organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Iso­propyl-1,4a-di­methyl-1,2,3,4,4a,5,6,7,8,9,10,10a-dodeca­hydro­phenan­threne-1-carboxylic acid

aInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, People's Republic of China
*Correspondence e-mail: rxping2001@163.com

(Received 29 September 2009; accepted 15 October 2009; online 23 October 2009)

The title compound, C20H32O2, has been isolated from hydrogenated rosin. There are two independent mol­ecules in the asymmetric unit. In each mol­ecule, the cyclo­hexane ring assumes a chair conformation, while the two cyclo­hexene rings adopt half-chair and envelope conformations. Inter­molecular O—H⋯O hydrogen bonding between carboxyl groups links pairs of independent mol­ecules into dimers.

Related literature

For the applications of pine resin acids, see: Piispanen et al. (2001[Piispanen, P. S., Hedman, B. & Norin, T. (2001). J. Surf. Det. 5, 165-168.]); Jia et al. (2009[Jia, W. H., Rao, X. P., Song, Z. Q. & Shang, S. B. (2009). J. Surf. Det. 12, 261-267.]); Sepulveda et al. (2005[Sepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res. 52, 429-437.]); Rao, Song & He (2008[Rao, X.-P., Song, Z.-Q. & He, L. (2008). Heteroat. Chem. 19, 512-516.]); Rao, Song, He & Jia (2008[Rao, X.-P., Song, Z.-Q., He, L. & Jia, W.-H. (2008). Chem. Pharm. Bull. 56, 1575-1578.]); Bicu & Mustata (2000[Bicu, I. & Mustata, F. (2000). Makromol. Mater. Eng. 280-281, 47-53.]); Hoa et al. (1993[Hoa, L. T. N., Pascault, J. P., My, L. T. & Son, C. P. N. (1993). Eur. Polym. J. 29, 491-495.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32O2

  • Mr = 304.42

  • Monoclinic, P 21

  • a = 11.543 (2) Å

  • b = 13.580 (3) Å

  • c = 13.345 (3) Å

  • β = 114.93 (3)°

  • V = 1897.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3775 measured reflections

  • 3590 independent reflections

  • 2046 reflections with I > 2σ(I)

  • Rint = 0.025

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.194

  • S = 1.00

  • 3590 reflections

  • 385 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2D⋯O3i 0.82 1.82 2.632 (6) 170
O4—H4B⋯O1ii 0.82 1.82 2.638 (6) 173
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+2]; (ii) [-x+2, y+{\script{1\over 2}}, -z+2].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pine resin acids are natural diterpenoid compounds, monocarboxylic acids of alkylated hydrophenanthrene acids constitutes the principal resin acid. Pine resin acids are widely used as starting material for design and synthesis of surfactants (Piispanen et al., 2001; Jia et al., 2009), biological compounds (Sepulveda et al., 2005; Rao et al., 2008a,b) and polymers (Bicu et al., 2000; Hoa et al., 1993). In this work we describe the crystal structure of the title compound.

Two crystallorgraphica independent molecules exist in the title structure, in each molecule there are three six-membered rings, in which they form half-chair, envelope and chair conformations, respectively (Fig. 1). The two methyl groups in the same side of tricyclo phenanthrene structure. The crystal structure is stabilized by intermolecular O—H···O hydrogen bonds (Table 1).

Related literature top

For the applications of pine resin acids, see: Piispanen et al. (2001); Jia et al. (2009); Sepulveda et al. (2005); Rao, Song & He (2008); Rao, Song, He & Jia (2008); Bicu & Mustata (2000); Hoa et al. (1993). A Alerts fixed (authors supplied correct fcf file)

Experimental top

The title compound was isolated from hydrogenated rosin by recrystallization 5 times from acetone. Single crystals were grown from acetone.

Refinement top

H atoms were positioned geometrically and refined as riding atoms with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.97 - 0.98 Å and Uiso(H) = 1.2Ueq(C) for the other H atoms.

Structure description top

Pine resin acids are natural diterpenoid compounds, monocarboxylic acids of alkylated hydrophenanthrene acids constitutes the principal resin acid. Pine resin acids are widely used as starting material for design and synthesis of surfactants (Piispanen et al., 2001; Jia et al., 2009), biological compounds (Sepulveda et al., 2005; Rao et al., 2008a,b) and polymers (Bicu et al., 2000; Hoa et al., 1993). In this work we describe the crystal structure of the title compound.

Two crystallorgraphica independent molecules exist in the title structure, in each molecule there are three six-membered rings, in which they form half-chair, envelope and chair conformations, respectively (Fig. 1). The two methyl groups in the same side of tricyclo phenanthrene structure. The crystal structure is stabilized by intermolecular O—H···O hydrogen bonds (Table 1).

For the applications of pine resin acids, see: Piispanen et al. (2001); Jia et al. (2009); Sepulveda et al. (2005); Rao, Song & He (2008); Rao, Song, He & Jia (2008); Bicu & Mustata (2000); Hoa et al. (1993). A Alerts fixed (authors supplied correct fcf file)

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level.
7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,5,6,7,8,9,10,10a- dodecahydrophenanthrene-1-carboxylic acid top
Crystal data top
C20H32O2F(000) = 672
Mr = 304.42Dx = 1.066 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 11.543 (2) Åθ = 10–13°
b = 13.580 (3) ŵ = 0.07 mm1
c = 13.345 (3) ÅT = 293 K
β = 114.93 (3)°Block, colorless
V = 1897.0 (7) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.025
Radiation source: fine-focus sealed tubeθmax = 25.3°, θmin = 1.7°
Graphite monochromatorh = 013
ω/2θ scansk = 016
3775 measured reflectionsl = 1614
3590 independent reflections3 standard reflections every 200 reflections
2046 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.113P)2]
where P = (Fo2 + 2Fc2)/3
3590 reflections(Δ/σ)max = 0.002
385 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C20H32O2V = 1897.0 (7) Å3
Mr = 304.42Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.543 (2) ŵ = 0.07 mm1
b = 13.580 (3) ÅT = 293 K
c = 13.345 (3) Å0.30 × 0.20 × 0.10 mm
β = 114.93 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.025
3775 measured reflections3 standard reflections every 200 reflections
3590 independent reflections intensity decay: 1%
2046 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.194H-atom parameters constrained
S = 1.00Δρmax = 0.41 e Å3
3590 reflectionsΔρmin = 0.18 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5995 (3)0.3368 (3)0.9250 (4)0.0953 (14)
O20.7106 (3)0.2421 (4)0.8667 (4)0.1058 (16)
H2D0.76890.27280.91450.159*
C10.5526 (10)0.4293 (8)0.7003 (9)0.162 (4)
H1A0.56980.49580.72680.242*
H1B0.46920.42580.64020.242*
H1C0.61550.40870.67520.242*
C20.6790 (9)0.3821 (7)0.8947 (8)0.151 (3)
H2A0.67440.34120.95150.226*
H2B0.68520.44990.91680.226*
H2C0.75300.36450.88300.226*
C30.5574 (8)0.3672 (6)0.7861 (8)0.117 (2)
H3A0.48660.38850.80310.140*
C40.5336 (5)0.2562 (5)0.7585 (6)0.0872 (17)
H4A0.59890.23500.73420.105*
C50.4077 (6)0.2351 (5)0.6649 (6)0.101 (2)
H5A0.39670.27760.60300.122*
H5B0.33990.24970.68730.122*
C60.3975 (5)0.1284 (4)0.6285 (5)0.0835 (17)
H6A0.30940.11460.57880.100*
H6B0.44880.11920.58740.100*
C70.4403 (4)0.0550 (4)0.7227 (5)0.0673 (14)
C80.5082 (5)0.0867 (4)0.8256 (5)0.0743 (15)
C90.5507 (6)0.1922 (5)0.8566 (6)0.0921 (19)
H9A0.50220.22050.89380.111*
H9B0.64010.19260.90830.111*
C100.4006 (4)0.0506 (4)0.6951 (4)0.0667 (14)
C110.4961 (4)0.1151 (4)0.7890 (4)0.0656 (14)
H11A0.58000.09820.79200.079*
C120.5025 (5)0.0827 (5)0.9023 (5)0.0780 (16)
H12A0.41780.08490.90090.094*
H12B0.55730.12710.95960.094*
C130.5550 (6)0.0217 (5)0.9272 (5)0.0840 (17)
H13A0.53020.05080.98150.101*
H13B0.64760.01900.95900.101*
C140.4079 (5)0.0832 (4)0.5888 (4)0.0774 (16)
H14A0.49000.06340.59180.093*
H14B0.34230.04870.52740.093*
C150.3914 (6)0.1936 (5)0.5660 (5)0.0931 (19)
H15A0.30660.21350.55650.112*
H15B0.39940.20820.49810.112*
C160.4894 (6)0.2508 (5)0.6590 (5)0.0857 (17)
H16A0.57360.23390.66480.103*
H16B0.47610.32060.64240.103*
C170.4845 (5)0.2311 (4)0.7703 (5)0.0758 (16)
C180.2594 (4)0.0591 (6)0.6788 (5)0.097 (2)
H18A0.23060.12570.66000.145*
H18B0.20690.01590.62030.145*
H18C0.25350.04090.74600.145*
C190.3683 (5)0.2784 (5)0.7804 (6)0.113 (2)
H19A0.36780.34800.76740.169*
H19B0.29110.24960.72680.169*
H19C0.37370.26710.85330.169*
C200.6034 (5)0.2739 (4)0.8604 (5)0.0715 (14)
O31.0841 (3)0.1724 (4)0.9849 (3)0.0991 (14)
O41.1955 (3)0.0884 (4)0.9141 (3)0.1037 (15)
H4B1.25510.11390.96610.156*
C211.0284 (11)0.0278 (10)0.1895 (9)0.164 (2)
H21A1.04830.01130.12860.246*
H21B0.94790.06160.16250.246*
H21C1.09410.06960.24000.246*
C221.1466 (10)0.0976 (10)0.2801 (8)0.164 (2)
H22A1.16280.15770.32180.246*
H22B1.16020.10820.21470.246*
H22C1.20350.04720.32430.246*
C231.0201 (11)0.0682 (10)0.2501 (9)0.164 (2)
H23A0.95820.11530.20040.197*
C240.9939 (7)0.0429 (7)0.3525 (5)0.110 (3)
H24A1.06320.00000.40070.132*
C250.8671 (7)0.0108 (6)0.3270 (5)0.110 (3)
H25A0.79600.03280.28660.132*
H25B0.86010.06800.28130.132*
C260.8618 (6)0.0429 (5)0.4348 (5)0.0893 (18)
H26A0.77530.06310.41910.107*
H26B0.91710.09960.46390.107*
C270.9020 (5)0.0367 (4)0.5217 (4)0.0645 (13)
C280.9620 (5)0.1162 (4)0.5122 (4)0.0692 (14)
C290.9967 (6)0.1337 (6)0.4162 (5)0.0893 (19)
H29A0.93770.18130.36660.107*
H29B1.08170.16190.44420.107*
C300.8702 (4)0.0187 (4)0.6208 (4)0.0581 (12)
C310.9664 (4)0.0813 (4)0.7182 (4)0.0609 (13)
H31A1.05070.05990.72550.073*
C320.9591 (5)0.1894 (4)0.6862 (5)0.0763 (16)
H32A0.87240.21330.66260.092*
H32B1.01450.22810.74940.092*
C331.0000 (5)0.2002 (4)0.5941 (5)0.0804 (16)
H33A1.09230.20680.62590.097*
H33B0.96390.26060.55450.097*
C340.8919 (6)0.0900 (4)0.6569 (5)0.0815 (16)
H34A0.82840.13040.60040.098*
H34B0.97550.11050.66370.098*
C350.8836 (6)0.1070 (5)0.7676 (5)0.096 (2)
H35A0.79880.08940.75990.115*
H35B0.89690.17630.78670.115*
C360.9802 (6)0.0478 (5)0.8582 (5)0.0916 (19)
H36A1.06480.06960.86960.110*
H36B0.97070.06020.92590.110*
C370.9695 (5)0.0636 (5)0.8356 (4)0.0731 (16)
C380.7292 (4)0.0467 (5)0.5848 (5)0.0867 (17)
H38A0.67620.00520.52480.130*
H38B0.71660.11430.56130.130*
H38C0.70680.03830.64590.130*
C390.8541 (5)0.1048 (6)0.8505 (5)0.101 (2)
H39A0.86260.09000.92360.152*
H39B0.77730.07530.79710.152*
H39C0.85020.17480.84000.152*
C401.0881 (4)0.1130 (5)0.9177 (4)0.0701 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.063 (2)0.101 (3)0.111 (3)0.009 (2)0.026 (2)0.039 (3)
O20.054 (2)0.123 (4)0.131 (3)0.006 (2)0.031 (2)0.061 (3)
C10.158 (8)0.104 (7)0.171 (9)0.017 (6)0.019 (7)0.025 (7)
C20.145 (7)0.095 (6)0.184 (9)0.013 (6)0.041 (7)0.028 (6)
C30.110 (5)0.073 (5)0.153 (7)0.002 (4)0.041 (5)0.014 (5)
C40.071 (3)0.083 (5)0.104 (4)0.005 (3)0.033 (3)0.004 (4)
C50.085 (4)0.077 (5)0.120 (5)0.017 (3)0.022 (4)0.013 (4)
C60.064 (3)0.073 (4)0.089 (4)0.005 (3)0.008 (3)0.009 (3)
C70.047 (2)0.072 (4)0.081 (4)0.013 (2)0.025 (3)0.008 (3)
C80.069 (3)0.071 (4)0.079 (4)0.015 (3)0.027 (3)0.003 (3)
C90.090 (4)0.083 (4)0.111 (5)0.001 (3)0.050 (4)0.029 (4)
C100.045 (2)0.077 (4)0.075 (3)0.005 (3)0.022 (2)0.001 (3)
C110.047 (2)0.078 (4)0.068 (3)0.000 (3)0.022 (2)0.014 (3)
C120.071 (3)0.091 (4)0.080 (4)0.011 (3)0.039 (3)0.011 (3)
C130.092 (4)0.091 (5)0.075 (4)0.007 (3)0.042 (3)0.007 (3)
C140.072 (3)0.069 (4)0.069 (3)0.002 (3)0.008 (3)0.005 (3)
C150.085 (4)0.083 (5)0.082 (4)0.008 (3)0.007 (3)0.005 (4)
C160.100 (4)0.062 (4)0.074 (4)0.002 (3)0.016 (3)0.003 (3)
C170.051 (3)0.070 (4)0.098 (4)0.012 (3)0.023 (3)0.006 (3)
C180.042 (3)0.117 (5)0.120 (5)0.009 (3)0.023 (3)0.020 (4)
C190.063 (3)0.100 (5)0.146 (6)0.028 (3)0.015 (4)0.027 (5)
C200.060 (3)0.072 (4)0.083 (4)0.005 (3)0.030 (3)0.015 (3)
O30.072 (2)0.134 (4)0.094 (3)0.010 (2)0.038 (2)0.040 (3)
O40.054 (2)0.156 (4)0.092 (3)0.003 (2)0.0222 (18)0.032 (3)
C210.170 (5)0.192 (6)0.159 (5)0.045 (5)0.098 (5)0.032 (5)
C220.170 (5)0.192 (6)0.159 (5)0.045 (5)0.098 (5)0.032 (5)
C230.170 (5)0.192 (6)0.159 (5)0.045 (5)0.098 (5)0.032 (5)
C240.107 (5)0.158 (8)0.075 (4)0.057 (5)0.048 (4)0.035 (5)
C250.118 (6)0.131 (6)0.064 (4)0.035 (5)0.022 (4)0.020 (4)
C260.087 (4)0.092 (4)0.087 (4)0.009 (3)0.034 (3)0.025 (4)
C270.055 (3)0.065 (3)0.067 (3)0.008 (3)0.020 (2)0.004 (3)
C280.060 (3)0.082 (4)0.070 (3)0.004 (3)0.032 (2)0.021 (3)
C290.083 (4)0.114 (5)0.075 (4)0.013 (4)0.037 (3)0.032 (4)
C300.052 (2)0.051 (3)0.070 (3)0.007 (2)0.025 (2)0.000 (2)
C310.042 (2)0.076 (4)0.067 (3)0.000 (2)0.025 (2)0.003 (3)
C320.064 (3)0.055 (3)0.093 (4)0.005 (3)0.017 (3)0.004 (3)
C330.065 (3)0.074 (4)0.090 (4)0.008 (3)0.020 (3)0.006 (3)
C340.081 (4)0.066 (4)0.096 (4)0.026 (3)0.035 (3)0.001 (3)
C350.099 (4)0.079 (5)0.111 (5)0.018 (4)0.045 (4)0.014 (4)
C360.093 (4)0.097 (5)0.089 (4)0.008 (4)0.043 (4)0.021 (4)
C370.061 (3)0.090 (5)0.073 (3)0.004 (3)0.034 (3)0.005 (3)
C380.054 (3)0.107 (5)0.091 (4)0.013 (3)0.022 (3)0.022 (4)
C390.054 (3)0.154 (7)0.102 (4)0.001 (4)0.039 (3)0.022 (4)
C400.059 (3)0.092 (4)0.061 (3)0.004 (3)0.027 (2)0.008 (3)
Geometric parameters (Å, º) top
O1—C201.228 (6)O3—C401.221 (6)
O2—C201.280 (6)O4—C401.304 (6)
O2—H2D0.8200O4—H4B0.8200
C1—C31.404 (12)C21—C231.559 (16)
C1—H1A0.9600C21—H21A0.9600
C1—H1B0.9600C21—H21B0.9600
C1—H1C0.9600C21—H21C0.9600
C2—C31.548 (11)C22—C231.400 (14)
C2—H2A0.9600C22—H22A0.9600
C2—H2B0.9600C22—H22B0.9600
C2—H2C0.9600C22—H22C0.9600
C3—C41.549 (10)C23—C241.557 (11)
C3—H3A0.9800C23—H23A0.9800
C4—C51.491 (9)C24—C291.490 (11)
C4—C91.513 (9)C24—C251.539 (11)
C4—H4A0.9800C24—H24A0.9800
C5—C61.517 (9)C25—C261.529 (9)
C5—H5A0.9700C25—H25A0.9700
C5—H5B0.9700C25—H25B0.9700
C6—C71.515 (8)C26—C271.508 (8)
C6—H6A0.9700C26—H26A0.9700
C6—H6B0.9700C26—H26B0.9700
C7—C81.333 (7)C27—C281.317 (7)
C7—C101.504 (8)C27—C301.534 (7)
C8—C131.514 (8)C28—C331.511 (8)
C8—C91.515 (9)C28—C291.513 (7)
C9—H9A0.9700C29—H29A0.9700
C9—H9B0.9700C29—H29B0.9700
C10—C141.521 (8)C30—C381.539 (7)
C10—C111.545 (7)C30—C341.539 (8)
C10—C181.556 (7)C30—C311.558 (7)
C11—C121.547 (8)C31—C321.521 (8)
C11—C171.591 (8)C31—C371.571 (7)
C11—H11A0.9800C31—H31A0.9800
C12—C131.522 (9)C32—C331.499 (8)
C12—H12A0.9700C32—H32A0.9700
C12—H12B0.9700C32—H32B0.9700
C13—H13A0.9700C33—H33A0.9700
C13—H13B0.9700C33—H33B0.9700
C14—C151.527 (9)C34—C351.539 (9)
C14—H14A0.9700C34—H34A0.9700
C14—H14B0.9700C34—H34B0.9700
C15—C161.496 (8)C35—C361.488 (9)
C15—H15A0.9700C35—H35A0.9700
C15—H15B0.9700C35—H35B0.9700
C16—C171.534 (8)C36—C371.538 (9)
C16—H16A0.9700C36—H36A0.9700
C16—H16B0.9700C36—H36B0.9700
C17—C201.508 (8)C37—C401.503 (7)
C17—C191.544 (8)C37—C391.532 (7)
C18—H18A0.9600C38—H38A0.9600
C18—H18B0.9600C38—H38B0.9600
C18—H18C0.9600C38—H38C0.9600
C19—H19A0.9600C39—H39A0.9600
C19—H19B0.9600C39—H39B0.9600
C19—H19C0.9600C39—H39C0.9600
C20—O2—H2D109.5C40—O4—H4B109.5
C3—C1—H1A109.5C23—C21—H21A109.5
C3—C1—H1B109.5C23—C21—H21B109.5
H1A—C1—H1B109.5H21A—C21—H21B109.5
C3—C1—H1C109.5C23—C21—H21C109.5
H1A—C1—H1C109.5H21A—C21—H21C109.5
H1B—C1—H1C109.5H21B—C21—H21C109.5
C3—C2—H2A109.5C23—C22—H22A109.5
C3—C2—H2B109.5C23—C22—H22B109.5
H2A—C2—H2B109.5H22A—C22—H22B109.5
C3—C2—H2C109.5C23—C22—H22C109.5
H2A—C2—H2C109.5H22A—C22—H22C109.5
H2B—C2—H2C109.5H22B—C22—H22C109.5
C1—C3—C2113.2 (8)C22—C23—C24112.2 (9)
C1—C3—C4116.6 (8)C22—C23—C2195.9 (9)
C2—C3—C4110.5 (7)C24—C23—C21110.4 (9)
C1—C3—H3A105.1C22—C23—H23A112.5
C2—C3—H3A105.1C24—C23—H23A112.5
C4—C3—H3A105.1C21—C23—H23A112.5
C5—C4—C9109.9 (6)C29—C24—C25107.9 (5)
C5—C4—C3113.5 (6)C29—C24—C23110.7 (8)
C9—C4—C3114.0 (6)C25—C24—C23115.4 (7)
C5—C4—H4A106.3C29—C24—H24A107.5
C9—C4—H4A106.3C25—C24—H24A107.5
C3—C4—H4A106.3C23—C24—H24A107.5
C4—C5—C6111.6 (5)C26—C25—C24109.8 (5)
C4—C5—H5A109.3C26—C25—H25A109.7
C6—C5—H5A109.3C24—C25—H25A109.7
C4—C5—H5B109.3C26—C25—H25B109.7
C6—C5—H5B109.3C24—C25—H25B109.7
H5A—C5—H5B108.0H25A—C25—H25B108.2
C7—C6—C5114.1 (5)C27—C26—C25113.5 (6)
C7—C6—H6A108.7C27—C26—H26A108.9
C5—C6—H6A108.7C25—C26—H26A108.9
C7—C6—H6B108.7C27—C26—H26B108.9
C5—C6—H6B108.7C25—C26—H26B108.9
H6A—C6—H6B107.6H26A—C26—H26B107.7
C8—C7—C10123.1 (5)C28—C27—C26121.1 (5)
C8—C7—C6119.2 (5)C28—C27—C30122.7 (5)
C10—C7—C6117.7 (5)C26—C27—C30116.2 (5)
C7—C8—C13124.5 (6)C27—C28—C33123.5 (5)
C7—C8—C9124.7 (6)C27—C28—C29123.2 (6)
C13—C8—C9110.8 (5)C33—C28—C29113.2 (5)
C4—C9—C8113.4 (5)C24—C29—C28113.8 (6)
C4—C9—H9A108.9C24—C29—H29A108.8
C8—C9—H9A108.9C28—C29—H29A108.8
C4—C9—H9B108.9C24—C29—H29B108.8
C8—C9—H9B108.9C28—C29—H29B108.8
H9A—C9—H9B107.7H29A—C29—H29B107.7
C7—C10—C14112.0 (5)C27—C30—C38107.3 (4)
C7—C10—C11107.6 (4)C27—C30—C34110.8 (4)
C14—C10—C11106.9 (4)C38—C30—C34110.3 (4)
C7—C10—C18107.3 (5)C27—C30—C31106.6 (4)
C14—C10—C18108.3 (5)C38—C30—C31114.4 (4)
C11—C10—C18114.7 (5)C34—C30—C31107.3 (4)
C10—C11—C12110.8 (4)C32—C31—C30111.0 (4)
C10—C11—C17116.8 (4)C32—C31—C37113.7 (4)
C12—C11—C17113.7 (5)C30—C31—C37117.2 (4)
C10—C11—H11A104.8C32—C31—H31A104.5
C12—C11—H11A104.8C30—C31—H31A104.5
C17—C11—H11A104.8C37—C31—H31A104.5
C13—C12—C11109.2 (5)C33—C32—C31108.9 (5)
C13—C12—H12A109.8C33—C32—H32A109.9
C11—C12—H12A109.8C31—C32—H32A109.9
C13—C12—H12B109.8C33—C32—H32B109.9
C11—C12—H12B109.8C31—C32—H32B109.9
H12A—C12—H12B108.3H32A—C32—H32B108.3
C8—C13—C12112.9 (5)C32—C33—C28115.1 (4)
C8—C13—H13A109.0C32—C33—H33A108.5
C12—C13—H13A109.0C28—C33—H33A108.5
C8—C13—H13B109.0C32—C33—H33B108.5
C12—C13—H13B109.0C28—C33—H33B108.5
H13A—C13—H13B107.8H33A—C33—H33B107.5
C10—C14—C15114.8 (5)C35—C34—C30112.1 (5)
C10—C14—H14A108.6C35—C34—H34A109.2
C15—C14—H14A108.6C30—C34—H34A109.2
C10—C14—H14B108.6C35—C34—H34B109.2
C15—C14—H14B108.6C30—C34—H34B109.2
H14A—C14—H14B107.5H34A—C34—H34B107.9
C16—C15—C14111.0 (5)C36—C35—C34111.7 (5)
C16—C15—H15A109.4C36—C35—H35A109.3
C14—C15—H15A109.4C34—C35—H35A109.3
C16—C15—H15B109.4C36—C35—H35B109.3
C14—C15—H15B109.4C34—C35—H35B109.3
H15A—C15—H15B108.0H35A—C35—H35B107.9
C15—C16—C17112.9 (5)C35—C36—C37113.7 (5)
C15—C16—H16A109.0C35—C36—H36A108.8
C17—C16—H16A109.0C37—C36—H36A108.8
C15—C16—H16B109.0C35—C36—H36B108.8
C17—C16—H16B109.0C37—C36—H36B108.8
H16A—C16—H16B107.8H36A—C36—H36B107.7
C20—C17—C16108.2 (5)C40—C37—C39108.5 (5)
C20—C17—C19107.6 (5)C40—C37—C36108.9 (5)
C16—C17—C19113.5 (5)C39—C37—C36109.6 (5)
C20—C17—C11105.6 (4)C40—C37—C31106.9 (4)
C16—C17—C11106.8 (5)C39—C37—C31114.7 (5)
C19—C17—C11114.7 (5)C36—C37—C31108.2 (5)
C10—C18—H18A109.5C30—C38—H38A109.5
C10—C18—H18B109.5C30—C38—H38B109.5
H18A—C18—H18B109.5H38A—C38—H38B109.5
C10—C18—H18C109.5C30—C38—H38C109.5
H18A—C18—H18C109.5H38A—C38—H38C109.5
H18B—C18—H18C109.5H38B—C38—H38C109.5
C17—C19—H19A109.5C37—C39—H39A109.5
C17—C19—H19B109.5C37—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
C17—C19—H19C109.5C37—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
O1—C20—O2120.6 (5)O3—C40—O4121.8 (5)
O1—C20—C17122.6 (5)O3—C40—C37121.7 (5)
O2—C20—C17116.8 (5)O4—C40—C37116.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···O3i0.821.822.632 (6)170
O4—H4B···O1ii0.821.822.638 (6)173
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC20H32O2
Mr304.42
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.543 (2), 13.580 (3), 13.345 (3)
β (°) 114.93 (3)
V3)1897.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3775, 3590, 2046
Rint0.025
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.194, 1.00
No. of reflections3590
No. of parameters385
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2D···O3i0.821.822.632 (6)170
O4—H4B···O1ii0.821.822.638 (6)173
Symmetry codes: (i) x+2, y1/2, z+2; (ii) x+2, y+1/2, z+2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (BK2008088) and the Fundamental Research Foundation of the Central Commonwealth Institute of the Chinese Academy of Forestry (CAFYBB2008021).

References

First citationBicu, I. & Mustata, F. (2000). Makromol. Mater. Eng. 280–281, 47–53.  Web of Science CrossRef Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHoa, L. T. N., Pascault, J. P., My, L. T. & Son, C. P. N. (1993). Eur. Polym. J. 29, 491–495.  Google Scholar
First citationJia, W. H., Rao, X. P., Song, Z. Q. & Shang, S. B. (2009). J. Surf. Det. 12, 261–267.  Web of Science CrossRef CAS Google Scholar
First citationPiispanen, P. S., Hedman, B. & Norin, T. (2001). J. Surf. Det. 5, 165–168.  Web of Science CrossRef Google Scholar
First citationRao, X.-P., Song, Z.-Q. & He, L. (2008). Heteroat. Chem. 19, 512–516.  Web of Science CrossRef CAS Google Scholar
First citationRao, X.-P., Song, Z.-Q., He, L. & Jia, W.-H. (2008). Chem. Pharm. Bull. 56, 1575–1578.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSepulveda, B., Astudillo, L., Rodriguez, J., Yanez, T., Theoduloz, C. & Schmeda, G. (2005). Pharm. Res. 52, 429–437.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds