metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­zinc(II) bis­­(4-hy­droxy­benzene­sulfonate) dihydrate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 September 2009; accepted 5 October 2009; online 10 October 2009)

In the crystal structure of the title compound, [Zn(H2O)6](C6H5O4S)2·2H2O, the ZnII atom lies on a center of inversion. The complex cation inter­acts with the anion and uncoord­inated water mol­ecules by O—H⋯O hydrogen bonds, generating a three-dimensional network. The anion is disordered over two equal positions along the hydr­oxy–sulfonate C—C axis.

Related literature

The hexa­aqua­nickel, hexa­aqua­cobalt and hexa­aqua­copper salts are not isostructural; see: Du et al. (2007[Du, J.-M., Li, Q., Li, W., Lin, H.-M. & Guo, G.-C. (2007). Acta Cryst. E63, m2597.]); Kosnic et al. (1992[Kosnic, E. J., McClymont, E. L., Hodder, R. A. & Squattrito, P. J. (1992). Inorg. Chim. Acta, 201, 143-151.]); Liu & Zeng (2007[Liu, Y.-Q. & Zeng, X.-R. (2007). Acta Cryst. E63, m2414.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(H2O)6](C6H5O4S)2·2H2O

  • Mr = 555.82

  • Triclinic, [P \overline 1]

  • a = 6.2763 (5) Å

  • b = 7.0509 (7) Å

  • c = 13.3151 (11) Å

  • α = 78.479 (3)°

  • β = 76.832 (2)°

  • γ = 88.051 (3)°

  • V = 562.15 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 293 K

  • 0.23 × 0.18 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.746, Tmax = 0.823

  • 5523 measured reflections

  • 2538 independent reflections

  • 2283 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.076

  • S = 1.04

  • 2538 reflections

  • 214 parameters

  • 26 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O1 0.82 (1) 2.00 (1) 2.817 (2) 175 (3)
O1w—H12⋯O3i 0.83 (1) 1.97 (1) 2.801 (2) 176 (2)
O2w—H21⋯O1ii 0.84 (1) 1.99 (1) 2.818 (2) 168 (2)
O2w—H22⋯O2iii 0.84 (1) 1.91 (1) 2.730 (2) 165 (2)
O3w—H31⋯O3iv 0.83 (1) 2.04 (1) 2.845 (2) 166 (3)
O3w—H32⋯O4v 0.83 (1) 2.02 (1) 2.827 (2) 163 (3)
O4w—H41⋯O1 0.83 (1) 2.02 (1) 2.837 (2) 166 (3)
O4w—H42⋯O2iii 0.83 (1) 2.05 (1) 2.853 (2) 162 (3)
O4—H4⋯O4wvi 0.83 (1) 1.79 (1) 2.615 (2) 176 (3)
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) x, y+1, z; (iv) -x, -y, -z+1; (v) x, y, z+1; (vi) -x+1, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The hexaaquanickel, hexaaquacobalt and hexaaquacopper salts are not isostructural; see: Du et al. (2007); Kosnic et al. (1992); Liu & Zeng (2007).

Experimental top

Sodium 3-carboxy-4-hydroxybenzenesulfonate (0.52 g, 2 mmol) was reacted with zinc carbonate (0.25 g, 2 mmol) in water. The mixture was sealed in a 50-ml Teflon-lined stainless-steel bomb and heat at 403 K for three days. The bomb was then allowed to cool naturally to room temperature. Colorless prismatic crystals were obtained. C&H elemental analysis. Calc. for C12H26O16S2Zn: C 25.93, H 4.71%; found: C 25.97, H 4.77%. The carboxyl group of sodium 3-carboxy-4-hydroxybenzenesulfonate was apparently cleaved under the hydrothermal conditions.

Refinement top

The aromatic ring is disordered over two positions in respect of four carbon atoms. 1,2-Related carbon-carbon distances were restrained to 1.39±0.01 Å and the 1,4-related ones to 2.78±0.01 Å. Each component ring was restrained to be nearly flat. As the disorder refined to nearly 1:1, the occupancy of the disordered atoms was set as exactly 0.5.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The water and hydroxy H-atoms were refined with a distance restraint of N–H 0.84±0.01 Å; their temperature factors were refined.

Structure description top

The hexaaquanickel, hexaaquacobalt and hexaaquacopper salts are not isostructural; see: Du et al. (2007); Kosnic et al. (1992); Liu & Zeng (2007).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Zn(H2O)6] 2[C6H5O4S].2H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in the aromatic ring is not shown.
Hexaaquazinc(II) bis(4-hydroxybenzenesulfonate) dihydrate top
Crystal data top
[Zn(H2O)6](C6H5O4S)2·2H2OZ = 1
Mr = 555.82F(000) = 288
Triclinic, P1Dx = 1.642 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2763 (5) ÅCell parameters from 4800 reflections
b = 7.0509 (7) Åθ = 3.1–27.5°
c = 13.3151 (11) ŵ = 1.35 mm1
α = 78.479 (3)°T = 293 K
β = 76.832 (2)°Prism, colorless
γ = 88.051 (3)°0.23 × 0.18 × 0.15 mm
V = 562.15 (9) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2538 independent reflections
Radiation source: fine-focus sealed tube2283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 87
Tmin = 0.746, Tmax = 0.823k = 99
5523 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.0371P]
where P = (Fo2 + 2Fc2)/3
2538 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.35 e Å3
26 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Zn(H2O)6](C6H5O4S)2·2H2Oγ = 88.051 (3)°
Mr = 555.82V = 562.15 (9) Å3
Triclinic, P1Z = 1
a = 6.2763 (5) ÅMo Kα radiation
b = 7.0509 (7) ŵ = 1.35 mm1
c = 13.3151 (11) ÅT = 293 K
α = 78.479 (3)°0.23 × 0.18 × 0.15 mm
β = 76.832 (2)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2538 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2283 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.823Rint = 0.026
5523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02726 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.35 e Å3
2538 reflectionsΔρmin = 0.47 e Å3
214 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.50000.50000.50000.02554 (10)
S10.02762 (6)0.11701 (5)0.29910 (3)0.02660 (11)
O10.0715 (2)0.28397 (17)0.34183 (9)0.0345 (3)
O20.1531 (2)0.04947 (19)0.33502 (10)0.0451 (3)
O30.2054 (2)0.07467 (19)0.31965 (10)0.0394 (3)
O40.3707 (3)0.3376 (3)0.15810 (11)0.0584 (4)
H40.5063 (16)0.337 (4)0.1732 (19)0.051 (7)*
O1W0.4557 (2)0.2913 (2)0.41675 (12)0.0468 (4)
H110.349 (3)0.290 (4)0.3908 (19)0.062 (7)*
H120.556 (3)0.232 (3)0.3850 (15)0.043 (6)*
O2W0.2082 (2)0.62516 (18)0.47666 (9)0.0329 (3)
H210.115 (3)0.637 (3)0.5314 (12)0.052 (7)*
H220.207 (4)0.7338 (19)0.4375 (14)0.047 (6)*
O3W0.3176 (2)0.32548 (19)0.63807 (9)0.0377 (3)
H310.292 (4)0.2107 (17)0.639 (2)0.061 (7)*
H320.313 (4)0.346 (4)0.6979 (11)0.060 (7)*
O4W0.2020 (3)0.6528 (2)0.21483 (10)0.0459 (3)
H410.142 (4)0.551 (3)0.2522 (18)0.073 (9)*
H420.159 (4)0.729 (3)0.2548 (18)0.064 (8)*
C10.1270 (3)0.1789 (2)0.16170 (12)0.0269 (3)
C40.2937 (3)0.2822 (3)0.05256 (13)0.0371 (4)
C20.3442 (7)0.1495 (7)0.1195 (3)0.0359 (9)0.50
H20.43640.08990.16390.043*0.50
C30.4286 (7)0.2065 (7)0.0124 (3)0.0376 (11)0.50
H30.58030.19290.01600.045*0.50
C50.0730 (6)0.3207 (7)0.0106 (3)0.0390 (8)0.50
H50.01730.38450.05500.047*0.50
C60.0097 (6)0.2634 (7)0.0973 (3)0.0349 (8)0.50
H60.15980.28210.12670.042*0.50
C2'0.3409 (6)0.2436 (7)0.1239 (3)0.0324 (9)0.50
H2'0.43000.25390.17150.039*0.50
C3'0.4255 (8)0.2935 (7)0.0161 (3)0.0374 (11)0.50
H3'0.57360.33530.01030.045*0.50
C5'0.0822 (6)0.2055 (7)0.0137 (3)0.0416 (9)0.50
H5'0.00430.18730.06110.050*0.50
C6'0.0028 (6)0.1555 (7)0.0946 (3)0.0335 (7)0.50
H6'0.14800.10610.12140.040*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02646 (15)0.02624 (15)0.02455 (15)0.00073 (9)0.00629 (10)0.00595 (9)
S10.0311 (2)0.0229 (2)0.02348 (19)0.00025 (15)0.00199 (16)0.00367 (13)
O10.0408 (7)0.0331 (6)0.0298 (6)0.0060 (5)0.0032 (5)0.0110 (4)
O20.0593 (9)0.0357 (7)0.0329 (6)0.0145 (6)0.0056 (6)0.0030 (5)
O30.0338 (6)0.0404 (7)0.0410 (7)0.0092 (5)0.0023 (5)0.0117 (5)
O40.0538 (10)0.0940 (13)0.0232 (6)0.0074 (9)0.0055 (7)0.0044 (7)
O1W0.0357 (7)0.0558 (9)0.0648 (9)0.0112 (6)0.0203 (7)0.0403 (7)
O2W0.0306 (6)0.0357 (7)0.0282 (6)0.0056 (5)0.0048 (5)0.0005 (5)
O3W0.0504 (8)0.0336 (7)0.0254 (6)0.0108 (6)0.0037 (5)0.0009 (5)
O4W0.0596 (9)0.0382 (8)0.0342 (7)0.0030 (6)0.0011 (6)0.0044 (6)
C10.0320 (8)0.0238 (7)0.0236 (7)0.0008 (6)0.0041 (6)0.0044 (5)
C40.0449 (10)0.0421 (10)0.0240 (8)0.0014 (8)0.0075 (7)0.0061 (7)
C20.039 (2)0.038 (2)0.0278 (18)0.007 (2)0.0079 (15)0.0010 (18)
C30.033 (2)0.047 (3)0.0263 (19)0.002 (2)0.0006 (15)0.002 (2)
C50.044 (2)0.043 (2)0.0318 (19)0.0016 (18)0.0157 (16)0.0018 (16)
C60.0322 (19)0.040 (2)0.0327 (18)0.0040 (17)0.0096 (14)0.0059 (16)
C2'0.0311 (18)0.045 (2)0.0228 (16)0.0036 (19)0.0072 (13)0.0081 (18)
C3'0.034 (2)0.043 (3)0.032 (2)0.003 (2)0.0011 (15)0.008 (2)
C5'0.046 (2)0.055 (3)0.0289 (18)0.001 (2)0.0176 (16)0.0102 (18)
C6'0.0317 (18)0.039 (2)0.0320 (18)0.0016 (16)0.0082 (14)0.0093 (16)
Geometric parameters (Å, º) top
Zn1—O2Wi2.0660 (11)C1—C6'1.375 (4)
Zn1—O2W2.0660 (11)C1—C21.377 (4)
Zn1—O1W2.0713 (13)C1—C2'1.380 (4)
Zn1—O1Wi2.0713 (13)C1—C61.387 (4)
Zn1—O3W2.1066 (12)C4—C31.367 (4)
Zn1—O3Wi2.1066 (12)C4—C3'1.380 (5)
S1—O21.4530 (12)C4—C5'1.395 (4)
S1—O31.4552 (13)C4—C51.409 (4)
S1—O11.4651 (12)C2—C31.384 (5)
S1—C11.7624 (15)C2—H20.9500
O4—C41.358 (2)C3—H30.9500
O4—H40.83 (1)C5—C61.392 (5)
O1W—H110.82 (1)C5—H50.9500
O1W—H120.83 (1)C6—H60.9500
O2W—H210.84 (1)C2'—C3'1.389 (5)
O2W—H220.84 (1)C2'—H2'0.9500
O3W—H310.83 (1)C3'—H3'0.9500
O3W—H320.83 (1)C5'—C6'1.395 (5)
O4W—H410.83 (1)C5'—H5'0.9500
O4W—H420.83 (1)C6'—H6'0.9500
O2Wi—Zn1—O2W180.000 (1)C6'—C1—S1120.64 (18)
O2Wi—Zn1—O1W90.22 (5)C2—C1—S1119.18 (18)
O2W—Zn1—O1W89.78 (5)C2'—C1—S1118.08 (17)
O2Wi—Zn1—O1Wi89.78 (5)C6—C1—S1120.43 (18)
O2W—Zn1—O1Wi90.22 (5)O4—C4—C3121.5 (2)
O1W—Zn1—O1Wi180.0O4—C4—C3'120.7 (2)
O2Wi—Zn1—O3W92.58 (5)O4—C4—C5'119.52 (19)
O2W—Zn1—O3W87.42 (5)C3—C4—C5'111.2 (3)
O1W—Zn1—O3W89.15 (6)C3'—C4—C5'119.8 (3)
O1Wi—Zn1—O3W90.85 (6)O4—C4—C5117.71 (19)
O2Wi—Zn1—O3Wi87.42 (5)C3—C4—C5120.6 (3)
O2W—Zn1—O3Wi92.58 (5)C3'—C4—C5112.2 (3)
O1W—Zn1—O3Wi90.85 (6)C1—C2—C3120.2 (3)
O1Wi—Zn1—O3Wi89.15 (6)C1—C2—H2119.9
O3W—Zn1—O3Wi180.0C3—C2—H2119.9
O2—S1—O3112.90 (9)C4—C3—C2120.0 (4)
O2—S1—O1110.94 (8)C4—C3—H3120.0
O3—S1—O1112.10 (7)C2—C3—H3120.0
O2—S1—C1105.84 (7)C6—C5—C4118.6 (3)
O3—S1—C1107.93 (8)C6—C5—H5120.7
O1—S1—C1106.68 (7)C4—C5—H5120.7
C4—O4—H4110.5 (17)C1—C6—C5120.0 (3)
Zn1—O1W—H11122.4 (17)C1—C6—H6120.0
Zn1—O1W—H12124.5 (16)C5—C6—H6120.0
H11—O1W—H12109 (2)C1—C2'—C3'119.9 (3)
Zn1—O2W—H21115.9 (16)C1—C2'—H2'120.1
Zn1—O2W—H22120.5 (16)C3'—C2'—H2'120.1
H21—O2W—H22103 (2)C4—C3'—C2'119.7 (4)
Zn1—O3W—H31119.8 (18)C4—C3'—H3'120.1
Zn1—O3W—H32122.9 (19)C2'—C3'—H3'120.1
H31—O3W—H32112 (2)C4—C5'—C6'120.3 (3)
H41—O4W—H42100 (3)C4—C5'—H5'119.9
C6'—C1—C2111.5 (2)C6'—C5'—H5'119.9
C6'—C1—C2'121.2 (2)C1—C6'—C5'118.9 (3)
C2—C1—C6120.3 (2)C1—C6'—H6'120.6
C2'—C1—C6112.6 (2)C5'—C6'—H6'120.6
O2—S1—C1—C6'112.2 (3)C5'—C4—C5—C676.9 (5)
O3—S1—C1—C6'8.9 (3)C6'—C1—C6—C583.1 (5)
O1—S1—C1—C6'129.6 (2)C2—C1—C6—C50.7 (6)
O2—S1—C1—C232.7 (3)C2'—C1—C6—C530.0 (5)
O3—S1—C1—C2153.8 (3)S1—C1—C6—C5176.7 (3)
O1—S1—C1—C285.5 (3)C4—C5—C6—C13.1 (6)
O2—S1—C1—C2'65.2 (3)C6'—C1—C2'—C3'2.6 (6)
O3—S1—C1—C2'173.7 (2)C2—C1—C2'—C3'79.8 (6)
O1—S1—C1—C2'53.1 (3)C6—C1—C2'—C3'32.5 (5)
O2—S1—C1—C6149.9 (2)S1—C1—C2'—C3'179.9 (4)
O3—S1—C1—C628.7 (3)O4—C4—C3'—C2'177.4 (4)
O1—S1—C1—C691.9 (3)C3—C4—C3'—C2'82.7 (8)
C6'—C1—C2—C335.6 (5)C5'—C4—C3'—C2'5.3 (6)
C2'—C1—C2—C380.8 (6)C5—C4—C3'—C2'31.8 (5)
C6—C1—C2—C30.9 (6)C1—C2'—C3'—C41.4 (7)
S1—C1—C2—C3176.6 (4)O4—C4—C5'—C6'177.3 (4)
O4—C4—C3—C2179.3 (4)C3—C4—C5'—C6'33.0 (5)
C3'—C4—C3—C284.4 (8)C3'—C4—C5'—C6'5.4 (6)
C5'—C4—C3—C230.3 (6)C5—C4—C5'—C6'80.6 (5)
C5—C4—C3—C26.3 (6)C2—C1—C6'—C5'32.4 (5)
C1—C2—C3—C43.7 (7)C2'—C1—C6'—C5'2.5 (6)
O4—C4—C5—C6179.4 (4)C6—C1—C6'—C5'80.8 (5)
C3—C4—C5—C66.0 (6)S1—C1—C6'—C5'179.8 (3)
C3'—C4—C5—C633.9 (5)C4—C5'—C6'—C11.5 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O10.82 (1)2.00 (1)2.817 (2)175 (3)
O1w—H12···O3ii0.83 (1)1.97 (1)2.801 (2)176 (2)
O2w—H21···O1iii0.84 (1)1.99 (1)2.818 (2)168 (2)
O2w—H22···O2iv0.84 (1)1.91 (1)2.730 (2)165 (2)
O3w—H31···O3v0.83 (1)2.04 (1)2.845 (2)166 (3)
O3w—H32···O4vi0.83 (1)2.02 (1)2.827 (2)163 (3)
O4w—H41···O10.83 (1)2.02 (1)2.837 (2)166 (3)
O4w—H42···O2iv0.83 (1)2.05 (1)2.853 (2)162 (3)
O4—H4···O4wvii0.83 (1)1.79 (1)2.615 (2)176 (3)
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x, y, z+1; (vi) x, y, z+1; (vii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(H2O)6](C6H5O4S)2·2H2O
Mr555.82
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.2763 (5), 7.0509 (7), 13.3151 (11)
α, β, γ (°)78.479 (3), 76.832 (2), 88.051 (3)
V3)562.15 (9)
Z1
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.23 × 0.18 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.746, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
5523, 2538, 2283
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.04
No. of reflections2538
No. of parameters214
No. of restraints26
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.47

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O10.82 (1)2.00 (1)2.817 (2)175 (3)
O1w—H12···O3i0.83 (1)1.97 (1)2.801 (2)176 (2)
O2w—H21···O1ii0.84 (1)1.99 (1)2.818 (2)168 (2)
O2w—H22···O2iii0.84 (1)1.91 (1)2.730 (2)165 (2)
O3w—H31···O3iv0.83 (1)2.04 (1)2.845 (2)166 (3)
O3w—H32···O4v0.83 (1)2.02 (1)2.827 (2)163 (3)
O4w—H41···O10.83 (1)2.02 (1)2.837 (2)166 (3)
O4w—H42···O2iii0.83 (1)2.05 (1)2.853 (2)162 (3)
O4—H4···O4wvi0.83 (1)1.79 (1)2.615 (2)176 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z+1; (v) x, y, z+1; (vi) x+1, y+1, z.
 

Acknowledgements

We thank the Natural Science Foundation of Heilongjiang Province (No. B200501), Heilongjiang University, China, and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationDu, J.-M., Li, Q., Li, W., Lin, H.-M. & Guo, G.-C. (2007). Acta Cryst. E63, m2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKosnic, E. J., McClymont, E. L., Hodder, R. A. & Squattrito, P. J. (1992). Inorg. Chim. Acta, 201, 143–151.  CSD CrossRef CAS Web of Science Google Scholar
First citationLiu, Y.-Q. & Zeng, X.-R. (2007). Acta Cryst. E63, m2414.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds