metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­(2-oxo-1,2-di­hydro­pyridine-5-sulfonato-κO2)zinc(II)

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 September 2009; accepted 30 September 2009; online 7 October 2009)

The metal atom in the title compound, [Zn(C5H4NO4S)2(H2O)4], lies on a center of inversion and is linked to the anionic ligand through the carbonyl O atom. In the crystal structure, the 2-oxo-1,2-dihydro­pyridine-5-sulfon­ate ligand inter­acts with other mol­ecules through N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network structure.

Related literature

For the crystal structure of another zwitterionic tetra­aqua­bis(amide)–metalII complex, see: Gao et al. (2004[Gao, S., Zhang, Z.-Y., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1422-m1424.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C5H4NO4S)2(H2O)4]

  • Mr = 485.74

  • Monoclinic, P 21 /c

  • a = 6.7701 (2) Å

  • b = 13.9725 (5) Å

  • c = 10.0343 (3) Å

  • β = 115.331 (2)°

  • V = 857.93 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.74 mm−1

  • T = 293 K

  • 0.21 × 0.16 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.711, Tmax = 0.768

  • 8224 measured reflections

  • 1951 independent reflections

  • 1866 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.066

  • S = 1.06

  • 1951 reflections

  • 144 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.85 (1) 1.99 (1) 2.790 (2) 157 (2)
O1w—H11⋯O2ii 0.84 (1) 1.98 (1) 2.809 (2) 171 (2)
O1w—H12⋯O3iii 0.84 (1) 1.93 (1) 2.767 (2) 172 (3)
O2w—H21⋯O3iv 0.83 (1) 2.13 (1) 2.926 (2) 160 (3)
O2w—H22⋯O4v 0.84 (1) 1.93 (1) 2.765 (2) 174 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) x, y, z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of another zwitterionic tetraaquabis(amide)metalII complex, see: Gao et al. (2004).

Experimental top

Zinc carbonate (0.25 g, 2 mmol) was added to a hot aqueous solution of 2-hydroxypyridine 5-sulfonic acid (0.35 g, 2 mmol); the pH value was adjusted to 6 with 0.1 M sodium hydroxide. The solution was allowed to evaporate slowly. Colorless prismatic crystals were isolated after five days. CH&N elemental analysis. Calc. for C10H16N2O12S2Zn:C 24.73, H 3.32, N 5.77%; found: C 24.77, H 3.37, N 5.81%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The ammonium and water H-atoms were refined with a distance restraint of N–H = O–H 0.85±0.01 Å; their temperature factors were refined.

Structure description top

For the crystal structure of another zwitterionic tetraaquabis(amide)metalII complex, see: Gao et al. (2004).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Zn(H2O)4(C5H4NO4S)2 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Tetraaquabis(2-oxo-1,2-dihydropyridine-5-sulfonato-κO2)zinc(II) top
Crystal data top
[Zn(C5H4NO4S)2(H2O)4]F(000) = 496
Mr = 485.74Dx = 1.880 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7685 reflections
a = 6.7701 (2) Åθ = 3.3–27.5°
b = 13.9725 (5) ŵ = 1.74 mm1
c = 10.0343 (3) ÅT = 293 K
β = 115.331 (2)°Prism, colorles
V = 857.93 (5) Å30.21 × 0.16 × 0.16 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1951 independent reflections
Radiation source: fine-focus sealed tube1866 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.711, Tmax = 0.768k = 1718
8224 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.037P)2 + 0.5079P]
where P = (Fo2 + 2Fc2)/3
1951 reflections(Δ/σ)max = 0.001
144 parametersΔρmax = 0.37 e Å3
5 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(C5H4NO4S)2(H2O)4]V = 857.93 (5) Å3
Mr = 485.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.7701 (2) ŵ = 1.74 mm1
b = 13.9725 (5) ÅT = 293 K
c = 10.0343 (3) Å0.21 × 0.16 × 0.16 mm
β = 115.331 (2)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1951 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1866 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.768Rint = 0.021
8224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0235 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.37 e Å3
1951 reflectionsΔρmin = 0.39 e Å3
144 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.02207 (10)
S10.81951 (6)0.69216 (3)0.07941 (4)0.01923 (11)
O10.4186 (2)0.54472 (10)0.28771 (14)0.0295 (3)
O30.9550 (2)0.77155 (9)0.00655 (14)0.0290 (3)
O20.95353 (19)0.61832 (9)0.10431 (13)0.0264 (3)
O40.63570 (19)0.72213 (9)0.21315 (13)0.0271 (3)
O1W0.20020 (19)0.43039 (9)0.40362 (13)0.0252 (2)
O2W0.3496 (2)0.62596 (11)0.53828 (17)0.0406 (3)
C20.7484 (3)0.55821 (12)0.25390 (18)0.0234 (3)
H20.83600.52710.34130.028*
C10.5190 (3)0.56850 (11)0.21274 (17)0.0214 (3)
N10.4007 (2)0.60683 (10)0.07675 (15)0.0229 (3)
C50.4880 (2)0.64352 (13)0.01119 (17)0.0221 (3)
H50.39790.67150.10090.027*
C40.7072 (2)0.63937 (11)0.03179 (17)0.0201 (3)
C30.8395 (3)0.59340 (11)0.16668 (18)0.0227 (3)
H30.98910.58730.19560.027*
H10.2625 (16)0.6084 (16)0.045 (2)0.035 (6)*
H110.158 (4)0.4218 (18)0.3125 (12)0.048 (7)*
H120.166 (4)0.3815 (12)0.438 (3)0.045 (7)*
H210.223 (2)0.6479 (18)0.509 (3)0.051 (7)*
H220.431 (4)0.6538 (17)0.6168 (18)0.049 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02021 (15)0.02605 (16)0.02093 (15)0.00103 (9)0.00973 (11)0.00145 (9)
S10.01744 (18)0.02194 (19)0.01890 (19)0.00059 (13)0.00834 (14)0.00027 (13)
O10.0244 (6)0.0417 (7)0.0246 (6)0.0023 (5)0.0125 (5)0.0061 (5)
O30.0276 (6)0.0281 (6)0.0320 (7)0.0085 (5)0.0133 (5)0.0060 (5)
O20.0222 (5)0.0329 (6)0.0252 (6)0.0046 (5)0.0111 (5)0.0021 (5)
O40.0241 (6)0.0313 (6)0.0233 (6)0.0017 (5)0.0076 (5)0.0071 (5)
O1W0.0249 (6)0.0286 (6)0.0223 (6)0.0043 (5)0.0104 (5)0.0014 (5)
O2W0.0268 (7)0.0401 (8)0.0447 (8)0.0077 (6)0.0056 (6)0.0145 (6)
C20.0214 (7)0.0268 (8)0.0198 (7)0.0036 (6)0.0069 (6)0.0030 (6)
C10.0223 (7)0.0218 (7)0.0204 (7)0.0023 (6)0.0094 (6)0.0005 (6)
N10.0151 (6)0.0316 (7)0.0216 (7)0.0009 (5)0.0074 (5)0.0019 (5)
C50.0203 (7)0.0264 (8)0.0190 (7)0.0007 (6)0.0079 (6)0.0024 (5)
C40.0198 (7)0.0215 (7)0.0204 (7)0.0012 (6)0.0101 (6)0.0006 (5)
C30.0178 (7)0.0266 (8)0.0229 (8)0.0021 (6)0.0078 (6)0.0001 (6)
Geometric parameters (Å, º) top
Zn1—O1i2.0560 (12)O2W—H210.833 (10)
Zn1—O12.0560 (12)O2W—H220.838 (10)
Zn1—O1Wi2.0788 (12)C2—C31.360 (2)
Zn1—O1W2.0788 (12)C2—C11.434 (2)
Zn1—O2W2.1487 (14)C2—H20.9300
Zn1—O2Wi2.1487 (14)C1—N11.362 (2)
S1—O41.4477 (12)N1—C51.356 (2)
S1—O31.4626 (12)N1—H10.850 (10)
S1—O21.4643 (12)C5—C41.358 (2)
S1—C41.7588 (15)C5—H50.9300
O1—C11.2553 (19)C4—C31.418 (2)
O1W—H110.841 (10)C3—H30.9300
O1W—H120.841 (10)
O1i—Zn1—O1180.0Zn1—O1W—H12125.1 (18)
O1i—Zn1—O1Wi83.37 (5)H11—O1W—H12108 (2)
O1—Zn1—O1Wi96.63 (5)Zn1—O2W—H21137.0 (19)
O1i—Zn1—O1W96.63 (5)Zn1—O2W—H22112.2 (18)
O1—Zn1—O1W83.37 (5)H21—O2W—H22109 (3)
O1Wi—Zn1—O1W180.00 (6)C3—C2—C1120.81 (15)
O1i—Zn1—O2W90.07 (6)C3—C2—H2119.6
O1—Zn1—O2W89.93 (6)C1—C2—H2119.6
O1Wi—Zn1—O2W88.66 (5)O1—C1—N1117.88 (14)
O1W—Zn1—O2W91.34 (5)O1—C1—C2126.76 (15)
O1i—Zn1—O2Wi89.93 (6)N1—C1—C2115.35 (14)
O1—Zn1—O2Wi90.07 (6)C5—N1—C1124.58 (13)
O1Wi—Zn1—O2Wi91.34 (5)C5—N1—H1117.5 (16)
O1W—Zn1—O2Wi88.66 (5)C1—N1—H1118.0 (16)
O2W—Zn1—O2Wi180.0N1—C5—C4119.93 (14)
O4—S1—O3113.63 (8)N1—C5—H5120.0
O4—S1—O2113.28 (7)C4—C5—H5120.0
O3—S1—O2110.91 (7)C5—C4—C3118.76 (14)
O4—S1—C4106.01 (7)C5—C4—S1119.40 (12)
O3—S1—C4106.05 (7)C3—C4—S1121.84 (12)
O2—S1—C4106.28 (7)C2—C3—C4120.17 (14)
C1—O1—Zn1136.67 (11)C2—C3—H3119.9
Zn1—O1W—H11112.6 (17)C4—C3—H3119.9
O1Wi—Zn1—O1—C128.28 (18)N1—C5—C4—C32.1 (2)
O1W—Zn1—O1—C1151.72 (18)N1—C5—C4—S1177.08 (12)
O2W—Zn1—O1—C1116.92 (17)O4—S1—C4—C56.85 (15)
O2Wi—Zn1—O1—C163.08 (17)O3—S1—C4—C5114.25 (14)
Zn1—O1—C1—N1171.26 (12)O2—S1—C4—C5127.66 (13)
Zn1—O1—C1—C29.9 (3)O4—S1—C4—C3173.98 (13)
C3—C2—C1—O1175.15 (17)O3—S1—C4—C364.92 (15)
C3—C2—C1—N16.0 (2)O2—S1—C4—C353.17 (15)
O1—C1—N1—C5173.90 (16)C1—C2—C3—C41.2 (2)
C2—C1—N1—C57.1 (2)C5—C4—C3—C23.0 (2)
C1—N1—C5—C43.2 (3)S1—C4—C3—C2176.21 (13)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.85 (1)1.99 (1)2.790 (2)157 (2)
O1w—H11···O2iii0.84 (1)1.98 (1)2.809 (2)171 (2)
O1w—H12···O3iv0.84 (1)1.93 (1)2.767 (2)172 (3)
O2w—H21···O3v0.83 (1)2.13 (1)2.926 (2)160 (3)
O2w—H22···O4vi0.84 (1)1.93 (1)2.765 (2)174 (3)
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y1/2, z+1/2; (v) x1, y+3/2, z+1/2; (vi) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C5H4NO4S)2(H2O)4]
Mr485.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.7701 (2), 13.9725 (5), 10.0343 (3)
β (°) 115.331 (2)
V3)857.93 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.74
Crystal size (mm)0.21 × 0.16 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.711, 0.768
No. of measured, independent and
observed [I > 2σ(I)] reflections
8224, 1951, 1866
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.066, 1.06
No. of reflections1951
No. of parameters144
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.39

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.85 (1)1.99 (1)2.790 (2)157 (2)
O1w—H11···O2ii0.84 (1)1.98 (1)2.809 (2)171 (2)
O1w—H12···O3iii0.84 (1)1.93 (1)2.767 (2)172 (3)
O2w—H21···O3iv0.83 (1)2.13 (1)2.926 (2)160 (3)
O2w—H22···O4v0.84 (1)1.93 (1)2.765 (2)174 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x1, y+3/2, z+1/2; (v) x, y, z+1.
 

Acknowledgements

We thank the Natural Science Foundation of Heilongjiang Province (No. B200501), Heilongjiang University, China, and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationGao, S., Zhang, Z.-Y., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1422–m1424.  CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds