organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[3-(Tri­fluoro­meth­yl)phenyl­imino­meth­yl]benzene-1,4-diol

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: sgul@omu.edu.tr

(Received 8 October 2009; accepted 12 October 2009; online 17 October 2009)

In the title compound, C14H10F3NO2, the two benzene rings are oriented at a dihedral angle of 31.94 (14)°. An intra­molecular O—H⋯N hydrogen bond helps to stabilize the mol­ecular structure. In the crystal, inter­molecular O—H⋯O hydrogen bonding links the mol­ecules, forming chains running along the crystallographic a axis. The F atoms of the trifluoro­methyl group are disordered over two positions with refined site occupancies of 0.488 (5) and 0.512 (5).

Related literature

For the biological properties of Schiff bases, see: Lozier et al. (1975[Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955-962.]). For Schiff base tautomerism, see: Şahin et al. (2005[Şahin, O., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2859-o2861.]); Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). For the structure of a similar compound, see: Temel et al. (2007[Temel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o374-o376.]). For classification of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structural studies of Schiff bases, see: (Gül et al., 2007[Gül, Z. S., Erşah˙in, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2854.]; Şahin et al., 2009a[Şahin, Z. S., Ağar, A. A., Erşahin, F. & Işık, Ş. (2009a). Acta Cryst. E65, o718.],b[Şahin, Z. S., Işık, Ş., Erşahin, F. & Ağar, E. (2009b). Acta Cryst. E65, o811.],c[Şahin, Z. S., Erşahin, F., Ağar, A. A. & Işık, Ş. (2009c). Acta Cryst. E65, o547.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10F3NO2

  • Mr = 281.23

  • Triclinic, [P \overline 1]

  • a = 7.1019 (8) Å

  • b = 8.5910 (8) Å

  • c = 11.0412 (11) Å

  • α = 73.862 (8)°

  • β = 74.133 (7)°

  • γ = 87.431 (8)°

  • V = 622.10 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.49 × 0.32 × 0.02 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: multi-scan (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.934, Tmax = 0.995

  • 6675 measured reflections

  • 2548 independent reflections

  • 1490 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.100

  • wR(F2) = 0.293

  • S = 1.07

  • 2548 reflections

  • 183 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.07 2.735 (5) 138
O1—H1⋯N1 0.91 (7) 1.74 (7) 2.569 (5) 151 (6)
Symmetry code: (i) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The present work is part of a structral study of Schiff bases (Gül et al., 2007; Şahin et al., 2009a,b,c) and we report here the structure of (E)-2-[(3- (trifluoromethyl) phenylimino)methyl]-4-hydroxyphenol,(I). The molecular structure of (I) is shown in Figure 1.

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). There are two types of intramolecular hydrogen bonds in Schiff bases, which may be stabilized either in keto-amine (N—H···O hydrogen bond) (Şahin et al., 2005) or phenol-imine (N···H—O hydrogen bond) tautomeric forms (Hadjoudis et al., 1987). The H1 atom in title compound (I) is located on O1 atom, thus the phenol-imine tautomer is favored over the keto-amine form, as indicated by the C5—O1 [1.365 (5) Å], C7—N1 [1.281 (6) Å], C6—C7 [1.448 (6) Å], C5—C6 [1.399 (6) Å] bond lengths. The O1···N1 distance of 2.569 (5)Å is comparable to those observed for analogous hydrogen bond in (E)-3-[2-(Trifluoromethyl)phenyliminomethyl]- benzene-1,2-diol [2.568 (3) Å; Temel et al., 2007]. The N1—C7 [1.281 (6) Å] bond length is consistent with significant double-bond character of these bonds. It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect photochromic properties in (I) caused by non-planarity of the molecules; the dihedral angle the aromatic rings 31.94 (14)°. Molecules are linked into sheets by a combination of O—H···O hydrogen bonds (Table 1). Atom O2 in the asymmetric unit acts as hydrogen-bond donor, via H2, connecting this molecule to O1 in a symmetry related molecule at (1 + x,y,z), forming a C(7) chain running parallel to the [100] direction (Fig. 2).

Related literature top

For the biological properties of Schiff bases, see: Lozier et al. (1975). For Schiff base tautomerism, see: Şahin et al. (2005); Hadjoudis et al. (1987). For the structure of a similar compound, see: Temel et al. (2007). For classification of hydrogen-bonding patterns, see: Bernstein et al. (1995). For related structural studies of Schiff bases, see: (Gül et al., 2007; Şahin et al., 2009a,b,c).

Experimental top

The compound (E)-2-[(3-(trifluoromethyl)phenylimino)methyl]-4-hydroxyphenol was prepared by reflux a mixture of a solution containing 2,5-dihydroxybenzaldehyde (0.0184 g, 0.13 mmol) in 20 ml ethanol and a solution containing 3- trifluoromethylaniline (0.0214 g, 0.13 mmol) in 20 ml ethanol. The reaction mixture was stirred for 1 h under reflux. The crystals of (E)-2-[(3-(trifluoromethyl)phenylimino)methyl]-4-hydroxyphenol suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 76; m.p. 404–407 K).

Refinement top

The H1 atom was located in a difference map and refined freely (distances given in Table 1). All other H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C—H=0.93Å and 0.82Å (hydroxyl) and Uiso(H)=1.2Ueq(C) and 1.2Ueq(O). Fluorine atoms are disordered over two alternative positions with refined site occupancies of 0.488 (5) and 0.512 (5).

Structure description top

The present work is part of a structral study of Schiff bases (Gül et al., 2007; Şahin et al., 2009a,b,c) and we report here the structure of (E)-2-[(3- (trifluoromethyl) phenylimino)methyl]-4-hydroxyphenol,(I). The molecular structure of (I) is shown in Figure 1.

Schiff bases often exhibit various biological activities and in many cases were shown to have antibacterial, anticancer, anti-inflammatory and antitoxic properties (Lozier et al., 1975). There are two types of intramolecular hydrogen bonds in Schiff bases, which may be stabilized either in keto-amine (N—H···O hydrogen bond) (Şahin et al., 2005) or phenol-imine (N···H—O hydrogen bond) tautomeric forms (Hadjoudis et al., 1987). The H1 atom in title compound (I) is located on O1 atom, thus the phenol-imine tautomer is favored over the keto-amine form, as indicated by the C5—O1 [1.365 (5) Å], C7—N1 [1.281 (6) Å], C6—C7 [1.448 (6) Å], C5—C6 [1.399 (6) Å] bond lengths. The O1···N1 distance of 2.569 (5)Å is comparable to those observed for analogous hydrogen bond in (E)-3-[2-(Trifluoromethyl)phenyliminomethyl]- benzene-1,2-diol [2.568 (3) Å; Temel et al., 2007]. The N1—C7 [1.281 (6) Å] bond length is consistent with significant double-bond character of these bonds. It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. Therefore, one can expect photochromic properties in (I) caused by non-planarity of the molecules; the dihedral angle the aromatic rings 31.94 (14)°. Molecules are linked into sheets by a combination of O—H···O hydrogen bonds (Table 1). Atom O2 in the asymmetric unit acts as hydrogen-bond donor, via H2, connecting this molecule to O1 in a symmetry related molecule at (1 + x,y,z), forming a C(7) chain running parallel to the [100] direction (Fig. 2).

For the biological properties of Schiff bases, see: Lozier et al. (1975). For Schiff base tautomerism, see: Şahin et al. (2005); Hadjoudis et al. (1987). For the structure of a similar compound, see: Temel et al. (2007). For classification of hydrogen-bonding patterns, see: Bernstein et al. (1995). For related structural studies of Schiff bases, see: (Gül et al., 2007; Şahin et al., 2009a,b,c).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability. Dashed line indicates intramolecular hydrogen bonding.
[Figure 2] Fig. 2. A packing diagram of the title compound; dashed lines indicate intermolecular hydrogen bonds.
(E)-2-[3-(Trifluoromethyl)phenyliminomethyl]benzene-1,4-diol top
Crystal data top
C14H10F3NO2Z = 2
Mr = 281.23F(000) = 288
Triclinic, P1Dx = 1.501 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1019 (8) ÅCell parameters from 6675 reflections
b = 8.5910 (8) Åθ = 2.0–27.4°
c = 11.0412 (11) ŵ = 0.13 mm1
α = 73.862 (8)°T = 296 K
β = 74.133 (7)°Plate, brown
γ = 87.431 (8)°0.49 × 0.32 × 0.02 mm
V = 622.10 (11) Å3
Data collection top
Stoe IPDS II
diffractometer
2548 independent reflections
Radiation source: fine-focus sealed tube1490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω scansh = 88
Absorption correction: multi-scan
(X-RED32; Stoe & Cie, 2002)
k = 1010
Tmin = 0.934, Tmax = 0.995l = 1313
6675 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.100Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.293H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.131P)2 + 0.6957P]
where P = (Fo2 + 2Fc2)/3
2548 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C14H10F3NO2γ = 87.431 (8)°
Mr = 281.23V = 622.10 (11) Å3
Triclinic, P1Z = 2
a = 7.1019 (8) ÅMo Kα radiation
b = 8.5910 (8) ŵ = 0.13 mm1
c = 11.0412 (11) ÅT = 296 K
α = 73.862 (8)°0.49 × 0.32 × 0.02 mm
β = 74.133 (7)°
Data collection top
Stoe IPDS II
diffractometer
2548 independent reflections
Absorption correction: multi-scan
(X-RED32; Stoe & Cie, 2002)
1490 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.995Rint = 0.073
6675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1000 restraints
wR(F2) = 0.293H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.62 e Å3
2548 reflectionsΔρmin = 0.56 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8807 (6)0.4507 (5)0.3828 (4)0.0464 (11)
H60.97470.52670.37650.056*
C20.9124 (6)0.2884 (5)0.4264 (4)0.0463 (11)
C30.7727 (6)0.1751 (5)0.4348 (5)0.0499 (11)
H30.79500.06500.46270.060*
C40.6009 (6)0.2243 (5)0.4020 (5)0.0527 (12)
H40.50750.14740.40890.063*
C50.5675 (6)0.3880 (5)0.3588 (4)0.0447 (10)
C60.7087 (6)0.5034 (5)0.3475 (4)0.0429 (10)
C70.6778 (7)0.6751 (5)0.3017 (4)0.0476 (11)
H70.77040.74930.30020.057*
C80.5029 (7)0.8960 (5)0.2113 (5)0.0510 (11)
C90.3124 (7)0.9517 (6)0.2334 (5)0.0589 (13)
H90.20730.87980.28220.071*
C100.2797 (8)1.1122 (7)0.1834 (5)0.0677 (15)
H100.15251.14890.19970.081*
C110.4334 (8)1.2195 (6)0.1095 (5)0.0650 (15)
H110.41041.32810.07470.078*
C120.6225 (7)1.1646 (5)0.0873 (5)0.0558 (12)
C130.6580 (7)1.0035 (5)0.1379 (5)0.0539 (12)
H130.78560.96760.12280.065*
C140.7854 (9)1.2793 (6)0.0089 (6)0.0711 (16)
N10.5264 (5)0.7276 (4)0.2631 (4)0.0506 (10)
O10.3968 (4)0.4333 (4)0.3267 (4)0.0603 (10)
H10.405 (9)0.543 (8)0.297 (6)0.09 (2)*
O21.0773 (4)0.2313 (4)0.4650 (4)0.0630 (10)
H21.14820.30810.45750.094*
F1A0.9366 (14)1.2094 (11)0.0622 (10)0.1040 (13)0.488 (5)
F2A0.8727 (14)1.3390 (11)0.0824 (9)0.1040 (13)0.488 (5)
F3A0.7488 (14)1.4075 (12)0.0793 (10)0.1040 (13)0.488 (5)
F1B0.9660 (13)1.2261 (10)0.0118 (10)0.1040 (13)0.512 (5)
F2B0.7781 (13)1.4179 (10)0.0474 (9)0.1040 (13)0.512 (5)
F3B0.7846 (14)1.3397 (11)0.1146 (10)0.1040 (13)0.512 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (2)0.038 (2)0.055 (3)0.0027 (17)0.0144 (19)0.0047 (18)
C20.038 (2)0.043 (2)0.052 (2)0.0029 (17)0.0122 (18)0.0050 (19)
C30.047 (2)0.034 (2)0.062 (3)0.0019 (17)0.012 (2)0.0048 (19)
C40.045 (2)0.042 (2)0.068 (3)0.0042 (19)0.017 (2)0.009 (2)
C50.035 (2)0.042 (2)0.053 (2)0.0005 (17)0.0104 (18)0.0088 (18)
C60.039 (2)0.037 (2)0.051 (2)0.0042 (16)0.0117 (18)0.0098 (17)
C70.053 (2)0.038 (2)0.050 (2)0.0008 (18)0.015 (2)0.0083 (18)
C80.055 (3)0.044 (2)0.054 (3)0.013 (2)0.021 (2)0.009 (2)
C90.058 (3)0.060 (3)0.058 (3)0.016 (2)0.020 (2)0.013 (2)
C100.059 (3)0.070 (3)0.072 (3)0.027 (3)0.020 (3)0.019 (3)
C110.080 (4)0.050 (3)0.065 (3)0.029 (3)0.026 (3)0.015 (2)
C120.071 (3)0.041 (2)0.057 (3)0.013 (2)0.026 (2)0.010 (2)
C130.052 (2)0.046 (2)0.060 (3)0.014 (2)0.014 (2)0.011 (2)
C140.084 (4)0.045 (3)0.076 (4)0.015 (3)0.025 (3)0.001 (3)
N10.051 (2)0.042 (2)0.056 (2)0.0084 (16)0.0164 (17)0.0072 (16)
O10.0447 (17)0.0469 (19)0.086 (2)0.0006 (14)0.0290 (16)0.0024 (17)
O20.0441 (17)0.0491 (19)0.091 (3)0.0037 (14)0.0281 (17)0.0018 (17)
F1A0.109 (3)0.078 (3)0.103 (3)0.015 (2)0.019 (2)0.002 (2)
F2A0.109 (3)0.078 (3)0.103 (3)0.015 (2)0.019 (2)0.002 (2)
F3A0.109 (3)0.078 (3)0.103 (3)0.015 (2)0.019 (2)0.002 (2)
F1B0.109 (3)0.078 (3)0.103 (3)0.015 (2)0.019 (2)0.002 (2)
F2B0.109 (3)0.078 (3)0.103 (3)0.015 (2)0.019 (2)0.002 (2)
F3B0.109 (3)0.078 (3)0.103 (3)0.015 (2)0.019 (2)0.002 (2)
Geometric parameters (Å, º) top
C1—C21.374 (6)C9—C101.370 (7)
C1—C61.400 (6)C9—H90.9300
C1—H60.9300C10—C111.376 (8)
C2—O21.378 (5)C10—H100.9300
C2—C31.388 (6)C11—C121.383 (7)
C3—C41.382 (6)C11—H110.9300
C3—H30.9300C12—C131.381 (6)
C4—C51.386 (6)C12—C141.463 (8)
C4—H40.9300C13—H130.9300
C5—O11.365 (5)C14—F3B1.319 (11)
C5—C61.399 (6)C14—F3A1.321 (11)
C6—C71.448 (6)C14—F1B1.348 (11)
C7—N11.281 (6)C14—F2A1.357 (12)
C7—H70.9300C14—F2B1.365 (11)
C8—C131.382 (7)C14—F1A1.369 (11)
C8—C91.395 (6)O1—H10.91 (7)
C8—N11.421 (5)O2—H20.8200
C2—C1—C6120.9 (4)C10—C11—C12119.4 (4)
C2—C1—H6119.6C10—C11—H11120.3
C6—C1—H6119.6C12—C11—H11120.3
C1—C2—O2122.8 (4)C13—C12—C11120.7 (5)
C1—C2—C3119.5 (4)C13—C12—C14120.1 (4)
O2—C2—C3117.7 (4)C11—C12—C14119.2 (4)
C4—C3—C2120.6 (4)C12—C13—C8119.7 (4)
C4—C3—H3119.7C12—C13—H13120.2
C2—C3—H3119.7C8—C13—H13120.2
C3—C4—C5120.1 (4)F3B—C14—F1B108.3 (7)
C3—C4—H4120.0F3A—C14—F1B124.5 (7)
C5—C4—H4120.0F3B—C14—F2A129.6 (7)
O1—C5—C4118.9 (4)F3A—C14—F2A105.4 (7)
O1—C5—C6121.2 (4)F1B—C14—F2A64.3 (6)
C4—C5—C6119.9 (4)F3B—C14—F2B100.7 (6)
C5—C6—C1119.0 (4)F3A—C14—F2B67.7 (6)
C5—C6—C7120.9 (4)F1B—C14—F2B103.3 (7)
C1—C6—C7120.1 (4)F3B—C14—F1A74.1 (7)
N1—C7—C6121.8 (4)F3A—C14—F1A103.5 (7)
N1—C7—H7119.1F2A—C14—F1A102.9 (7)
C6—C7—H7119.1F2B—C14—F1A131.6 (7)
C13—C8—C9119.5 (4)F3B—C14—C12113.9 (7)
C13—C8—N1123.1 (4)F3A—C14—C12117.6 (6)
C9—C8—N1117.3 (4)F1B—C14—C12116.0 (5)
C10—C9—C8120.1 (5)F2A—C14—C12113.3 (6)
C10—C9—H9119.9F2B—C14—C12113.1 (6)
C8—C9—H9119.9F1A—C14—C12112.7 (6)
C9—C10—C11120.6 (5)C7—N1—C8121.3 (4)
C9—C10—H10119.7C5—O1—H1106 (4)
C11—C10—H10119.7C2—O2—H2109.5
C6—C1—C2—O2178.4 (4)C10—C11—C12—C14179.8 (6)
C6—C1—C2—C30.5 (7)C11—C12—C13—C80.2 (8)
C1—C2—C3—C41.2 (7)C14—C12—C13—C8179.7 (5)
O2—C2—C3—C4177.7 (4)C9—C8—C13—C120.2 (7)
C2—C3—C4—C50.8 (7)N1—C8—C13—C12177.8 (5)
C3—C4—C5—O1179.8 (4)C13—C12—C14—F3B114.4 (7)
C3—C4—C5—C60.4 (7)C11—C12—C14—F3B65.5 (8)
O1—C5—C6—C1179.5 (4)C13—C12—C14—F3A152.7 (7)
C4—C5—C6—C11.2 (6)C11—C12—C14—F3A27.2 (10)
O1—C5—C6—C70.2 (7)C13—C12—C14—F1B12.3 (10)
C4—C5—C6—C7179.5 (4)C11—C12—C14—F1B167.8 (7)
C2—C1—C6—C50.7 (6)C13—C12—C14—F2A83.9 (8)
C2—C1—C6—C7180.0 (4)C11—C12—C14—F2A96.2 (7)
C5—C6—C7—N13.9 (7)C13—C12—C14—F2B131.4 (7)
C1—C6—C7—N1176.8 (4)C11—C12—C14—F2B48.7 (8)
C13—C8—C9—C100.4 (8)C13—C12—C14—F1A32.4 (9)
N1—C8—C9—C10178.5 (5)C11—C12—C14—F1A147.5 (7)
C8—C9—C10—C111.0 (8)C6—C7—N1—C8176.4 (4)
C9—C10—C11—C120.9 (9)C13—C8—N1—C734.0 (7)
C10—C11—C12—C130.3 (8)C9—C8—N1—C7147.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.072.735 (5)138
O1—H1···N10.91 (7)1.74 (7)2.569 (5)151 (6)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H10F3NO2
Mr281.23
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.1019 (8), 8.5910 (8), 11.0412 (11)
α, β, γ (°)73.862 (8), 74.133 (7), 87.431 (8)
V3)622.10 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.49 × 0.32 × 0.02
Data collection
DiffractometerStoe IPDS II
Absorption correctionMulti-scan
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.934, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
6675, 2548, 1490
Rint0.073
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.100, 0.293, 1.07
No. of reflections2548
No. of parameters183
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.56

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.072.735 (5)138.3
O1—H1···N10.91 (7)1.74 (7)2.569 (5)151 (6)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors wish to acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for providing access to the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGül, Z. S., Erşah˙in, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2854.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationLozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationŞahin, O., Albayrak, C., Odabaşoğlu, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2859–o2861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, Z. S., Ağar, A. A., Erşahin, F. & Işık, Ş. (2009a). Acta Cryst. E65, o718.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, Z. S., Erşahin, F., Ağar, A. A. & Işık, Ş. (2009c). Acta Cryst. E65, o547.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, Z. S., Işık, Ş., Erşahin, F. & Ağar, E. (2009b). Acta Cryst. E65, o811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTemel, E., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. E63, o374–o376.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds