metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­cobalt(II) bis­­{[N-(4-meth­­oxy-2-oxido­benzyl­­idene)glycyl­glycinato]copper(II)} hexa­hydrate

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and bKey Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: gbyao@yzu.edu.cn

(Received 27 September 2009; accepted 1 October 2009; online 7 October 2009)

In the crystal structure of the title compound, [Co(H2O)6][Cu(C12H11N2O5)]2·6H2O, the CoII atom is located on an inversion center and coordinated by six water mol­ecules in a slightly distorted octa­hedral geometry. The CuII atom is chelated by the Schiff base ligand in a distorted CuN2O2 square-planar geometry. An extensive O—H⋯O hydrogen-bonding network is present in the crystal structure.

Related literature

For the magnetic properties of Schiff base complexes, see: Ion et al. (2009[Ion, A. E., Spielberg, E. T., Sorace, L., Buchholz, A. & Plass, W. (2009). Solid State Sci. 11, 766-771.]); Wu et al. (2007[Wu, G., Hewitt, I. J., Mameri, S., Lan, Y. H., Clérac, R., Anson, C. E., Qiu, S. L. & Powell, A. K. (2007). Inorg. Chem. 46, 7229-7231.]); Costes et al. (2006[Costes, J. P., Dahan, F. & Wernsdorfer, W. (2006). Inorg. Chem. 45, 5-7.]) and for their optical properties, see: Akine et al. (2008[Akine, S., Taniguchi, T. & Nabeshima, T. (2008). Inorg. Chem. 47, 3255-3264.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(H2O)6][Cu(C12H11N2O5)]2·6H2O

  • Mr = 928.66

  • Triclinic, [P \overline 1]

  • a = 7.834 (2) Å

  • b = 10.835 (3) Å

  • c = 11.474 (3) Å

  • α = 76.705 (4)°

  • β = 76.616 (5)°

  • γ = 81.085 (4)°

  • V = 916.7 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.561, Tmax = 0.658

  • 4773 measured reflections

  • 3345 independent reflections

  • 2801 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.105

  • S = 1.01

  • 3345 reflections

  • 242 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O11 0.83 1.94 2.771 (4) 174
O6—H6B⋯O3i 0.84 1.93 2.765 (3) 169
O7—H7A⋯O9ii 0.83 1.95 2.757 (3) 165
O7—H7B⋯O10 0.81 1.94 2.723 (3) 162
O8—H8C⋯O2iii 0.85 2.31 2.812 (3) 118
O9—H9A⋯O10 0.85 1.99 2.769 (4) 152
O9—H9B⋯O1 0.85 1.96 2.798 (3) 172
O10—H10C⋯O2iv 0.85 2.02 2.783 (3) 149
O10—H10D⋯O4i 0.85 2.00 2.844 (4) 173
O11—H11A⋯O2v 0.85 2.09 2.916 (3) 164
O11—H11B⋯O9 0.85 2.00 2.844 (4) 176
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+1, -z+2; (iv) -x, -y+1, -z+2; (v) x+1, y, z-1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the design and synthesis of Schiff base complexes caused an increasing interest in coordination chemistry because they were potential optical, magnetic materials (Ion et al., 2009; Wu et al., 2007; Costes et al., 2006; Akine et al., 2008). Now, we present the synthesis and structure analysis of the title Schiff base complex derived from 4-methoxy-salicylaldehyde and glycylglycine.

The complex (I) crystallizes in the triclinic space group P1. The asymmetric unit consists of one [CuL]- anion (L is a Schiff base derived from glycylglycine and 4-methoxy-salicylaldehyde), half Co(H2O)62+ cation [Co(1), O(6), O(7), O(8)] and three uncoordinated aqua molecules [O(9), O(10), O(11)] in the complex (I) (Fig. 1). The deprotonated Schiff base is a triple negatively charged tetradentate chelate ligand, coordinating to the Cu(II) atom by one phenolate O atom [O(1)], one imine N atom [N(1)], one deprotonated amide N atom [N(2)] and one carboxylato O atom [O(3)]. [CuL]- has approximately square-planar structure. The Cu(II) atom is in a slightly distorted square-planar environment with four donor atoms deviating from their mean plane by -0.0503 Å (N(1)), +0.0621 Å (N(2)), +0.0509 Å (O(1)) and -0.0494 Å (O(3)) (observed bond angles vary from 83.4 (1)° and 96.6 (1)°). The benzene ring [C(1)–C(6)] and the [O(1), C(1), C(6), C(7), N(1), Cu(1)] chelate ring are almost coplanar with a small dihedral angle of 0.1 (1)°, suggesting a large π-electron delocalization. The Co(II) atom lies on an inversion center and the coordination by six aqua ligands is slightly distorted octahedral. The six Co—O bonds in the structure are in the range of 2.075 (2) - 2.081 (2) Å. In the crystal structure, the [CuL]- anions and [Co(H2O)6]2+ cations form well separated columns along the a-axis, which are further formed a three-dimensional network by hydrogen bonds (Table 1).

Related literature top

For the magnetic properties of Schiff base complexes, see: Ion et al. (2009); Wu et al. (2007); Costes et al. (2006) and for their optical properties, see: Akine et al. (2008).

Experimental top

Glycylglycine (5 mmol), 4-methoxy-salicylaldehyde (5 mmol) and LiOH (10 mmol) were dissolved in MeOH/H2O (30 ml, v:v = 1:1) and refluxed for 30 min. Then Cu(ClO4)2.6H2O (5 mmol) was added to the solution and the resulting solution was adjusted to 9–11 by 5 M NaOH solution. After stirring at room temperature for 1 h, CoCl2.6H2O (2.5 mmol) was added. A violet precipitate was obtained immediately. After stirring for another 30 min and then filtrated, the precipitate was recrystallized from water. The violet crystals suitable for X-ray diffraction were obtained after one week (yield 30% based on Cu(ClO4)2.6H2O).

Refinement top

The water H atoms in (I) were located in a difference Fourier map and refined with a distance restraint of O—H = 0.83–0.85 Å and Uiso(H) =1.5Ueq(O). Other H atoms were positioned geometrically and constrained as riding atoms, with C—H distances of 0.93–0.97 Å and Uiso(H) set to 1.2 or 1.5Ueq(C) of the parent atom.

Structure description top

In recent years, the design and synthesis of Schiff base complexes caused an increasing interest in coordination chemistry because they were potential optical, magnetic materials (Ion et al., 2009; Wu et al., 2007; Costes et al., 2006; Akine et al., 2008). Now, we present the synthesis and structure analysis of the title Schiff base complex derived from 4-methoxy-salicylaldehyde and glycylglycine.

The complex (I) crystallizes in the triclinic space group P1. The asymmetric unit consists of one [CuL]- anion (L is a Schiff base derived from glycylglycine and 4-methoxy-salicylaldehyde), half Co(H2O)62+ cation [Co(1), O(6), O(7), O(8)] and three uncoordinated aqua molecules [O(9), O(10), O(11)] in the complex (I) (Fig. 1). The deprotonated Schiff base is a triple negatively charged tetradentate chelate ligand, coordinating to the Cu(II) atom by one phenolate O atom [O(1)], one imine N atom [N(1)], one deprotonated amide N atom [N(2)] and one carboxylato O atom [O(3)]. [CuL]- has approximately square-planar structure. The Cu(II) atom is in a slightly distorted square-planar environment with four donor atoms deviating from their mean plane by -0.0503 Å (N(1)), +0.0621 Å (N(2)), +0.0509 Å (O(1)) and -0.0494 Å (O(3)) (observed bond angles vary from 83.4 (1)° and 96.6 (1)°). The benzene ring [C(1)–C(6)] and the [O(1), C(1), C(6), C(7), N(1), Cu(1)] chelate ring are almost coplanar with a small dihedral angle of 0.1 (1)°, suggesting a large π-electron delocalization. The Co(II) atom lies on an inversion center and the coordination by six aqua ligands is slightly distorted octahedral. The six Co—O bonds in the structure are in the range of 2.075 (2) - 2.081 (2) Å. In the crystal structure, the [CuL]- anions and [Co(H2O)6]2+ cations form well separated columns along the a-axis, which are further formed a three-dimensional network by hydrogen bonds (Table 1).

For the magnetic properties of Schiff base complexes, see: Ion et al. (2009); Wu et al. (2007); Costes et al. (2006) and for their optical properties, see: Akine et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids.
Hexaaquacobalt(II) bis{[N-(4-methoxy-2-oxidobenzylidene)glycylglycinato]copper(II)} hexahydrate top
Crystal data top
[Co(H2O)6][Cu(C12H11N2O5)]2·6H2OZ = 1
Mr = 928.66F(000) = 479
Triclinic, P1Dx = 1.682 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.834 (2) ÅCell parameters from 2213 reflections
b = 10.835 (3) Åθ = 2.9–27.3°
c = 11.474 (3) ŵ = 1.69 mm1
α = 76.705 (4)°T = 296 K
β = 76.616 (5)°Block, violet
γ = 81.085 (4)°0.35 × 0.30 × 0.25 mm
V = 916.7 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3345 independent reflections
Radiation source: fine-focus sealed tube2801 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
φ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.561, Tmax = 0.658k = 1113
4773 measured reflectionsl = 713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0518P)2]
where P = (Fo2 + 2Fc2)/3
3345 reflections(Δ/σ)max < 0.001
242 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Co(H2O)6][Cu(C12H11N2O5)]2·6H2Oγ = 81.085 (4)°
Mr = 928.66V = 916.7 (4) Å3
Triclinic, P1Z = 1
a = 7.834 (2) ÅMo Kα radiation
b = 10.835 (3) ŵ = 1.69 mm1
c = 11.474 (3) ÅT = 296 K
α = 76.705 (4)°0.35 × 0.30 × 0.25 mm
β = 76.616 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3345 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2801 reflections with I > 2σ(I)
Tmin = 0.561, Tmax = 0.658Rint = 0.072
4773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.01Δρmax = 0.59 e Å3
3345 reflectionsΔρmin = 0.73 e Å3
242 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.03586 (5)0.20388 (4)0.98824 (3)0.02809 (14)
C10.2956 (4)0.0148 (3)0.9002 (3)0.0288 (7)
C20.4083 (4)0.0331 (3)0.8024 (3)0.0311 (7)
H20.41070.01270.72290.037*
C30.5146 (4)0.1458 (3)0.8214 (3)0.0341 (8)
C40.5171 (5)0.2159 (3)0.9394 (3)0.0374 (8)
H40.59120.29130.95240.045*
C50.4078 (5)0.1707 (3)1.0351 (3)0.0349 (8)
H50.40840.21741.11390.042*
C60.2944 (4)0.0569 (3)1.0203 (3)0.0290 (7)
C70.1895 (4)0.0188 (3)1.1282 (3)0.0315 (7)
H70.20130.07151.20290.038*
C80.0200 (4)0.1156 (3)1.2453 (3)0.0355 (8)
H8A0.06050.12241.29570.043*
H8B0.09420.04911.28970.043*
C90.1332 (4)0.2406 (3)1.2200 (3)0.0300 (7)
C100.2110 (5)0.4100 (3)1.0531 (3)0.0319 (8)
H10A0.17550.48091.07700.038*
H10B0.33680.40731.08400.038*
C110.1693 (4)0.4271 (3)0.9149 (3)0.0311 (7)
C120.6253 (5)0.1365 (4)0.6071 (3)0.0487 (10)
H12A0.50820.12900.59210.073*
H12B0.70450.18600.55350.073*
H12C0.66310.05310.59210.073*
N10.0808 (4)0.0818 (3)1.1303 (2)0.0294 (6)
N20.1159 (4)0.2923 (3)1.1028 (2)0.0302 (6)
O10.1993 (3)0.1241 (2)0.87335 (19)0.0314 (5)
O20.2285 (3)0.2879 (2)1.30684 (19)0.0365 (6)
O30.0524 (3)0.3465 (2)0.86770 (18)0.0337 (5)
O40.2476 (3)0.5175 (2)0.8547 (2)0.0425 (6)
O50.6258 (3)0.1980 (2)0.7310 (2)0.0436 (6)
Co11.00000.50000.50000.02696 (17)
O60.9561 (3)0.3322 (2)0.6289 (2)0.0422 (6)
H6A0.88560.28870.61640.063*
H6B0.93960.33360.70390.063*
O70.7348 (3)0.5271 (2)0.4914 (2)0.0393 (6)
H7A0.70500.59040.44090.059*
H7B0.66090.50970.55340.059*
O80.9612 (3)0.6042 (2)0.63661 (19)0.0357 (6)
H8D0.97320.68200.60390.054*
H8C1.03670.57550.68150.054*
O90.3966 (3)0.2928 (2)0.6876 (2)0.0478 (7)
H9A0.40910.35330.71960.072*
H9B0.32990.24200.73890.072*
O100.5032 (3)0.5168 (3)0.7098 (2)0.0452 (6)
H10C0.45260.59160.69090.068*
H10D0.57070.51610.75820.068*
O110.7326 (4)0.1922 (3)0.5697 (2)0.0491 (7)
H11A0.75950.22830.49500.074*
H11B0.63100.22310.60180.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0315 (2)0.0310 (2)0.0209 (2)0.00299 (17)0.00540 (16)0.00771 (16)
C10.0265 (16)0.0292 (18)0.0336 (18)0.0023 (14)0.0083 (14)0.0106 (14)
C20.0335 (18)0.0302 (18)0.0312 (18)0.0003 (14)0.0098 (14)0.0084 (14)
C30.0295 (17)0.0325 (18)0.046 (2)0.0015 (14)0.0095 (15)0.0177 (15)
C40.0353 (19)0.0305 (19)0.051 (2)0.0035 (15)0.0192 (17)0.0109 (16)
C50.0366 (19)0.0319 (19)0.0382 (19)0.0023 (15)0.0156 (16)0.0042 (15)
C60.0278 (17)0.0296 (18)0.0322 (17)0.0018 (14)0.0112 (14)0.0072 (14)
C70.0341 (18)0.0321 (19)0.0291 (17)0.0062 (15)0.0118 (14)0.0004 (14)
C80.0344 (19)0.051 (2)0.0214 (17)0.0016 (16)0.0083 (14)0.0062 (15)
C90.0267 (17)0.043 (2)0.0249 (17)0.0097 (14)0.0056 (13)0.0117 (14)
C100.0396 (19)0.0333 (19)0.0216 (16)0.0021 (15)0.0027 (14)0.0107 (13)
C110.0351 (18)0.0315 (18)0.0262 (17)0.0017 (15)0.0039 (14)0.0089 (14)
C120.051 (2)0.051 (2)0.043 (2)0.0067 (19)0.0047 (18)0.0211 (19)
N10.0312 (15)0.0335 (15)0.0240 (14)0.0003 (12)0.0086 (11)0.0059 (11)
N20.0368 (15)0.0339 (15)0.0209 (14)0.0019 (12)0.0071 (12)0.0104 (11)
O10.0336 (12)0.0337 (13)0.0241 (11)0.0067 (10)0.0051 (9)0.0077 (9)
O20.0381 (13)0.0494 (15)0.0235 (12)0.0015 (11)0.0046 (10)0.0143 (10)
O30.0432 (14)0.0339 (13)0.0193 (11)0.0092 (11)0.0040 (10)0.0068 (9)
O40.0522 (16)0.0382 (15)0.0287 (13)0.0167 (12)0.0068 (11)0.0055 (11)
O50.0431 (15)0.0411 (15)0.0464 (15)0.0105 (12)0.0076 (12)0.0198 (12)
Co10.0287 (3)0.0336 (4)0.0202 (3)0.0038 (3)0.0041 (2)0.0092 (2)
O60.0604 (17)0.0434 (15)0.0260 (12)0.0160 (13)0.0119 (12)0.0036 (11)
O70.0298 (13)0.0549 (16)0.0304 (13)0.0001 (11)0.0061 (10)0.0061 (11)
O80.0415 (14)0.0399 (14)0.0288 (12)0.0091 (11)0.0055 (10)0.0117 (10)
O90.0488 (16)0.0482 (16)0.0418 (15)0.0069 (13)0.0050 (12)0.0029 (12)
O100.0388 (15)0.0585 (17)0.0375 (14)0.0058 (12)0.0061 (11)0.0168 (12)
O110.0525 (17)0.0562 (17)0.0404 (15)0.0107 (13)0.0101 (13)0.0095 (13)
Geometric parameters (Å, º) top
Cu1—O11.877 (2)C10—H10A0.9700
Cu1—N21.887 (3)C10—H10B0.9700
Cu1—N11.913 (3)C11—O41.229 (4)
Cu1—O31.977 (2)C11—O31.278 (4)
C1—O11.315 (4)C12—O51.426 (4)
C1—C21.406 (4)C12—H12A0.9600
C1—C61.416 (4)C12—H12B0.9600
C2—C31.371 (5)C12—H12C0.9600
C2—H20.9300Co1—O72.075 (2)
C3—O51.361 (4)Co1—O7i2.075 (2)
C3—C41.394 (5)Co1—O8i2.076 (2)
C4—C51.364 (5)Co1—O82.076 (2)
C4—H40.9300Co1—O62.081 (2)
C5—C61.404 (4)Co1—O6i2.081 (2)
C5—H50.9300O6—H6A0.8345
C6—C71.427 (4)O6—H6B0.8434
C7—N11.276 (4)O7—H7A0.8307
C7—H70.9300O7—H7B0.8112
C8—N11.465 (4)O8—H8D0.8503
C8—C91.508 (5)O8—H8C0.8499
C8—H8A0.9700O9—H9A0.8497
C8—H8B0.9700O9—H9B0.8485
C9—O21.258 (4)O10—H10C0.8493
C9—N21.317 (4)O10—H10D0.8488
C10—N21.440 (4)O11—H11A0.8484
C10—C111.516 (4)O11—H11B0.8481
O1—Cu1—N2175.78 (11)O3—C11—C10117.5 (3)
O1—Cu1—N196.59 (10)O5—C12—H12A109.5
N2—Cu1—N184.11 (11)O5—C12—H12B109.5
O1—Cu1—O396.05 (9)H12A—C12—H12B109.5
N2—Cu1—O383.37 (10)O5—C12—H12C109.5
N1—Cu1—O3167.30 (10)H12A—C12—H12C109.5
O1—C1—C2117.3 (3)H12B—C12—H12C109.5
O1—C1—C6124.7 (3)C7—N1—C8122.0 (3)
C2—C1—C6118.1 (3)C7—N1—Cu1124.6 (2)
C3—C2—C1121.5 (3)C8—N1—Cu1113.4 (2)
C3—C2—H2119.2C9—N2—C10125.0 (3)
C1—C2—H2119.2C9—N2—Cu1118.7 (2)
O5—C3—C2124.6 (3)C10—N2—Cu1116.28 (19)
O5—C3—C4114.6 (3)C1—O1—Cu1124.7 (2)
C2—C3—C4120.9 (3)C11—O3—Cu1114.35 (19)
C5—C4—C3118.2 (3)C3—O5—C12118.5 (3)
C5—C4—H4120.9O7—Co1—O7i179.998 (1)
C3—C4—H4120.9O7—Co1—O8i86.87 (9)
C4—C5—C6123.1 (3)O7i—Co1—O8i93.13 (9)
C4—C5—H5118.4O7—Co1—O893.13 (9)
C6—C5—H5118.4O7i—Co1—O886.87 (9)
C5—C6—C1118.2 (3)O8i—Co1—O8179.999 (1)
C5—C6—C7117.6 (3)O7—Co1—O689.45 (10)
C1—C6—C7124.2 (3)O7i—Co1—O690.55 (10)
N1—C7—C6125.2 (3)O8i—Co1—O688.61 (9)
N1—C7—H7117.4O8—Co1—O691.39 (9)
C6—C7—H7117.4O7—Co1—O6i90.55 (10)
N1—C8—C9110.3 (3)O7i—Co1—O6i89.45 (10)
N1—C8—H8A109.6O8i—Co1—O6i91.39 (9)
C9—C8—H8A109.6O8—Co1—O6i88.61 (9)
N1—C8—H8B109.6O6—Co1—O6i179.999 (1)
C9—C8—H8B109.6Co1—O6—H6A115.2
H8A—C8—H8B108.1Co1—O6—H6B119.2
O2—C9—N2126.1 (3)H6A—O6—H6B110.8
O2—C9—C8120.4 (3)Co1—O7—H7A115.5
N2—C9—C8113.5 (3)Co1—O7—H7B119.8
N2—C10—C11108.2 (3)H7A—O7—H7B114.9
N2—C10—H10A110.1Co1—O8—H8D109.1
C11—C10—H10A110.1Co1—O8—H8C109.7
N2—C10—H10B110.1H8D—O8—H8C109.4
C11—C10—H10B110.1H9A—O9—H9B109.9
H10A—C10—H10B108.4H10C—O10—H10D109.7
O4—C11—O3123.8 (3)H11A—O11—H11B110.0
O4—C11—C10118.7 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O110.831.942.771 (4)174
O6—H6B···O3ii0.841.932.765 (3)169
O7—H7A···O9iii0.831.952.757 (3)165
O7—H7B···O100.811.942.723 (3)162
O8—H8C···O2iv0.852.312.812 (3)118
O9—H9A···O100.851.992.769 (4)152
O9—H9B···O10.851.962.798 (3)172
O10—H10C···O2v0.852.022.783 (3)149
O10—H10D···O4ii0.852.002.844 (4)173
O11—H11A···O2vi0.852.092.916 (3)164
O11—H11B···O90.852.002.844 (4)176
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x, y+1, z+2; (vi) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Co(H2O)6][Cu(C12H11N2O5)]2·6H2O
Mr928.66
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.834 (2), 10.835 (3), 11.474 (3)
α, β, γ (°)76.705 (4), 76.616 (5), 81.085 (4)
V3)916.7 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.561, 0.658
No. of measured, independent and
observed [I > 2σ(I)] reflections
4773, 3345, 2801
Rint0.072
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.01
No. of reflections3345
No. of parameters242
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.73

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O110.831.942.771 (4)174
O6—H6B···O3i0.841.932.765 (3)169
O7—H7A···O9ii0.831.952.757 (3)165
O7—H7B···O100.811.942.723 (3)162
O8—H8C···O2iii0.852.312.812 (3)118
O9—H9A···O100.851.992.769 (4)152
O9—H9B···O10.851.962.798 (3)172
O10—H10C···O2iv0.852.022.783 (3)149
O10—H10D···O4i0.852.002.844 (4)173
O11—H11A···O2v0.852.092.916 (3)164
O11—H11B···O90.852.002.844 (4)176
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2; (iv) x, y+1, z+2; (v) x+1, y, z1.
 

Acknowledgements

This work was supported by Foundation of Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, China.

References

First citationAkine, S., Taniguchi, T. & Nabeshima, T. (2008). Inorg. Chem. 47, 3255–3264.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationCostes, J. P., Dahan, F. & Wernsdorfer, W. (2006). Inorg. Chem. 45, 5–7.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIon, A. E., Spielberg, E. T., Sorace, L., Buchholz, A. & Plass, W. (2009). Solid State Sci. 11, 766–771.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, G., Hewitt, I. J., Mameri, S., Lan, Y. H., Clérac, R., Anson, C. E., Qiu, S. L. & Powell, A. K. (2007). Inorg. Chem. 46, 7229–7231.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds