provience, Shandong 255100, People's Republic of China, and cDepartment of Materials Science and Chemical Engineering, Taishan University, Shandong 271021, People's Republic of China
*Correspondence e-mail: 153725248@163.com

(Received 25 September 2009; accepted 10 October 2009; online 17 October 2009)

In the title compound, C20H22Cl3NO, the five-membered ring adopts an envelope conformation, and the two benzene rings are oriented at a dihedral angle of 40.44 (9)°. Intra­molecular O—H⋯N and N—H⋯Cl hydrogen bonding is present. In the crystal, the mol­ecules are linked via weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For amino­phenols, see: Li et al. (2004[Li, Y., He, B., Qin, B., Feng, X. & Zhang, G. (2004). J. Org. Chem. 69, 7910-7913.]); Puigjaner et al. (1999[Puigjaner, C., Vidal-Ferran, A., Moyano, A., Pericas, M. A., Rieras, M. A. & Riera, A. (1999). J. Org. Chem. 64, 7902-7911.]); Cimarelli et al. (2002[Cimarelli, C., Palmieri, G. & Volpini, E. (2002). Tetrahedron Asymmetry, 13, 2011-2018.]); Joshi & Malhotra (2003[Joshi, S. N. & Malhotra, S. V. (2003). Tetrahedron Asymmetry, 14, 1763-1766.]); Zhang et al. (2003[Zhang, G.-Y., Liao, Y.-Q., Wang, Z.-H., Nohira, H. & Hirose, T. (2003). Tetrahedron Asymmetry, 14, 3297-3300.]); Watts et al. (2005[Watts, C. C., Thoniyot, P., Hirayama, L. C., Romano, T. & Singaram, B. (2005). Tetrahedron Asymmetry, 16, 1829-1835.]). For the synthesis, see: Yang et al. (2005[Yang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, o262-o264.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22Cl3NO

  • Mr = 398.74

  • Orthorhombic, P 21 21 21

  • a = 8.4132 (7) Å

  • b = 13.6767 (10) Å

  • c = 17.0018 (14) Å

  • V = 1956.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 298 K

  • 0.21 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.907, Tmax = 0.945

  • 10361 measured reflections

  • 3453 independent reflections

  • 3005 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 1.04

  • 3453 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1464 Friedel pairs

  • Flack parameter: 0.00 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.96 1.74 2.622 (3) 151
N1—H1N⋯Cl3 0.84 2.68 3.260 (2) 127
C13—H13⋯O1i 0.93 2.56 3.422 (3) 154
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chiral aminophenols containing some O and N atoms are of great interests due to their widespread application in asymmetric synthesis such as chiral bases, auxiliaries and ligands (Li et al., 2004; Puigjaner et al., 1999; Cimarelli et al., 2002). Recently, the synthesis of chiral aminophenols with a varity of functionalities has attracted increasing attention (Zhang et al., 2003; Watts et al., 2005). Herein, we present the molecular structure of the title aminophenol (I), which was initially prepared to test its catalytic activity. The aminophenol was prepared by conventional condensation of (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine with 1-(3,5-dichloro-2-hydroxyphenyl) ethanone in methanol.

The molecular structure of (I) is illustrated in Fig. 1. The title compoud has two chiral centers (C7/C9), which have configurations R, R, confirmed by the X-ray structural analysis. There are the intramolecular O—H···N and N—H···Cl hydrogen bonding which stablizes the conformation of the molecule (Table 1). In the crystal packing, the molecules are linked to each other via intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For aminophenols, see: Li et al. (2004); Puigjaner et al. (1999); Cimarelli et al. (2002); Joshi & Malhotra (2003); Zhang et al. (2003); Watts et al. (2005). For the synthesis, see: Yang et al. (2005).

Experimental top

The title compound was prepared according to the procedure of Yang et al. (2005). (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine (0.9 mmol) and 1-(3,5-dichloro-2-hydroxyphenyl)ethanone (0.9 mmol) were dissolved in methanol (10 ml) and reacted at room temperature for 48 h. After removal of the solvent, NaBH4 (4.5 mmol) was added to the solution in THF/ethanol (1:1 v/v, 20 ml) and stirred at 273 K until the solution became colourless. The solvent was then removed under reduced pressure. Water (10 ml) was added to the residue and 1 M HCl was added dropwise until hydrogen production ceased. The mixture was neutralized with aqueous solution of Na2CO3, then extracted with CHCl3, and the organic layer was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure. Further purification was carried out by thin-layer silica-gel chromatography (chloroform) to give a colorless solid (yield 82.7%). Single crystals of (I) were grown from the n-hexane solution.

Refinement top

Imino-H and hydroxy-H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.2Ueq(N,O). Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.98 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for mathyl H atoms and 1.2Ueq(C) for the others.

Structure description top

The chiral aminophenols containing some O and N atoms are of great interests due to their widespread application in asymmetric synthesis such as chiral bases, auxiliaries and ligands (Li et al., 2004; Puigjaner et al., 1999; Cimarelli et al., 2002). Recently, the synthesis of chiral aminophenols with a varity of functionalities has attracted increasing attention (Zhang et al., 2003; Watts et al., 2005). Herein, we present the molecular structure of the title aminophenol (I), which was initially prepared to test its catalytic activity. The aminophenol was prepared by conventional condensation of (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine with 1-(3,5-dichloro-2-hydroxyphenyl) ethanone in methanol.

The molecular structure of (I) is illustrated in Fig. 1. The title compoud has two chiral centers (C7/C9), which have configurations R, R, confirmed by the X-ray structural analysis. There are the intramolecular O—H···N and N—H···Cl hydrogen bonding which stablizes the conformation of the molecule (Table 1). In the crystal packing, the molecules are linked to each other via intermolecular C—H···O hydrogen bonds (Table 1).

For aminophenols, see: Li et al. (2004); Puigjaner et al. (1999); Cimarelli et al. (2002); Joshi & Malhotra (2003); Zhang et al. (2003); Watts et al. (2005). For the synthesis, see: Yang et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii.
2,4-Dichloro-6-((1R)-1-{[(R)-(2- chlorophenyl)(cyclopentyl)methyl]amino}ethyl)phenol top
Crystal data top
C20H22Cl3NOF(000) = 832
Mr = 398.74Dx = 1.354 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4018 reflections
a = 8.4132 (7) Åθ = 2.4–23.8°
b = 13.6767 (10) ŵ = 0.48 mm1
c = 17.0018 (14) ÅT = 298 K
V = 1956.3 (3) Å3Plate, colorless
Z = 40.21 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3453 independent reflections
Radiation source: fine-focus sealed tube3005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.907, Tmax = 0.945k = 1613
10361 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.4088P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3453 reflectionsΔρmax = 0.20 e Å3
227 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack (1983), 1464 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (7)
Crystal data top
C20H22Cl3NOV = 1956.3 (3) Å3
Mr = 398.74Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.4132 (7) ŵ = 0.48 mm1
b = 13.6767 (10) ÅT = 298 K
c = 17.0018 (14) Å0.21 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3453 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3005 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.945Rint = 0.022
10361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.18 e Å3
3453 reflectionsAbsolute structure: Flack (1983), 1464 Friedel pairs
227 parametersAbsolute structure parameter: 0.00 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.74492 (12)0.20053 (6)0.65026 (5)0.0892 (3)
Cl20.77477 (11)0.32755 (7)0.35243 (5)0.0818 (3)
Cl30.17174 (12)0.73428 (6)0.60165 (5)0.0812 (3)
N10.4064 (2)0.58218 (15)0.51047 (11)0.0438 (5)
H1N0.39990.64240.52010.053*
O10.6034 (2)0.49741 (14)0.41237 (10)0.0568 (5)
H1A0.52770.54270.43410.068*
C10.6303 (3)0.42963 (19)0.46839 (14)0.0444 (6)
C20.5780 (3)0.44142 (18)0.54534 (14)0.0421 (5)
C30.6114 (3)0.36909 (19)0.60025 (16)0.0498 (6)
H30.57420.37550.65150.060*
C40.6985 (3)0.28820 (19)0.57958 (18)0.0568 (7)
C50.7529 (4)0.2752 (2)0.50434 (17)0.0603 (7)
H50.81360.22080.49100.072*
C60.7148 (3)0.3454 (2)0.44879 (15)0.0529 (6)
C70.5002 (3)0.53592 (18)0.57377 (14)0.0464 (6)
H70.43000.52110.61820.056*
C80.6279 (4)0.6086 (2)0.6006 (2)0.0712 (9)
H8A0.70070.62060.55820.107*
H8B0.68470.58180.64460.107*
H8C0.57840.66890.61590.107*
C90.2437 (3)0.54384 (17)0.49936 (12)0.0413 (5)
H90.25650.47640.48090.050*
C100.1458 (3)0.53736 (19)0.57434 (14)0.0462 (6)
C110.1105 (3)0.6155 (2)0.62414 (15)0.0551 (7)
C120.0257 (3)0.6038 (3)0.69294 (16)0.0657 (9)
H120.00360.65780.72430.079*
C130.0256 (4)0.5139 (3)0.71500 (17)0.0722 (9)
H130.08070.50610.76200.087*
C140.0042 (4)0.4338 (3)0.66735 (19)0.0717 (9)
H140.03230.37220.68210.086*
C150.0871 (3)0.4449 (2)0.59875 (16)0.0555 (7)
H150.10550.39050.56730.067*
C160.1623 (3)0.5990 (2)0.43215 (14)0.0480 (6)
H160.14820.66750.44780.058*
C170.0009 (4)0.5558 (3)0.41129 (17)0.0771 (10)
H17A0.00320.48610.42140.092*
H17B0.08430.58700.44170.092*
C180.0216 (4)0.5764 (4)0.32453 (19)0.1024 (14)
H18A0.05910.51820.29780.123*
H18B0.09950.62790.31700.123*
C190.1269 (4)0.6057 (4)0.29287 (18)0.1004 (15)
H19A0.12080.67300.27520.121*
H19B0.15330.56500.24800.121*
C200.2520 (3)0.5960 (2)0.35444 (14)0.0607 (7)
H20A0.32750.64940.35110.073*
H20B0.30880.53460.34870.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1119 (7)0.0569 (4)0.0988 (6)0.0057 (5)0.0350 (6)0.0237 (4)
Cl20.0826 (6)0.0970 (6)0.0659 (5)0.0243 (5)0.0076 (4)0.0202 (4)
Cl30.0997 (6)0.0587 (4)0.0852 (5)0.0023 (4)0.0080 (5)0.0205 (4)
N10.0408 (10)0.0424 (11)0.0481 (11)0.0033 (9)0.0060 (9)0.0035 (9)
O10.0513 (10)0.0707 (12)0.0484 (10)0.0118 (9)0.0076 (8)0.0129 (9)
C10.0368 (12)0.0505 (14)0.0458 (13)0.0015 (11)0.0041 (10)0.0016 (11)
C20.0354 (12)0.0429 (13)0.0480 (14)0.0021 (11)0.0048 (10)0.0026 (11)
C30.0511 (14)0.0501 (14)0.0483 (14)0.0045 (12)0.0077 (12)0.0047 (11)
C40.0573 (16)0.0423 (15)0.0709 (19)0.0000 (12)0.0216 (14)0.0066 (13)
C50.0590 (16)0.0455 (15)0.077 (2)0.0077 (14)0.0160 (14)0.0090 (13)
C60.0455 (14)0.0606 (16)0.0527 (15)0.0038 (13)0.0047 (12)0.0112 (12)
C70.0444 (12)0.0514 (15)0.0433 (13)0.0056 (12)0.0034 (11)0.0009 (11)
C80.0663 (19)0.0613 (18)0.086 (2)0.0053 (15)0.0273 (17)0.0162 (16)
C90.0398 (12)0.0444 (12)0.0397 (12)0.0040 (11)0.0000 (10)0.0036 (9)
C100.0376 (12)0.0568 (15)0.0442 (13)0.0039 (11)0.0060 (10)0.0000 (11)
C110.0459 (14)0.0722 (18)0.0473 (14)0.0037 (13)0.0065 (12)0.0100 (13)
C120.0479 (16)0.107 (3)0.0423 (15)0.0089 (17)0.0037 (13)0.0125 (16)
C130.0513 (17)0.121 (3)0.0446 (16)0.0014 (19)0.0023 (13)0.0113 (19)
C140.0548 (16)0.091 (2)0.069 (2)0.0134 (18)0.0066 (16)0.0246 (18)
C150.0467 (14)0.0685 (18)0.0512 (15)0.0014 (13)0.0035 (12)0.0006 (13)
C160.0487 (14)0.0514 (15)0.0438 (13)0.0091 (12)0.0049 (11)0.0032 (11)
C170.0420 (14)0.137 (3)0.0519 (17)0.0015 (19)0.0033 (13)0.0090 (18)
C180.062 (2)0.189 (4)0.0560 (19)0.016 (3)0.0167 (16)0.025 (2)
C190.064 (2)0.192 (5)0.0453 (17)0.001 (3)0.0046 (15)0.014 (2)
C200.0469 (15)0.088 (2)0.0476 (14)0.0023 (14)0.0027 (13)0.0102 (14)
Geometric parameters (Å, º) top
Cl1—C41.742 (3)C10—C111.395 (4)
Cl2—C61.731 (3)C10—C151.419 (4)
Cl3—C111.747 (3)C11—C121.379 (4)
N1—C71.477 (3)C12—C131.356 (5)
N1—C91.478 (3)C12—H120.9300
N1—H1N0.8410C13—C141.386 (5)
O1—C11.348 (3)C13—H130.9300
O1—H1A0.9621C14—C151.368 (4)
C1—C21.390 (4)C14—H140.9300
C1—C61.395 (4)C15—H150.9300
C2—C31.389 (3)C16—C201.522 (3)
C2—C71.527 (3)C16—C171.536 (4)
C3—C41.373 (4)C16—H160.9800
C3—H30.9300C17—C181.512 (4)
C4—C51.370 (4)C17—H17A0.9700
C5—C61.384 (4)C17—H17B0.9700
C5—H50.9300C18—C191.417 (5)
C7—C81.533 (4)C18—H18A0.9700
C7—H70.9800C18—H18B0.9700
C8—H8A0.9600C19—C201.491 (4)
C8—H8B0.9600C19—H19A0.9700
C8—H8C0.9600C19—H19B0.9700
C9—C101.521 (3)C20—H20A0.9700
C9—C161.531 (3)C20—H20B0.9700
C9—H90.9800
C7—N1—C9115.86 (19)C12—C11—Cl3116.5 (2)
C7—N1—H1N108.2C10—C11—Cl3121.1 (2)
C9—N1—H1N108.2C13—C12—C11120.2 (3)
C1—O1—H1A106.4C13—C12—H12119.9
O1—C1—C2122.1 (2)C11—C12—H12119.9
O1—C1—C6119.0 (2)C12—C13—C14119.9 (3)
C2—C1—C6118.8 (2)C12—C13—H13120.1
C3—C2—C1119.1 (2)C14—C13—H13120.1
C3—C2—C7118.5 (2)C15—C14—C13120.1 (3)
C1—C2—C7122.1 (2)C15—C14—H14119.9
C4—C3—C2120.6 (3)C13—C14—H14119.9
C4—C3—H3119.7C14—C15—C10121.8 (3)
C2—C3—H3119.7C14—C15—H15119.1
C5—C4—C3121.5 (2)C10—C15—H15119.1
C5—C4—Cl1118.7 (2)C20—C16—C9114.3 (2)
C3—C4—Cl1119.8 (2)C20—C16—C17103.4 (2)
C4—C5—C6118.0 (2)C9—C16—C17112.5 (2)
C4—C5—H5121.0C20—C16—H16108.8
C6—C5—H5121.0C9—C16—H16108.8
C5—C6—C1121.9 (2)C17—C16—H16108.8
C5—C6—Cl2118.7 (2)C18—C17—C16104.8 (3)
C1—C6—Cl2119.4 (2)C18—C17—H17A110.8
N1—C7—C2111.16 (19)C16—C17—H17A110.8
N1—C7—C8108.3 (2)C18—C17—H17B110.8
C2—C7—C8110.0 (2)C16—C17—H17B110.8
N1—C7—H7109.1H17A—C17—H17B108.9
C2—C7—H7109.1C19—C18—C17108.8 (3)
C8—C7—H7109.1C19—C18—H18A109.9
C7—C8—H8A109.5C17—C18—H18A109.9
C7—C8—H8B109.5C19—C18—H18B109.9
H8A—C8—H8B109.5C17—C18—H18B109.9
C7—C8—H8C109.5H18A—C18—H18B108.3
H8A—C8—H8C109.5C18—C19—C20109.3 (3)
H8B—C8—H8C109.5C18—C19—H19A109.8
N1—C9—C10114.55 (18)C20—C19—H19A109.8
N1—C9—C16109.57 (19)C18—C19—H19B109.8
C10—C9—C16114.31 (19)C20—C19—H19B109.8
N1—C9—H9105.9H19A—C19—H19B108.3
C10—C9—H9105.9C19—C20—C16104.9 (2)
C16—C9—H9105.9C19—C20—H20A110.8
C11—C10—C15115.5 (2)C16—C20—H20A110.8
C11—C10—C9125.4 (2)C19—C20—H20B110.8
C15—C10—C9119.1 (2)C16—C20—H20B110.8
C12—C11—C10122.4 (3)H20A—C20—H20B108.8
O1—C1—C2—C3179.4 (2)C16—C9—C10—C1169.6 (3)
C6—C1—C2—C30.0 (4)N1—C9—C10—C15120.1 (2)
O1—C1—C2—C75.9 (4)C16—C9—C10—C15112.3 (3)
C6—C1—C2—C7173.5 (2)C15—C10—C11—C120.6 (4)
C1—C2—C3—C41.8 (4)C9—C10—C11—C12177.5 (2)
C7—C2—C3—C4171.9 (2)C15—C10—C11—Cl3179.05 (19)
C2—C3—C4—C51.2 (4)C9—C10—C11—Cl32.8 (3)
C2—C3—C4—Cl1177.7 (2)C10—C11—C12—C130.7 (4)
C3—C4—C5—C61.2 (4)Cl3—C11—C12—C13179.6 (2)
Cl1—C4—C5—C6179.9 (2)C11—C12—C13—C141.5 (4)
C4—C5—C6—C13.1 (4)C12—C13—C14—C150.9 (4)
C4—C5—C6—Cl2177.1 (2)C13—C14—C15—C100.4 (4)
O1—C1—C6—C5176.9 (2)C11—C10—C15—C141.2 (4)
C2—C1—C6—C52.4 (4)C9—C10—C15—C14177.1 (2)
O1—C1—C6—Cl22.9 (3)N1—C9—C16—C2056.3 (3)
C2—C1—C6—Cl2177.76 (19)C10—C9—C16—C20173.6 (2)
C9—N1—C7—C283.1 (2)N1—C9—C16—C17173.9 (2)
C9—N1—C7—C8155.9 (2)C10—C9—C16—C1756.0 (3)
C3—C2—C7—N1153.0 (2)C20—C16—C17—C1826.1 (4)
C1—C2—C7—N133.4 (3)C9—C16—C17—C18150.0 (3)
C3—C2—C7—C887.0 (3)C16—C17—C18—C1913.3 (5)
C1—C2—C7—C886.5 (3)C17—C18—C19—C205.6 (6)
C7—N1—C9—C1049.9 (3)C18—C19—C20—C1622.4 (5)
C7—N1—C9—C16179.88 (18)C9—C16—C20—C19152.1 (3)
N1—C9—C10—C1158.0 (3)C17—C16—C20—C1929.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.961.742.622 (3)151
N1—H1N···Cl30.842.683.260 (2)127
C13—H13···O1i0.932.563.422 (3)154
Symmetry code: (i) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H22Cl3NO
Mr398.74
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.4132 (7), 13.6767 (10), 17.0018 (14)
V3)1956.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.21 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.907, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
10361, 3453, 3005
Rint0.022
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.04
No. of reflections3453
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18
Absolute structureFlack (1983), 1464 Friedel pairs
Absolute structure parameter0.00 (7)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.961.742.622 (3)151
N1—H1N···Cl30.842.683.260 (2)127
C13—H13···O1i0.932.563.422 (3)154
Symmetry code: (i) x+1/2, y+1, z+1/2.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Shandong Province, China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Taishan University, China.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCimarelli, C., Palmieri, G. & Volpini, E. (2002). Tetrahedron Asymmetry, 13, 2011–2018.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJoshi, S. N. & Malhotra, S. V. (2003). Tetrahedron Asymmetry, 14, 1763–1766.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y., He, B., Qin, B., Feng, X. & Zhang, G. (2004). J. Org. Chem. 69, 7910–7913.  CrossRef PubMed CAS Google Scholar
First citationPuigjaner, C., Vidal-Ferran, A., Moyano, A., Pericas, M. A., Rieras, M. A. & Riera, A. (1999). J. Org. Chem. 64, 7902–7911.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatts, C. C., Thoniyot, P., Hirayama, L. C., Romano, T. & Singaram, B. (2005). Tetrahedron Asymmetry, 16, 1829–1835.  Web of Science CrossRef CAS Google Scholar
First citationYang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, o262–o264.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, G.-Y., Liao, Y.-Q., Wang, Z.-H., Nohira, H. & Hirose, T. (2003). Tetrahedron Asymmetry, 14, 3297–3300.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds