metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(4-formyl­benzoato-κ2O1,O1′)bis­­(isonicotinamide-κN1)cadmium(II) monohydrate

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 63100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 9 October 2009; accepted 16 October 2009; online 23 October 2009)

The asymmetric unit of the title CdII complex, [Cd(C8H5O3)2(C6H6N2O)2(H2O)]·H2O, contains two 4-formyl­benzoate (FB), two isonicotinamide (INA) ligands, one coordinated and one uncoordinated water mol­ecule; the FB ions act as bidentate ligands. The coordination number of the Cd(II) atom is seven within a CdO5N2 donor set. Intra­molecular O—H⋯O hydrogen bonds link the uncoordinated water mol­ecules to the carboxyl groups. The dihedral angle between the carboxyl­ate groups and the adjacent benzene rings are 17.53 (13) and 16.55 (14)°. In the crystal structure, inter­molecular O—H⋯O, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into a supra­molecular structure. The amide group of one of the INA ligands is disordered over two orientations, with an occupancy ratio of 0.759 (3):0.241 (3).

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]) and for the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Greenaway et al. (1984[Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.]); Hökelek et al. (2009[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m651-m652.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H5O3)2(C6H6N2O)2(H2O)]·H2O

  • Mr = 690.93

  • Monoclinic, P 21 /c

  • a = 9.3357 (3) Å

  • b = 19.0501 (6) Å

  • c = 16.3743 (5) Å

  • β = 93.203 (1)°

  • V = 2907.55 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 100 K

  • 0.27 × 0.11 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.896, Tmax = 0.920

  • 26549 measured reflections

  • 7151 independent reflections

  • 5904 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.075

  • S = 1.03

  • 7151 reflections

  • 431 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.6055 (13)
Cd1—O2 2.3066 (13)
Cd1—O3 2.3368 (13)
Cd1—O4 2.5117 (13)
Cd1—O9 2.3271 (15)
Cd1—N1 2.3200 (16)
Cd1—N3 2.3362 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O7i 0.86 2.04 2.891 (2) 172
N2—H2B⋯O10ii 0.86 2.05 2.888 (3) 165
N4—H4A⋯O8iii 0.86 2.01 2.863 (3) 174
N4—H4B⋯O5iv 0.86 2.01 2.852 (3) 166
N4—H4A⋯N4Biii 0.86 2.35 3.096 (7) 146
N4B—H4B1⋯N4iii 0.86 2.35 3.096 (7) 145
N4B—H4B1⋯O8Biii 0.86 2.02 2.880 (9) 178
N4B—H4B2⋯O7v 0.86 2.12 2.941 (7) 158
O9—H91⋯O4vi 0.884 (15) 1.86 (2) 2.740 (2) 175 (2)
O9—H92⋯O1v 0.875 (16) 1.87 (2) 2.740 (2) 174 (2)
O10—H101⋯O3 0.880 (16) 2.32 (3) 2.876 (2) 122 (2)
O10—H102⋯O2 0.864 (18) 1.90 (3) 2.766 (2) 175 (3)
C11—H11⋯O8ii 0.93 2.55 3.315 (3) 140
C17—H17⋯O1v 0.93 2.44 3.212 (2) 140
C20—H20⋯O10ii 0.93 2.35 3.258 (3) 166
C23—H23⋯O4vi 0.93 2.48 3.253 (2) 140
C26—H26⋯O6vii 0.93 2.55 3.137 (3) 122
C27—H27⋯O6vii 0.93 2.51 3.133 (3) 124
Symmetry codes: (i) -x, -y+1, -z-1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x, -y+1, -z; (vi) -x+1, -y+1, -z; (vii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the monomeric title complex, (I), the CdII ion is surrounded by two formylbenzoate (FB) and two isonicotinamide (INA) ligands and one water molecule. The FB ions act as bidentate ligands, while the INA ions are monodentate ligands. The structures of similar complexes of ZnII ion, [Zn2(C10H14N2O)2(C7H5O3)4].2H2O, (II) (Hökelek & Necefoğlu, 1996) and [Zn(C9H10NO2)2(C6H6N2O)(H2O)2], (III) (Hökelek et al., 2009) have also been determined.

In the title compound (Fig. 1), the average Cd—O bond length (Table 1) is 2.4175 (13) Å and the Cd atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C9/O4) by 0.1556 (2) Å and -0.0577 (2) Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C10—C15) are 17.53 (13)° and 16.55 (14)°, respectively, while those between rings A, B, C (N1/C17—C21) and D (N3/C23—C27) are A/B = 7.05 (6), A/C = 69.34 (6), A/D = 66.49 (6), B/C = 68.78 (6), B/D = 73.54 (6) and C/D = 87.43 (5) °. The two four-membered rings, (Cd1/O1/O2/C1) and (Cd1/O3/O4/C9), are oriented at a dihedral angle of 20.06 (6)°. The intramolecular O—H···O hydrogen bonds (Table 2) link the uncoordinated water molecule to the carboxylate groups. In (I), the O1—Cd1—O2 and O3—Cd1—O4 angles are 52.91 (4) and 53.96 (4) °, respectively. The corresponding O—M—O (where M is a metal) angles are 58.3 (3)° in (II), 60.03 (6)° in (III) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(IV); Greenaway et al., 1984].

In the crystal structure, intramolecular O—H···O and intermolecular O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure.

Related literature top

For niacin, see: Krishnamachari (1974) and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009).

Experimental top

The title compound was prepared by the reaction of 3CdSO4.8H2O (3.85 g, 5 mmol) in H2O (25 ml) and INA (1.22 g, 10 mmol) in H2O (40 ml) with sodium 4-formylbenzoate (1.72 g, 10 mmol) in H2O (50 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving colorless single crystals.

Refinement top

Atoms H8 and H16 (for methine) and H91, H92, H101 and H102 (for H2O) were located in difference Fourier map and refined isotropically, with restrains of O9—H91 = 0.894 (15), O9—H92 = 0.875 (16), O10—H101 = 0.880 (16) and O10—H102 = 0.864 (18) Å and H91—O9—H92 = 106 (2) and H101—O10—H102 = 106 (3) °. The remaining H atoms were positioned geometrically with N—H = 0.86 Å (for NH2) and C—H = 0.93 Å for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N). The O8, N4, H4A and H4B atoms are disordered over two orientations. During the refinement process, the disordered O8, N4, H4A, H4B and O8B, N4B, H4B1, H4B2 were refined with occupancies of 0.759 (3) and 0.241 (3), respectively.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

In the monomeric title complex, (I), the CdII ion is surrounded by two formylbenzoate (FB) and two isonicotinamide (INA) ligands and one water molecule. The FB ions act as bidentate ligands, while the INA ions are monodentate ligands. The structures of similar complexes of ZnII ion, [Zn2(C10H14N2O)2(C7H5O3)4].2H2O, (II) (Hökelek & Necefoğlu, 1996) and [Zn(C9H10NO2)2(C6H6N2O)(H2O)2], (III) (Hökelek et al., 2009) have also been determined.

In the title compound (Fig. 1), the average Cd—O bond length (Table 1) is 2.4175 (13) Å and the Cd atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C9/O4) by 0.1556 (2) Å and -0.0577 (2) Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C10—C15) are 17.53 (13)° and 16.55 (14)°, respectively, while those between rings A, B, C (N1/C17—C21) and D (N3/C23—C27) are A/B = 7.05 (6), A/C = 69.34 (6), A/D = 66.49 (6), B/C = 68.78 (6), B/D = 73.54 (6) and C/D = 87.43 (5) °. The two four-membered rings, (Cd1/O1/O2/C1) and (Cd1/O3/O4/C9), are oriented at a dihedral angle of 20.06 (6)°. The intramolecular O—H···O hydrogen bonds (Table 2) link the uncoordinated water molecule to the carboxylate groups. In (I), the O1—Cd1—O2 and O3—Cd1—O4 angles are 52.91 (4) and 53.96 (4) °, respectively. The corresponding O—M—O (where M is a metal) angles are 58.3 (3)° in (II), 60.03 (6)° in (III) and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) [(IV); Greenaway et al., 1984].

In the crystal structure, intramolecular O—H···O and intermolecular O—H···O, N—H···O, N—H···N and C—H···O hydrogen bonds (Table 2) link the molecules into a supramolecular structure, in which they may be effective in the stabilization of the structure.

For niacin, see: Krishnamachari (1974) and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate the hydrogen-bondings. Hydrogen atoms except of water molecules have been omitted for clarity.
Aquabis(4-formylbenzoato-κ2O1,O1')bis(isonicotinamide- κN1)cadmium(II) monohydrate top
Crystal data top
[Cd(C8H5O3)2(C6H6N2O)2(H2O)]·H2OF(000) = 1400
Mr = 690.93Dx = 1.578 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9959 reflections
a = 9.3357 (3) Åθ = 2.4–28.4°
b = 19.0501 (6) ŵ = 0.82 mm1
c = 16.3743 (5) ÅT = 100 K
β = 93.203 (1)°Block, colorless
V = 2907.55 (16) Å30.27 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
7151 independent reflections
Radiation source: fine-focus sealed tube5904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.896, Tmax = 0.920k = 2025
26549 measured reflectionsl = 2117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0355P)2 + 1.7245P]
where P = (Fo2 + 2Fc2)/3
7151 reflections(Δ/σ)max = 0.002
431 parametersΔρmax = 1.16 e Å3
8 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Cd(C8H5O3)2(C6H6N2O)2(H2O)]·H2OV = 2907.55 (16) Å3
Mr = 690.93Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3357 (3) ŵ = 0.82 mm1
b = 19.0501 (6) ÅT = 100 K
c = 16.3743 (5) Å0.27 × 0.11 × 0.10 mm
β = 93.203 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
7151 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5904 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.920Rint = 0.043
26549 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0288 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.16 e Å3
7151 reflectionsΔρmin = 0.63 e Å3
431 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.254193 (11)0.604747 (6)0.000741 (7)0.01128 (5)
N10.16048 (16)0.59088 (8)0.13399 (10)0.0149 (3)
N20.1001 (2)0.56817 (10)0.44328 (10)0.0292 (4)
H2A0.07910.55590.49300.035*
H2B0.15890.60220.43300.035*
N30.34349 (16)0.58841 (8)0.13406 (9)0.0147 (3)
N40.4990 (3)0.46566 (12)0.39673 (14)0.0269 (6)0.759 (3)
H4A0.51910.45180.44600.032*0.759 (3)
H4B0.50330.43660.35670.032*0.759 (3)
N4B0.3548 (7)0.5230 (4)0.4293 (4)0.0264 (19)0.241 (3)
H4B10.37090.51030.47940.032*0.241 (3)
H4B20.26820.53000.41030.032*0.241 (3)
O10.00985 (14)0.59254 (7)0.04111 (9)0.0179 (3)
O20.10880 (13)0.69266 (7)0.04495 (8)0.0184 (3)
O30.39326 (13)0.69982 (7)0.03952 (8)0.0182 (3)
O40.51129 (14)0.59950 (7)0.03809 (9)0.0171 (3)
O50.48043 (16)0.85486 (9)0.22050 (10)0.0368 (4)
O61.08430 (17)0.78213 (9)0.20603 (11)0.0406 (4)
O70.04317 (19)0.48524 (9)0.39285 (9)0.0374 (4)
O80.4524 (2)0.57695 (10)0.43632 (11)0.0255 (5)0.759 (3)
O8B0.5920 (5)0.5229 (3)0.4041 (3)0.0222 (15)0.241 (3)
O90.25468 (13)0.48260 (8)0.00288 (8)0.0204 (3)
H910.327 (2)0.4540 (11)0.0103 (16)0.037 (7)*
H920.179 (2)0.4560 (12)0.0130 (17)0.042 (8)*
O100.28361 (18)0.80970 (9)0.06005 (11)0.0374 (4)
H1010.336 (3)0.8070 (17)0.0170 (15)0.075 (11)*
H1020.226 (3)0.7741 (15)0.058 (2)0.100 (14)*
C10.00109 (18)0.65688 (10)0.05789 (11)0.0152 (4)
C20.12241 (18)0.69296 (10)0.09768 (11)0.0167 (4)
C30.22577 (19)0.65346 (11)0.13505 (12)0.0215 (4)
H30.22090.60470.13490.026*
C40.3363 (2)0.68729 (12)0.17261 (13)0.0262 (5)
H40.40530.66110.19790.031*
C50.3441 (2)0.75969 (12)0.17262 (13)0.0255 (5)
C60.2407 (2)0.79938 (12)0.13549 (13)0.0258 (5)
H60.24640.84810.13540.031*
C70.1293 (2)0.76589 (11)0.09865 (13)0.0222 (4)
H70.05910.79220.07460.027*
C80.4633 (2)0.79273 (13)0.21423 (15)0.0323 (5)
H80.539 (3)0.7581 (15)0.2423 (17)0.053 (8)*
C90.50454 (18)0.66490 (10)0.05055 (11)0.0142 (3)
C100.63231 (18)0.70288 (10)0.08114 (11)0.0158 (4)
C110.6381 (2)0.77562 (10)0.07766 (13)0.0216 (4)
H110.56340.80070.05630.026*
C120.7556 (2)0.81089 (11)0.10619 (13)0.0257 (4)
H120.76100.85950.10250.031*
C130.8650 (2)0.77348 (11)0.14008 (13)0.0228 (4)
C140.85761 (19)0.70082 (11)0.14571 (13)0.0215 (4)
H140.93000.67590.16970.026*
C150.74230 (19)0.66558 (10)0.11555 (12)0.0186 (4)
H150.73820.61690.11820.022*
C160.9887 (2)0.81047 (13)0.17276 (16)0.0330 (5)
H160.999 (3)0.8554 (15)0.1612 (17)0.049 (8)*
C170.05844 (19)0.54301 (10)0.15291 (12)0.0179 (4)
H170.01350.52100.11060.021*
C180.0173 (2)0.52511 (10)0.23229 (12)0.0200 (4)
H180.05320.49140.24310.024*
C190.0830 (2)0.55820 (10)0.29624 (11)0.0180 (4)
C200.1849 (2)0.60930 (10)0.27711 (12)0.0190 (4)
H200.22890.63340.31830.023*
C210.22006 (19)0.62389 (10)0.19570 (11)0.0168 (4)
H210.28850.65830.18330.020*
C220.0421 (2)0.53467 (11)0.38244 (12)0.0250 (4)
C230.44196 (19)0.53843 (10)0.15065 (11)0.0168 (4)
H230.48390.51650.10720.020*
C240.4839 (2)0.51813 (10)0.22937 (12)0.0188 (4)
H240.55160.48280.23850.023*
C250.42334 (19)0.55129 (10)0.29467 (11)0.0162 (4)
C260.3257 (2)0.60491 (10)0.27811 (12)0.0179 (4)
H260.28610.62930.32050.021*
C270.28801 (19)0.62164 (10)0.19738 (11)0.0165 (4)
H270.22160.65730.18660.020*
C280.4613 (2)0.53171 (10)0.38237 (11)0.0196 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01149 (8)0.01184 (8)0.01049 (8)0.00038 (4)0.00042 (5)0.00060 (5)
N10.0142 (7)0.0165 (8)0.0139 (8)0.0007 (6)0.0005 (6)0.0003 (6)
N20.0474 (11)0.0282 (10)0.0115 (8)0.0121 (8)0.0024 (7)0.0003 (7)
N30.0147 (7)0.0163 (8)0.0130 (7)0.0004 (6)0.0006 (6)0.0012 (6)
N40.0490 (15)0.0203 (12)0.0109 (11)0.0046 (10)0.0034 (10)0.0018 (9)
N4B0.020 (3)0.048 (5)0.011 (3)0.001 (3)0.001 (3)0.007 (3)
O10.0174 (6)0.0163 (7)0.0203 (7)0.0021 (5)0.0029 (5)0.0009 (5)
O20.0142 (6)0.0177 (7)0.0235 (7)0.0011 (5)0.0044 (5)0.0001 (6)
O30.0124 (6)0.0183 (7)0.0241 (7)0.0004 (5)0.0038 (5)0.0024 (6)
O40.0141 (6)0.0162 (7)0.0212 (7)0.0011 (5)0.0035 (5)0.0003 (5)
O50.0259 (8)0.0447 (11)0.0394 (10)0.0106 (7)0.0015 (7)0.0184 (8)
O60.0297 (8)0.0375 (10)0.0567 (11)0.0091 (7)0.0201 (8)0.0063 (8)
O70.0580 (11)0.0372 (10)0.0165 (8)0.0249 (8)0.0030 (7)0.0033 (7)
O80.0446 (12)0.0181 (10)0.0132 (9)0.0015 (8)0.0033 (8)0.0001 (7)
O8B0.015 (3)0.034 (4)0.018 (3)0.002 (2)0.000 (2)0.006 (3)
O90.0179 (7)0.0133 (7)0.0293 (8)0.0001 (5)0.0048 (6)0.0007 (6)
O100.0360 (9)0.0361 (10)0.0407 (10)0.0002 (8)0.0079 (8)0.0205 (8)
C10.0140 (8)0.0186 (9)0.0128 (9)0.0027 (7)0.0003 (6)0.0009 (7)
C20.0121 (8)0.0210 (10)0.0168 (9)0.0015 (7)0.0004 (7)0.0032 (8)
C30.0188 (9)0.0216 (10)0.0245 (10)0.0022 (7)0.0038 (8)0.0072 (8)
C40.0173 (9)0.0334 (12)0.0284 (11)0.0064 (8)0.0063 (8)0.0119 (9)
C50.0141 (8)0.0359 (12)0.0264 (11)0.0018 (8)0.0000 (8)0.0150 (9)
C60.0208 (9)0.0243 (11)0.0322 (12)0.0058 (8)0.0002 (8)0.0085 (9)
C70.0173 (9)0.0220 (10)0.0275 (11)0.0023 (7)0.0022 (8)0.0020 (9)
C80.0186 (10)0.0434 (14)0.0350 (13)0.0030 (9)0.0016 (9)0.0222 (11)
C90.0131 (8)0.0168 (9)0.0127 (8)0.0013 (7)0.0008 (6)0.0012 (7)
C100.0133 (8)0.0175 (9)0.0166 (9)0.0016 (7)0.0004 (7)0.0000 (7)
C110.0195 (9)0.0186 (10)0.0272 (11)0.0000 (7)0.0056 (8)0.0009 (8)
C120.0269 (10)0.0175 (10)0.0330 (12)0.0065 (8)0.0047 (9)0.0012 (9)
C130.0189 (9)0.0234 (10)0.0263 (11)0.0038 (8)0.0034 (8)0.0052 (9)
C140.0159 (8)0.0223 (10)0.0269 (11)0.0015 (7)0.0055 (8)0.0054 (8)
C150.0159 (8)0.0178 (9)0.0223 (10)0.0005 (7)0.0028 (7)0.0032 (8)
C160.0291 (11)0.0270 (12)0.0439 (14)0.0085 (9)0.0103 (10)0.0046 (11)
C170.0200 (9)0.0180 (9)0.0156 (9)0.0029 (7)0.0008 (7)0.0023 (7)
C180.0252 (9)0.0176 (10)0.0168 (10)0.0064 (7)0.0022 (7)0.0011 (8)
C190.0232 (9)0.0173 (9)0.0131 (9)0.0002 (7)0.0011 (7)0.0004 (7)
C200.0199 (9)0.0226 (10)0.0146 (9)0.0023 (7)0.0015 (7)0.0018 (8)
C210.0162 (8)0.0197 (9)0.0146 (9)0.0040 (7)0.0006 (7)0.0004 (7)
C220.0354 (11)0.0243 (11)0.0148 (10)0.0056 (9)0.0033 (8)0.0001 (8)
C230.0188 (8)0.0169 (9)0.0147 (9)0.0023 (7)0.0008 (7)0.0023 (7)
C240.0210 (9)0.0175 (9)0.0176 (9)0.0042 (7)0.0010 (7)0.0013 (8)
C250.0179 (8)0.0172 (9)0.0133 (9)0.0029 (7)0.0009 (7)0.0023 (7)
C260.0180 (9)0.0217 (10)0.0141 (9)0.0015 (7)0.0017 (7)0.0013 (7)
C270.0161 (8)0.0191 (9)0.0143 (9)0.0022 (7)0.0011 (7)0.0008 (7)
C280.0248 (9)0.0204 (10)0.0135 (9)0.0014 (8)0.0014 (7)0.0031 (8)
Geometric parameters (Å, º) top
Cd1—O12.6055 (13)C5—C61.392 (3)
Cd1—O22.3066 (13)C5—C81.478 (3)
Cd1—O32.3368 (13)C6—C71.387 (3)
Cd1—O42.5117 (13)C6—H60.9300
Cd1—O92.3271 (15)C7—H70.9300
Cd1—N12.3200 (16)C8—H81.08 (3)
Cd1—N32.3362 (16)C9—C101.505 (2)
N1—C171.342 (2)C10—C111.388 (3)
N1—C211.337 (2)C10—C151.393 (2)
N2—C221.324 (3)C11—C121.390 (3)
N2—H2A0.8600C11—H110.9300
N2—H2B0.8600C12—C131.386 (3)
N3—C231.341 (2)C12—H120.9300
N3—C271.343 (2)C13—C141.389 (3)
N4—H4A0.8600C13—C161.479 (3)
N4—H4B0.8600C14—C151.383 (2)
N4B—C281.301 (7)C14—H140.9300
N4B—H4B10.8600C15—H150.9300
N4B—H4B20.8600C16—H160.88 (3)
O1—C11.258 (2)C17—C181.378 (3)
O2—C11.259 (2)C17—H170.9300
O3—C91.255 (2)C18—C191.393 (3)
O4—C91.263 (2)C18—H180.9300
O5—C81.200 (3)C19—C201.385 (3)
O6—C161.199 (3)C19—C221.509 (3)
O7—C221.239 (3)C20—C211.383 (3)
O8B—C281.263 (5)C20—H200.9300
O9—H910.884 (15)C21—H210.9300
O9—H920.875 (16)C23—C241.381 (3)
O10—H1010.880 (16)C23—H230.9300
O10—H1020.864 (18)C24—C251.389 (3)
C1—C21.504 (2)C24—H240.9300
C2—C71.391 (3)C25—C261.386 (3)
C2—C31.392 (3)C25—C281.507 (3)
C3—C41.389 (3)C26—C271.386 (3)
C3—H30.9300C26—H260.9300
C4—C51.381 (3)C27—H270.9300
C4—H40.9300
O2—Cd1—N1100.95 (5)O5—C8—C5124.6 (2)
O2—Cd1—O9137.10 (4)O5—C8—H8118.1 (15)
N1—Cd1—O982.70 (5)C5—C8—H8117.3 (15)
O2—Cd1—N388.61 (5)O3—C9—O4122.24 (16)
N1—Cd1—N3165.76 (6)O3—C9—C10118.10 (16)
O9—Cd1—N383.11 (5)O4—C9—C10119.65 (15)
O2—Cd1—O382.61 (5)C11—C10—C15119.88 (17)
N1—Cd1—O391.08 (5)C11—C10—C9119.74 (16)
O9—Cd1—O3140.29 (4)C15—C10—C9120.34 (16)
N3—Cd1—O3100.70 (5)C10—C11—C12119.89 (18)
O2—Cd1—O4134.07 (4)C10—C11—H11120.1
N1—Cd1—O494.69 (5)C12—C11—H11120.1
O9—Cd1—O487.35 (4)C13—C12—C11119.94 (19)
N3—Cd1—O485.95 (5)C13—C12—H12120.0
O3—Cd1—O453.96 (4)C11—C12—H12120.0
O2—Cd1—O152.91 (4)C12—C13—C14120.29 (18)
N1—Cd1—O185.68 (5)C12—C13—C16120.5 (2)
O9—Cd1—O185.26 (4)C14—C13—C16119.19 (19)
N3—Cd1—O191.86 (5)C15—C14—C13119.78 (18)
O3—Cd1—O1133.54 (4)C15—C14—H14120.1
O4—Cd1—O1172.50 (4)C13—C14—H14120.1
C21—N1—C17117.70 (16)C14—C15—C10120.18 (18)
C21—N1—Cd1120.40 (12)C14—C15—H15119.9
C17—N1—Cd1121.32 (12)C10—C15—H15119.9
C22—N2—H2A120.0O6—C16—C13124.5 (2)
C22—N2—H2B120.0O6—C16—H16117.5 (18)
H2A—N2—H2B120.0C13—C16—H16117.5 (18)
C23—N3—C27117.90 (16)N1—C17—C18122.86 (17)
C23—N3—Cd1119.37 (12)N1—C17—H17118.6
C27—N3—Cd1122.27 (12)C18—C17—H17118.6
H4A—N4—H4B120.0C17—C18—C19119.09 (17)
C28—N4B—H4B1120.0C17—C18—H18120.5
C28—N4B—H4B2120.0C19—C18—H18120.5
H4B1—N4B—H4B2120.0C20—C19—C18118.26 (17)
C1—O1—Cd185.39 (10)C20—C19—C22123.69 (17)
C1—O2—Cd199.28 (11)C18—C19—C22118.01 (17)
C9—O3—Cd196.04 (11)C21—C20—C19118.83 (17)
C9—O4—Cd187.73 (10)C21—C20—H20120.6
Cd1—O9—H91128.0 (16)C19—C20—H20120.6
Cd1—O9—H92125.4 (16)N1—C21—C20123.19 (17)
H91—O9—H92106 (2)N1—C21—H21118.4
H101—O10—H102106 (3)C20—C21—H21118.4
O1—C1—O2122.29 (16)O7—C22—N2123.34 (19)
O1—C1—C2119.91 (16)O7—C22—C19118.77 (18)
O2—C1—C2117.76 (16)N2—C22—C19117.89 (18)
C7—C2—C3120.09 (17)N3—C23—C24122.90 (17)
C7—C2—C1119.85 (17)N3—C23—H23118.5
C3—C2—C1120.04 (17)C24—C23—H23118.5
C4—C3—C2119.61 (19)C23—C24—C25119.00 (17)
C4—C3—H3120.2C23—C24—H24120.5
C2—C3—H3120.2C25—C24—H24120.5
C5—C4—C3120.26 (19)C26—C25—C24118.43 (17)
C5—C4—H4119.9C26—C25—C28119.09 (17)
C3—C4—H4119.9C24—C25—C28122.48 (17)
C4—C5—C6120.29 (18)C25—C26—C27119.04 (17)
C4—C5—C8117.8 (2)C25—C26—H26120.5
C6—C5—C8121.9 (2)C27—C26—H26120.5
C7—C6—C5119.7 (2)N3—C27—C26122.65 (17)
C7—C6—H6120.2N3—C27—H27118.7
C5—C6—H6120.2C26—C27—H27118.7
C6—C7—C2120.04 (19)O8B—C28—N4B125.1 (4)
C6—C7—H7120.0O8B—C28—C25118.3 (3)
C2—C7—H7120.0N4B—C28—C25116.6 (3)
O2—Cd1—N1—C2195.74 (14)C3—C4—C5—C60.5 (3)
O9—Cd1—N1—C21127.58 (14)C3—C4—C5—C8179.42 (19)
N3—Cd1—N1—C21132.88 (19)C4—C5—C6—C70.2 (3)
O3—Cd1—N1—C2113.06 (14)C8—C5—C6—C7178.7 (2)
O4—Cd1—N1—C2140.86 (14)C5—C6—C7—C21.1 (3)
O1—Cd1—N1—C21146.65 (14)C3—C2—C7—C61.3 (3)
O2—Cd1—N1—C1793.18 (14)C1—C2—C7—C6179.81 (18)
O9—Cd1—N1—C1743.49 (14)C4—C5—C8—O5178.0 (2)
N3—Cd1—N1—C1738.2 (3)C6—C5—C8—O50.9 (4)
O3—Cd1—N1—C17175.86 (14)Cd1—O3—C9—O41.43 (19)
O4—Cd1—N1—C17130.21 (14)Cd1—O3—C9—C10177.44 (14)
O1—Cd1—N1—C1742.27 (14)Cd1—O4—C9—O31.33 (18)
O2—Cd1—N3—C23179.10 (14)Cd1—O4—C9—C10177.53 (15)
N1—Cd1—N3—C2346.6 (2)O3—C9—C10—C1115.4 (3)
O9—Cd1—N3—C2341.28 (13)O4—C9—C10—C11165.66 (18)
O3—Cd1—N3—C2398.69 (13)O3—C9—C10—C15162.27 (18)
O4—Cd1—N3—C2346.53 (13)O4—C9—C10—C1516.6 (3)
O1—Cd1—N3—C23126.28 (13)C15—C10—C11—C122.0 (3)
O2—Cd1—N3—C277.06 (14)C9—C10—C11—C12179.72 (18)
N1—Cd1—N3—C27125.5 (2)C10—C11—C12—C131.8 (3)
O9—Cd1—N3—C27130.76 (14)C11—C12—C13—C140.0 (3)
O3—Cd1—N3—C2789.27 (14)C11—C12—C13—C16178.3 (2)
O4—Cd1—N3—C27141.42 (14)C12—C13—C14—C151.6 (3)
O1—Cd1—N3—C2745.76 (14)C16—C13—C14—C15179.9 (2)
O2—Cd1—O1—C11.99 (10)C13—C14—C15—C101.3 (3)
N1—Cd1—O1—C1109.20 (11)C11—C10—C15—C140.5 (3)
O9—Cd1—O1—C1167.79 (11)C9—C10—C15—C14178.16 (18)
N3—Cd1—O1—C184.86 (11)C12—C13—C16—O6176.7 (2)
O3—Cd1—O1—C121.82 (13)C14—C13—C16—O61.6 (4)
N1—Cd1—O2—C177.97 (12)C21—N1—C17—C182.4 (3)
O9—Cd1—O2—C113.06 (14)Cd1—N1—C17—C18168.89 (15)
N3—Cd1—O2—C191.39 (11)N1—C17—C18—C190.5 (3)
O3—Cd1—O2—C1167.64 (12)C17—C18—C19—C201.6 (3)
O4—Cd1—O2—C1174.38 (10)C17—C18—C19—C22176.54 (18)
O1—Cd1—O2—C12.00 (10)C18—C19—C20—C211.8 (3)
O2—Cd1—O3—C9164.84 (12)C22—C19—C20—C21176.23 (19)
N1—Cd1—O3—C994.27 (11)C17—N1—C21—C202.2 (3)
O9—Cd1—O3—C914.42 (14)Cd1—N1—C21—C20169.18 (15)
N3—Cd1—O3—C977.67 (11)C19—C20—C21—N10.1 (3)
O4—Cd1—O3—C90.75 (10)C20—C19—C22—O7175.1 (2)
O1—Cd1—O3—C9179.32 (10)C18—C19—C22—O72.9 (3)
O2—Cd1—O4—C922.99 (13)C20—C19—C22—N24.7 (3)
N1—Cd1—O4—C987.17 (11)C18—C19—C22—N2177.2 (2)
O9—Cd1—O4—C9169.62 (11)C27—N3—C23—C242.6 (3)
N3—Cd1—O4—C9107.10 (11)Cd1—N3—C23—C24169.79 (14)
O3—Cd1—O4—C90.74 (10)N3—C23—C24—C250.9 (3)
Cd1—O1—C1—O23.43 (17)C23—C24—C25—C261.7 (3)
Cd1—O1—C1—C2174.23 (16)C23—C24—C25—C28179.10 (17)
Cd1—O2—C1—O13.9 (2)C24—C25—C26—C272.4 (3)
Cd1—O2—C1—C2173.79 (13)C28—C25—C26—C27178.32 (17)
O1—C1—C2—C7164.72 (18)C23—N3—C27—C261.8 (3)
O2—C1—C2—C717.5 (3)Cd1—N3—C27—C26170.37 (14)
O1—C1—C2—C316.7 (3)C25—C26—C27—N30.7 (3)
O2—C1—C2—C3161.05 (18)C26—C25—C28—O8B134.3 (4)
C7—C2—C3—C40.6 (3)C24—C25—C28—O8B44.9 (4)
C1—C2—C3—C4179.12 (18)C26—C25—C28—N4B47.9 (5)
C2—C3—C4—C50.3 (3)C24—C25—C28—N4B132.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O7i0.862.042.891 (2)172
N2—H2B···O10ii0.862.052.888 (3)165
N4—H4A···O8iii0.862.012.863 (3)174
N4—H4B···O5iv0.862.012.852 (3)166
N4—H4A···N4Biii0.862.353.096 (7)146
N4B—H4B1···N4iii0.862.353.096 (7)145
N4B—H4B1···O8Biii0.862.022.880 (9)178
N4B—H4B2···O7v0.862.122.941 (7)158
O9—H91···O4vi0.88 (2)1.86 (2)2.740 (2)175 (2)
O9—H92···O1v0.88 (2)1.87 (2)2.740 (2)174 (2)
O10—H101···O30.88 (2)2.32 (3)2.876 (2)122 (2)
O10—H102···O20.86 (2)1.90 (3)2.766 (2)175 (3)
C11—H11···O8ii0.932.553.315 (3)140
C17—H17···O1v0.932.443.212 (2)140
C20—H20···O10ii0.932.353.258 (3)166
C23—H23···O4vi0.932.483.253 (2)140
C26—H26···O6vii0.932.553.137 (3)122
C27—H27···O6vii0.932.513.133 (3)124
Symmetry codes: (i) x, y+1, z1; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y1/2, z+1/2; (v) x, y+1, z; (vi) x+1, y+1, z; (vii) x1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C8H5O3)2(C6H6N2O)2(H2O)]·H2O
Mr690.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.3357 (3), 19.0501 (6), 16.3743 (5)
β (°) 93.203 (1)
V3)2907.55 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.27 × 0.11 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.896, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
26549, 7151, 5904
Rint0.043
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.075, 1.03
No. of reflections7151
No. of parameters431
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.16, 0.63

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Cd1—O12.6055 (13)Cd1—O92.3271 (15)
Cd1—O22.3066 (13)Cd1—N12.3200 (16)
Cd1—O32.3368 (13)Cd1—N32.3362 (16)
Cd1—O42.5117 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O7i0.862.042.891 (2)172
N2—H2B···O10ii0.862.052.888 (3)165
N4—H4A···O8iii0.862.012.863 (3)174
N4—H4B···O5iv0.862.012.852 (3)166
N4—H4A···N4Biii0.862.353.096 (7)146
N4B—H4B1···N4iii0.862.353.096 (7)145
N4B—H4B1···O8Biii0.862.022.880 (9)178
N4B—H4B2···O7v0.862.122.941 (7)158
O9—H91···O4vi0.884 (15)1.86 (2)2.740 (2)175 (2)
O9—H92···O1v0.875 (16)1.87 (2)2.740 (2)174 (2)
O10—H101···O30.880 (16)2.32 (3)2.876 (2)122 (2)
O10—H102···O20.864 (18)1.90 (3)2.766 (2)175 (3)
C11—H11···O8ii0.932.553.315 (3)140
C17—H17···O1v0.932.443.212 (2)140
C20—H20···O10ii0.932.353.258 (3)166
C23—H23···O4vi0.932.483.253 (2)140
C26—H26···O6vii0.932.553.137 (3)122
C27—H27···O6vii0.932.513.133 (3)124
Symmetry codes: (i) x, y+1, z1; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y1/2, z+1/2; (v) x, y+1, z; (vi) x+1, y+1, z; (vii) x1, y+3/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009). Acta Cryst. E65, m651–m652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds