organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(2-pyridylimino­meth­yl)benzene

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 September 2009; accepted 30 September 2009; online 7 October 2009)

In the crystal structure of the title compound, C18H14N4, the mol­ecule assumes [\overline{1}] site symmetry with the centroid of the benzene ring located on the inversion center. The mol­ecule is almost flat, with a dihedral angle of 2.70 (9)° between the pyridine and benzene rings.

Related literature

For the synthesis, see: D'Alelio et al. (1967[D'Alelio, G. F., Crivello, J. V., Schönig, R. K. & Hümmer, T. F. (1967). J. Macromol. Sci. Chem. 1, 1251-1258.]). Terephthaldehyde condenses directly with 2-amino­pyridine to form 4-(bis­(2-pyridylamino)meth­yl)benzaldehyde; see: Zhu et al. (2003[Zhu, H.-L., Liu, Q.-X., Usman, A. & Fun, H.-K. (2003). Z. Kristallogr. New Cryst. Struct. 218, 317-318.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N4

  • Mr = 286.33

  • Monoclinic, P 21 /n

  • a = 6.1579 (8) Å

  • b = 18.911 (3) Å

  • c = 6.5956 (11) Å

  • β = 109.746 (5)°

  • V = 722.90 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.26 × 0.21 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.976, Tmax = 0.983

  • 7013 measured reflections

  • 1657 independent reflections

  • 886 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.168

  • S = 1.05

  • 1657 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the synthesis, see: D'Alelio et al. (1967). Terephthaldehyde condenses directly with 2-aminopyridine to form 4-(bis(2-pyridylamino)methyl)benzaldehyde; see: Zhu et al. (2003).

Experimental top

To a solution of terephthaladehyde (1 mmol) in methanol was added a solution of 2-aminopyridine (2 mmol) and cobalt acetate trihydrate (1 mmol) in methanol. The mixture was heated to 333 K for one hour. The pale yellow solution was filtered. Colorless crystals were isolated from the filtrate after several days. CH&N elemental analysis. Calc. for C18H14N4: C 75.51, H 4.93, N 19.57%; found: C 75.53, H 4.98, N 19.53%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

Structure description top

For the synthesis, see: D'Alelio et al. (1967). Terephthaldehyde condenses directly with 2-aminopyridine to form 4-(bis(2-pyridylamino)methyl)benzaldehyde; see: Zhu et al. (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the title compound at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
1,4-Bis(2-pyridyliminomethyl)benzene top
Crystal data top
C18H14N4F(000) = 300
Mr = 286.33Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3577 reflections
a = 6.1579 (8) Åθ = 3.5–27.5°
b = 18.911 (3) ŵ = 0.08 mm1
c = 6.5956 (11) ÅT = 293 K
β = 109.746 (5)°Prism, colorless
V = 722.90 (18) Å30.30 × 0.26 × 0.21 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1657 independent reflections
Radiation source: fine-focus sealed tube886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 77
Tmin = 0.976, Tmax = 0.983k = 2424
7013 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0811P)2 + 0.0419P]
where P = (Fo2 + 2Fc2)/3
1657 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H14N4V = 722.90 (18) Å3
Mr = 286.33Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.1579 (8) ŵ = 0.08 mm1
b = 18.911 (3) ÅT = 293 K
c = 6.5956 (11) Å0.30 × 0.26 × 0.21 mm
β = 109.746 (5)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1657 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
886 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.983Rint = 0.048
7013 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
1657 reflectionsΔρmin = 0.21 e Å3
100 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2738 (3)0.57623 (8)0.4070 (3)0.0484 (5)
N20.4005 (3)0.67692 (8)0.6348 (3)0.0547 (5)
C10.3212 (3)0.48484 (9)0.0748 (3)0.0490 (5)
H10.20010.47450.12420.059*
C20.6436 (3)0.55629 (10)0.0822 (3)0.0501 (6)
H20.74080.59450.13710.060*
C30.4653 (3)0.54201 (9)0.1610 (3)0.0422 (5)
C40.4303 (3)0.58674 (9)0.3268 (3)0.0470 (5)
H40.52850.62510.37620.056*
C50.2518 (3)0.62320 (9)0.5657 (3)0.0427 (5)
C60.0719 (4)0.61176 (10)0.6427 (3)0.0505 (6)
H60.02670.57350.59400.061*
C70.0405 (4)0.65755 (10)0.7920 (3)0.0566 (6)
H70.08170.65130.84310.068*
C80.1919 (4)0.71275 (11)0.8649 (4)0.0585 (6)
H80.17620.74430.96730.070*
C90.3676 (4)0.71989 (10)0.7815 (4)0.0598 (6)
H90.47010.75720.83100.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0544 (10)0.0491 (9)0.0460 (11)0.0014 (8)0.0225 (9)0.0062 (7)
N20.0572 (11)0.0523 (10)0.0595 (12)0.0048 (8)0.0260 (9)0.0111 (8)
C10.0530 (12)0.0510 (11)0.0503 (13)0.0033 (9)0.0268 (10)0.0034 (9)
C20.0523 (12)0.0492 (11)0.0540 (13)0.0120 (9)0.0250 (11)0.0078 (9)
C30.0472 (11)0.0413 (10)0.0389 (11)0.0030 (8)0.0158 (9)0.0011 (8)
C40.0505 (12)0.0453 (11)0.0478 (13)0.0031 (9)0.0202 (10)0.0036 (9)
C50.0452 (11)0.0419 (10)0.0415 (11)0.0036 (8)0.0156 (9)0.0002 (8)
C60.0544 (13)0.0496 (11)0.0531 (14)0.0030 (9)0.0256 (11)0.0022 (9)
C70.0674 (14)0.0548 (12)0.0588 (14)0.0064 (10)0.0361 (12)0.0009 (10)
C80.0741 (14)0.0513 (12)0.0564 (14)0.0079 (11)0.0305 (12)0.0071 (10)
C90.0673 (14)0.0500 (11)0.0639 (15)0.0090 (10)0.0247 (12)0.0159 (10)
Geometric parameters (Å, º) top
N1—C41.262 (2)C3—C41.455 (3)
N1—C51.414 (2)C4—H40.9300
N2—C91.330 (2)C5—C61.383 (3)
N2—C51.340 (2)C6—C71.373 (3)
C1—C2i1.369 (3)C6—H60.9300
C1—C31.392 (3)C7—C81.374 (3)
C1—H10.9300C7—H70.9300
C2—C1i1.369 (3)C8—C91.376 (3)
C2—C31.391 (3)C8—H80.9300
C2—H20.9300C9—H90.9300
C4—N1—C5119.30 (17)N2—C5—N1120.16 (16)
C9—N2—C5117.11 (17)C6—C5—N1117.58 (17)
C2i—C1—C3120.54 (17)C7—C6—C5119.28 (19)
C2i—C1—H1119.7C7—C6—H6120.4
C3—C1—H1119.7C5—C6—H6120.4
C1i—C2—C3121.24 (17)C6—C7—C8119.14 (19)
C1i—C2—H2119.4C6—C7—H7120.4
C3—C2—H2119.4C8—C7—H7120.4
C2—C3—C1118.21 (17)C7—C8—C9117.83 (19)
C2—C3—C4120.26 (17)C7—C8—H8121.1
C1—C3—C4121.52 (16)C9—C8—H8121.1
N1—C4—C3123.46 (18)N2—C9—C8124.36 (19)
N1—C4—H4118.3N2—C9—H9117.8
C3—C4—H4118.3C8—C9—H9117.8
N2—C5—C6122.26 (17)
C1i—C2—C3—C10.5 (3)C4—N1—C5—N22.1 (3)
C1i—C2—C3—C4179.58 (18)C4—N1—C5—C6177.18 (19)
C2i—C1—C3—C20.5 (3)N2—C5—C6—C71.3 (3)
C2i—C1—C3—C4179.57 (18)N1—C5—C6—C7177.98 (17)
C5—N1—C4—C3179.24 (17)C5—C6—C7—C81.5 (3)
C2—C3—C4—N1179.11 (19)C6—C7—C8—C90.8 (3)
C1—C3—C4—N11.9 (3)C5—N2—C9—C80.2 (3)
C9—N2—C5—C60.5 (3)C7—C8—C9—N20.1 (4)
C9—N2—C5—N1178.83 (18)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H14N4
Mr286.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.1579 (8), 18.911 (3), 6.5956 (11)
β (°) 109.746 (5)
V3)722.90 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.26 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.976, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7013, 1657, 886
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.168, 1.05
No. of reflections1657
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.21

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the Natural Science Foundation of Heilongjiang Province (No. B200501), Heilongjiang University, China, and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationD'Alelio, G. F., Crivello, J. V., Schönig, R. K. & Hümmer, T. F. (1967). J. Macromol. Sci. Chem. 1, 1251–1258.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZhu, H.-L., Liu, Q.-X., Usman, A. & Fun, H.-K. (2003). Z. Kristallogr. New Cryst. Struct. 218, 317–318.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds