organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-7-methyl­quinoline-3-carbaldehyde

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 October 2009; accepted 6 October 2009; online 13 October 2009)

The quinoline fused-ring system of the title compound, C11H8ClNO, is planar (r.m.s. deviation = 0.007 Å); the formyl group is bent slightly out of the plane [C—C—C—O torsion angles = −9.6 (5) and 170.4 (3)°].

Related literature

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993[Meth-Cohn, O. (1993). Heterocycles, 35, 539-557.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8ClNO

  • Mr = 205.63

  • Monoclinic, P 21 /n

  • a = 15.458 (3) Å

  • b = 3.9382 (8) Å

  • c = 16.923 (3) Å

  • β = 112.854 (3)°

  • V = 949.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 290 K

  • 0.24 × 0.18 × 0.06 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.918, Tmax = 0.979

  • 6484 measured reflections

  • 1796 independent reflections

  • 1356 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.209

  • S = 1.13

  • 1796 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Experimental top

A Vilsmeier-Haack adduct prepared from phosphorus oxytrichloride (6.5 ml, 70 mmol) and N,N-dimethylformamide (2.3 ml, 30 mmol) at 273 K was added N-(3-tolyl)acetamide (1.49 g, 10 mmol). The mixture was heated at 353 K for 15 h. The mixture was poured onto ice; the white product was collected and dried. The compound was purified by recrystallization from a petroleum ether/ethyl acetate mixture.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

Structure description top

For a review of the synthesis of quinolines by the Vilsmeier–Haack reaction, see: Meth-Cohn (1993).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C11H8ClNO at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Chloro-7-methylquinoline-3-carbaldehyde top
Crystal data top
C11H8ClNOF(000) = 424
Mr = 205.63Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 973 reflections
a = 15.458 (3) Åθ = 1.3–24.9°
b = 3.9382 (8) ŵ = 0.36 mm1
c = 16.923 (3) ÅT = 290 K
β = 112.854 (3)°Block, colorless
V = 949.3 (3) Å30.24 × 0.18 × 0.06 mm
Z = 4
Data collection top
Bruker SMART area-detector
diffractometer
1796 independent reflections
Radiation source: fine-focus sealed tube1356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 25.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.918, Tmax = 0.979k = 44
6484 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1371P)2]
where P = (Fo2 + 2Fc2)/3
1796 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C11H8ClNOV = 949.3 (3) Å3
Mr = 205.63Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.458 (3) ŵ = 0.36 mm1
b = 3.9382 (8) ÅT = 290 K
c = 16.923 (3) Å0.24 × 0.18 × 0.06 mm
β = 112.854 (3)°
Data collection top
Bruker SMART area-detector
diffractometer
1796 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1356 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.979Rint = 0.042
6484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.209H-atom parameters constrained
S = 1.13Δρmax = 0.78 e Å3
1796 reflectionsΔρmin = 0.49 e Å3
128 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37647 (6)0.6903 (3)0.18658 (6)0.0603 (4)
O10.36833 (17)0.1214 (8)0.39875 (18)0.0705 (9)
N10.55664 (19)0.6719 (7)0.27097 (16)0.0402 (7)
C10.4781 (2)0.5835 (8)0.27548 (19)0.0393 (7)
C20.4683 (2)0.4068 (8)0.34482 (19)0.0383 (7)
C30.5497 (2)0.3312 (8)0.4129 (2)0.0387 (7)
H30.54680.21820.46010.046*
C40.6373 (2)0.4210 (7)0.41281 (18)0.0347 (7)
C50.7243 (2)0.3490 (8)0.48060 (19)0.0407 (8)
H50.72530.23760.52940.049*
C60.8064 (2)0.4414 (8)0.47489 (19)0.0424 (8)
H60.86280.39230.52010.051*
C70.8080 (2)0.6125 (7)0.4009 (2)0.0394 (8)
C80.7248 (2)0.6851 (8)0.3354 (2)0.0391 (7)
H80.72520.79780.28720.047*
C90.6379 (2)0.5927 (7)0.33897 (18)0.0341 (7)
C100.3769 (2)0.3059 (9)0.3458 (2)0.0503 (9)
H100.32280.39000.30290.060*
C110.9001 (3)0.7114 (9)0.3968 (2)0.0523 (9)
H11A0.89060.90010.35840.078*
H11B0.92480.52260.37640.078*
H11C0.94360.77460.45300.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0499 (6)0.0826 (8)0.0457 (6)0.0050 (4)0.0157 (4)0.0154 (4)
O10.0512 (17)0.103 (2)0.0731 (18)0.0030 (14)0.0416 (15)0.0286 (15)
N10.0478 (16)0.0474 (15)0.0341 (14)0.0010 (12)0.0252 (13)0.0033 (10)
C10.0427 (18)0.0452 (17)0.0380 (16)0.0017 (13)0.0245 (14)0.0012 (13)
C20.0407 (18)0.0452 (17)0.0395 (17)0.0026 (12)0.0272 (14)0.0014 (12)
C30.0476 (19)0.0439 (17)0.0383 (16)0.0018 (13)0.0316 (15)0.0017 (12)
C40.0424 (17)0.0396 (15)0.0323 (15)0.0025 (12)0.0257 (13)0.0005 (11)
C50.0439 (18)0.0549 (19)0.0338 (16)0.0035 (14)0.0267 (14)0.0011 (13)
C60.0390 (17)0.0560 (19)0.0386 (17)0.0053 (14)0.0221 (14)0.0053 (14)
C70.0467 (19)0.0403 (16)0.0449 (18)0.0047 (13)0.0328 (16)0.0095 (12)
C80.0477 (19)0.0440 (17)0.0400 (17)0.0032 (13)0.0327 (15)0.0016 (12)
C90.0423 (17)0.0391 (15)0.0322 (15)0.0007 (12)0.0268 (13)0.0019 (11)
C100.0388 (19)0.065 (2)0.055 (2)0.0019 (15)0.0272 (17)0.0066 (17)
C110.0469 (19)0.060 (2)0.063 (2)0.0075 (15)0.0351 (17)0.0042 (16)
Geometric parameters (Å, º) top
Cl1—C11.753 (3)C5—H50.9300
O1—C101.200 (4)C6—C71.430 (4)
N1—C11.293 (4)C6—H60.9300
N1—C91.370 (4)C7—C81.363 (4)
C1—C21.422 (4)C7—C111.502 (5)
C2—C31.369 (4)C8—C91.416 (4)
C2—C101.473 (4)C8—H80.9300
C3—C41.400 (4)C10—H100.9300
C3—H30.9300C11—H11A0.9600
C4—C51.417 (4)C11—H11B0.9600
C4—C91.424 (4)C11—H11C0.9600
C5—C61.359 (4)
C1—N1—C9117.7 (3)C8—C7—C6118.6 (3)
N1—C1—C2125.7 (3)C8—C7—C11121.3 (3)
N1—C1—Cl1115.7 (2)C6—C7—C11120.1 (3)
C2—C1—Cl1118.5 (2)C7—C8—C9121.5 (3)
C3—C2—C1116.3 (3)C7—C8—H8119.3
C3—C2—C10120.2 (3)C9—C8—H8119.3
C1—C2—C10123.5 (3)N1—C9—C8118.8 (3)
C2—C3—C4121.2 (3)N1—C9—C4121.9 (3)
C2—C3—H3119.4C8—C9—C4119.3 (3)
C4—C3—H3119.4O1—C10—C2123.8 (3)
C3—C4—C5124.3 (3)O1—C10—H10118.1
C3—C4—C9117.2 (3)C2—C10—H10118.1
C5—C4—C9118.5 (3)C7—C11—H11A109.5
C6—C5—C4120.5 (3)C7—C11—H11B109.5
C6—C5—H5119.7H11A—C11—H11B109.5
C4—C5—H5119.7C7—C11—H11C109.5
C5—C6—C7121.5 (3)H11A—C11—H11C109.5
C5—C6—H6119.3H11B—C11—H11C109.5
C7—C6—H6119.3
C9—N1—C1—C20.7 (5)C5—C6—C7—C11179.9 (3)
C9—N1—C1—Cl1179.8 (2)C6—C7—C8—C90.5 (4)
N1—C1—C2—C31.3 (5)C11—C7—C8—C9180.0 (3)
Cl1—C1—C2—C3179.6 (2)C1—N1—C9—C8179.6 (3)
N1—C1—C2—C10178.7 (3)C1—N1—C9—C40.4 (4)
Cl1—C1—C2—C100.5 (4)C7—C8—C9—N1179.8 (3)
C1—C2—C3—C40.8 (4)C7—C8—C9—C40.2 (4)
C10—C2—C3—C4179.2 (3)C3—C4—C9—N10.8 (4)
C2—C3—C4—C5179.5 (3)C5—C4—C9—N1179.8 (3)
C2—C3—C4—C90.2 (4)C3—C4—C9—C8179.2 (3)
C3—C4—C5—C6179.1 (3)C5—C4—C9—C80.1 (4)
C9—C4—C5—C60.2 (4)C3—C2—C10—O19.6 (5)
C4—C5—C6—C70.1 (5)C1—C2—C10—O1170.4 (3)
C5—C6—C7—C80.5 (5)

Experimental details

Crystal data
Chemical formulaC11H8ClNO
Mr205.63
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)15.458 (3), 3.9382 (8), 16.923 (3)
β (°) 112.854 (3)
V3)949.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.24 × 0.18 × 0.06
Data collection
DiffractometerBruker SMART area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.918, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
6484, 1796, 1356
Rint0.042
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.209, 1.13
No. of reflections1796
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.49

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the diffraction facility at IISc under the IRHPA–DST program; FNK thanks the DST for Fast Track Proposal funding. We also thank VIT University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMeth-Cohn, O. (1993). Heterocycles, 35, 539–557.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds