metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­[chlorido(N,N′-di­benzyl­propane-1,2-di­amine-κ2N,N′)copper(II)]

aDepartment of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, bBeilun Entry–Exit Inspection and Quarantine Bureau of China, Zhejiang 315800, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China.
*Correspondence e-mail: liu222005@hhit.edu.cn

(Received 16 October 2009; accepted 28 October 2009; online 31 October 2009)

In the title complex, [Cu2Cl4(C17H22N2)2], the CuII cation is coordinated by a N,N′-dibenzyl­propane-1,2-diamine ligand and two Cl anions, and a Cl anion from an adjacent mol­ecule further bridges to the CuII cation in the apical position, with a longer Cu—Cl distance of 2.9858 (18) Å, forming a centrosymmetric dimeric complex in which each CuII cation is in a distorted square-pyramidal geometry. Intra­molecular N—H⋯Cl hydrogen bonding is observed in the dimeric complex.

Related literature

For Cu—Cl bond distances, see: Alves et al. (2004[Alves, W. A., Santos, R. H., Paduan-Filho, A., Becerra, C. C., Borin, A. C. & Ferreira, A. M. (2004). Inorg. Chim. Acta, 357, 2269-2278.]); Yang et al. (2007[Yang, S.-P., Han, L.-J., Xia, H.-T., Wang, D.-Q. & Liu, Y.-F. (2007). Acta Cryst. C63, m610-m614.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl4(C17H22N2)2]

  • Mr = 777.61

  • Monoclinic, C 2/c

  • a = 21.070 (2) Å

  • b = 13.7377 (17) Å

  • c = 13.2449 (16) Å

  • β = 114.317 (2)°

  • V = 3493.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 298 K

  • 0.20 × 0.18 × 0.10 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.746, Tmax = 0.860

  • 8528 measured reflections

  • 3077 independent reflections

  • 1858 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.104

  • S = 1.06

  • 3077 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.034 (4)
Cu1—N2 2.010 (4)
Cu1—Cl1 2.2598 (15)
Cu1—Cl2 2.2663 (17)
Cu1—Cl2i 2.9858 (18)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1i 0.91 2.51 3.386 (5) 161
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper(II) complexes bridged by a pair of Cl atoms have been widely investigated in both bioinorganic chemistry and coordination chemistry (Yang et al., 2007; Alves et al., 2004). As a further study of the structures of such complexes, the crystal structure of the title complex is reported here.

The molecular structure of the title complex is illustrated in Fig. 1. The CuII atom are in a distorted square-pyramidal coordination environment (Table 1). The two copper atoms are bridged by a pair of Cl atoms, resulting in complex with centro-symmetric structures. The apical Cu—Cl bond length is 2.9858 (18) Å, whic is longer than 2.737 Å reported by Alves et al. (2004), and 2.852 (1) and 2.971 (2) Å reported by Yang et al. (2007). The N—H···Cl hydrogen boding is present in the crystal structure (Table 2).

Related literature top

For Cu—Cl bond distances, see: Alves et al. (2004); Yang et al. (2007).

Experimental top

A solution of N,N'-dibenzylpropane-1,2-diamine (1 mmol) in ethanol (20 ml) and a solution of cupric chloride (1 mmol) in ethanol (10 ml) was mixed, the reaction mixture was stirred for 3 h at 323 K. The solution was then cooled slowly to room temperature and filtered. Blue crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution.

Refinement top

H atoms were placed in calculated positions with N—H = 0.91 and C—H = 0.93 to 0.97 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Structure description top

Copper(II) complexes bridged by a pair of Cl atoms have been widely investigated in both bioinorganic chemistry and coordination chemistry (Yang et al., 2007; Alves et al., 2004). As a further study of the structures of such complexes, the crystal structure of the title complex is reported here.

The molecular structure of the title complex is illustrated in Fig. 1. The CuII atom are in a distorted square-pyramidal coordination environment (Table 1). The two copper atoms are bridged by a pair of Cl atoms, resulting in complex with centro-symmetric structures. The apical Cu—Cl bond length is 2.9858 (18) Å, whic is longer than 2.737 Å reported by Alves et al. (2004), and 2.852 (1) and 2.971 (2) Å reported by Yang et al. (2007). The N—H···Cl hydrogen boding is present in the crystal structure (Table 2).

For Cu—Cl bond distances, see: Alves et al. (2004); Yang et al. (2007).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The dimeric complex structure showing the atom-labeling scheme. Displacement ellipsoids are at the 30% probability level. For clarity, H atomes have been omitted [symmetry code: (A) 1/2 - x, 1/2 - y, 1 - z].
Di-µ-chlorido-bis[chlorido(N,N'-dibenzylpropane-1,2- diamine-κ2N,N')copper(II)] top
Crystal data top
[Cu2Cl4(C17H22N2)2]F(000) = 1608
Mr = 777.61Dx = 1.478 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1854 reflections
a = 21.070 (2) Åθ = 2.8–25.3°
b = 13.7377 (17) ŵ = 1.55 mm1
c = 13.2449 (16) ÅT = 298 K
β = 114.317 (2)°Block, blue
V = 3493.6 (7) Å30.20 × 0.18 × 0.10 mm
Z = 4
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3077 independent reflections
Radiation source: fine-focus sealed tube1858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2521
Tmin = 0.746, Tmax = 0.860k = 1616
8528 measured reflectionsl = 1015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0084P)2 + 19.8791P]
where P = (Fo2 + 2Fc2)/3
3077 reflections(Δ/σ)max = 0.011
199 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cu2Cl4(C17H22N2)2]V = 3493.6 (7) Å3
Mr = 777.61Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.070 (2) ŵ = 1.55 mm1
b = 13.7377 (17) ÅT = 298 K
c = 13.2449 (16) Å0.20 × 0.18 × 0.10 mm
β = 114.317 (2)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3077 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1858 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.860Rint = 0.052
8528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0084P)2 + 19.8791P]
where P = (Fo2 + 2Fc2)/3
3077 reflectionsΔρmax = 0.59 e Å3
199 parametersΔρmin = 0.67 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.19407 (3)0.17462 (5)0.40049 (6)0.0413 (2)
Cl10.10161 (7)0.26002 (11)0.39737 (13)0.0528 (4)
Cl20.23408 (8)0.13479 (12)0.58229 (13)0.0534 (4)
N10.1603 (2)0.1813 (3)0.2330 (4)0.0419 (11)
H10.15580.24580.21600.050*
N20.2780 (2)0.1094 (3)0.3951 (4)0.0414 (12)
H20.31580.13070.45490.050*
C10.2153 (3)0.1442 (4)0.1974 (5)0.0459 (15)
H1A0.20500.07580.17580.055*
C20.2841 (3)0.1484 (4)0.2955 (5)0.0437 (15)
H2A0.31820.11080.28040.052*
H2B0.30010.21540.30870.052*
C30.2159 (4)0.2000 (5)0.0982 (5)0.071 (2)
H3A0.17140.19380.03680.107*
H3B0.25140.17380.07820.107*
H3C0.22540.26750.11730.107*
C40.0901 (3)0.1380 (4)0.1691 (5)0.0471 (15)
H4A0.07820.14470.09050.056*
H4B0.05570.17360.18570.056*
C50.0874 (3)0.0315 (4)0.1964 (5)0.0410 (14)
C60.0856 (3)0.0402 (5)0.1225 (5)0.0537 (17)
H60.08500.02300.05420.064*
C70.0847 (3)0.1367 (5)0.1488 (7)0.071 (2)
H70.08300.18460.09810.085*
C80.0864 (3)0.1628 (5)0.2511 (7)0.070 (2)
H80.08690.22820.26970.084*
C90.0873 (3)0.0925 (5)0.3243 (6)0.0627 (19)
H90.08770.10970.39240.075*
C100.0877 (3)0.0050 (5)0.2968 (5)0.0471 (15)
H100.08820.05280.34680.057*
C110.2785 (3)0.0013 (4)0.4004 (5)0.0507 (16)
H11A0.24850.02400.32800.061*
H11B0.25920.01890.45210.061*
C120.3497 (3)0.0430 (4)0.4355 (5)0.0425 (14)
C130.3737 (3)0.0720 (4)0.3563 (5)0.0493 (16)
H130.34540.06410.28130.059*
C140.4395 (3)0.1126 (4)0.3890 (7)0.0607 (19)
H140.45560.13090.33610.073*
C150.4796 (4)0.1254 (5)0.4962 (8)0.075 (2)
H150.52330.15370.51730.090*
C160.4575 (4)0.0976 (5)0.5764 (6)0.080 (2)
H160.48600.10650.65110.096*
C170.3918 (3)0.0560 (5)0.5438 (5)0.0594 (18)
H170.37660.03670.59740.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0354 (4)0.0480 (4)0.0427 (4)0.0035 (3)0.0185 (3)0.0051 (4)
Cl10.0399 (8)0.0628 (10)0.0571 (10)0.0081 (7)0.0213 (8)0.0107 (8)
Cl20.0501 (9)0.0667 (11)0.0458 (10)0.0061 (8)0.0221 (8)0.0051 (8)
N10.046 (3)0.038 (3)0.048 (3)0.001 (2)0.025 (2)0.000 (2)
N20.039 (3)0.038 (3)0.046 (3)0.002 (2)0.016 (2)0.002 (2)
C10.056 (4)0.039 (4)0.050 (4)0.003 (3)0.029 (3)0.008 (3)
C20.043 (3)0.037 (4)0.061 (4)0.000 (3)0.032 (3)0.004 (3)
C30.085 (5)0.083 (5)0.067 (5)0.011 (4)0.052 (4)0.017 (4)
C40.040 (3)0.052 (4)0.043 (4)0.000 (3)0.010 (3)0.003 (3)
C50.030 (3)0.049 (4)0.038 (4)0.001 (3)0.008 (3)0.006 (3)
C60.053 (4)0.060 (5)0.058 (4)0.007 (3)0.033 (4)0.009 (4)
C70.068 (5)0.051 (5)0.108 (7)0.008 (4)0.052 (5)0.023 (4)
C80.059 (4)0.051 (5)0.107 (7)0.000 (4)0.042 (5)0.009 (5)
C90.059 (4)0.064 (5)0.065 (5)0.004 (4)0.026 (4)0.012 (4)
C100.039 (3)0.059 (4)0.046 (4)0.010 (3)0.020 (3)0.009 (3)
C110.047 (4)0.040 (4)0.070 (5)0.002 (3)0.029 (3)0.004 (3)
C120.043 (3)0.035 (3)0.051 (4)0.004 (3)0.021 (3)0.002 (3)
C130.055 (4)0.042 (4)0.053 (4)0.001 (3)0.025 (3)0.010 (3)
C140.064 (5)0.044 (4)0.087 (6)0.004 (3)0.044 (5)0.012 (4)
C150.057 (5)0.060 (5)0.106 (7)0.023 (4)0.032 (5)0.005 (5)
C160.071 (5)0.089 (6)0.059 (5)0.020 (4)0.006 (4)0.016 (4)
C170.066 (5)0.069 (5)0.044 (4)0.012 (4)0.024 (4)0.004 (3)
Geometric parameters (Å, º) top
Cu1—N12.034 (4)C6—C71.373 (8)
Cu1—N22.010 (4)C6—H60.9300
Cu1—Cl12.2598 (15)C7—C81.388 (10)
Cu1—Cl22.2663 (17)C7—H70.9300
Cu1—Cl2i2.9858 (18)C8—C91.363 (9)
N1—C41.493 (6)C8—H80.9300
N1—C11.508 (6)C9—C101.388 (8)
N1—H10.9100C9—H90.9300
N2—C21.477 (6)C10—H100.9300
N2—C111.487 (6)C11—C121.504 (7)
N2—H20.9100C11—H11A0.9700
C1—C21.497 (7)C11—H11B0.9700
C1—C31.526 (8)C12—C171.352 (8)
C1—H1A0.9800C12—C131.396 (7)
C2—H2A0.9700C13—C141.389 (8)
C2—H2B0.9700C13—H130.9300
C3—H3A0.9600C14—C151.331 (9)
C3—H3B0.9600C14—H140.9300
C3—H3C0.9600C15—C161.378 (10)
C4—C51.514 (7)C15—H150.9300
C4—H4A0.9700C16—C171.393 (8)
C4—H4B0.9700C16—H160.9300
C5—C101.376 (7)C17—H170.9300
C5—C61.379 (7)
N2—Cu1—N184.19 (18)C5—C4—H4B109.2
N2—Cu1—Cl1174.43 (14)H4A—C4—H4B107.9
N1—Cu1—Cl192.59 (13)C10—C5—C6119.0 (6)
N2—Cu1—Cl289.00 (14)C10—C5—C4120.1 (5)
N1—Cu1—Cl2168.46 (14)C6—C5—C4120.9 (5)
Cl1—Cu1—Cl294.90 (6)C7—C6—C5120.6 (6)
N2—Cu1—Cl2i88.13 (13)C7—C6—H6119.7
N1—Cu1—Cl2i88.99 (13)C5—C6—H6119.7
Cl1—Cu1—Cl2i87.27 (5)C6—C7—C8120.0 (7)
Cl2—Cu1—Cl2i100.11 (5)C6—C7—H7120.0
C4—N1—C1113.5 (4)C8—C7—H7120.0
C4—N1—Cu1114.8 (3)C9—C8—C7119.9 (7)
C1—N1—Cu1110.9 (3)C9—C8—H8120.0
C4—N1—H1105.6C7—C8—H8120.0
C1—N1—H1105.6C8—C9—C10119.8 (7)
Cu1—N1—H1105.6C8—C9—H9120.1
C2—N2—C11113.8 (4)C10—C9—H9120.1
C2—N2—Cu1105.7 (3)C5—C10—C9120.7 (6)
C11—N2—Cu1115.6 (3)C5—C10—H10119.6
C2—N2—H2107.1C9—C10—H10119.6
C11—N2—H2107.1N2—C11—C12113.9 (4)
Cu1—N2—H2107.1N2—C11—H11A108.8
C2—C1—N1108.0 (4)C12—C11—H11A108.8
C2—C1—C3112.2 (5)N2—C11—H11B108.8
N1—C1—C3112.3 (5)C12—C11—H11B108.8
C2—C1—H1A108.0H11A—C11—H11B107.7
N1—C1—H1A108.0C17—C12—C13118.6 (6)
C3—C1—H1A108.0C17—C12—C11121.0 (6)
N2—C2—C1110.6 (4)C13—C12—C11120.4 (6)
N2—C2—H2A109.5C14—C13—C12120.2 (6)
C1—C2—H2A109.5C14—C13—H13119.9
N2—C2—H2B109.5C12—C13—H13119.9
C1—C2—H2B109.5C15—C14—C13120.0 (7)
H2A—C2—H2B108.1C15—C14—H14120.0
C1—C3—H3A109.5C13—C14—H14120.0
C1—C3—H3B109.5C14—C15—C16121.2 (7)
H3A—C3—H3B109.5C14—C15—H15119.4
C1—C3—H3C109.5C16—C15—H15119.4
H3A—C3—H3C109.5C15—C16—C17119.0 (7)
H3B—C3—H3C109.5C15—C16—H16120.5
N1—C4—C5112.0 (4)C17—C16—H16120.5
N1—C4—H4A109.2C12—C17—C16121.1 (6)
C5—C4—H4A109.2C12—C17—H17119.5
N1—C4—H4B109.2C16—C17—H17119.5
N2—Cu1—N1—C4125.7 (4)N1—C4—C5—C1072.6 (6)
Cl1—Cu1—N1—C458.9 (3)N1—C4—C5—C6106.4 (6)
Cl2—Cu1—N1—C471.6 (8)C10—C5—C6—C70.5 (9)
Cl2i—Cu1—N1—C4146.1 (3)C4—C5—C6—C7178.5 (5)
N2—Cu1—N1—C14.6 (3)C5—C6—C7—C80.8 (10)
Cl1—Cu1—N1—C1170.8 (3)C6—C7—C8—C91.5 (11)
Cl2—Cu1—N1—C158.7 (8)C7—C8—C9—C101.1 (10)
Cl2i—Cu1—N1—C183.6 (3)C6—C5—C10—C90.9 (9)
N1—Cu1—N2—C228.3 (3)C4—C5—C10—C9178.1 (5)
Cl2—Cu1—N2—C2161.0 (3)C8—C9—C10—C50.2 (9)
Cl2i—Cu1—N2—C260.8 (3)C2—N2—C11—C1277.4 (6)
Cl2—Cu1—N2—C1172.2 (4)Cu1—N2—C11—C12160.0 (4)
Cl2i—Cu1—N2—C11172.3 (4)N2—C11—C12—C1787.2 (7)
C4—N1—C1—C2151.2 (4)N2—C11—C12—C1393.1 (7)
Cu1—N1—C1—C220.1 (5)C17—C12—C13—C140.4 (9)
C4—N1—C1—C384.5 (6)C11—C12—C13—C14179.9 (5)
Cu1—N1—C1—C3144.4 (4)C12—C13—C14—C151.0 (9)
C11—N2—C2—C179.6 (5)C13—C14—C15—C161.0 (11)
Cu1—N2—C2—C148.4 (5)C14—C15—C16—C170.4 (12)
N1—C1—C2—N245.4 (6)C13—C12—C17—C160.2 (9)
C3—C1—C2—N2169.7 (5)C11—C12—C17—C16179.5 (6)
C1—N1—C4—C569.9 (6)C15—C16—C17—C120.2 (11)
Cu1—N1—C4—C559.2 (5)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.912.513.386 (5)161
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C17H22N2)2]
Mr777.61
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)21.070 (2), 13.7377 (17), 13.2449 (16)
β (°) 114.317 (2)
V3)3493.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.746, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
8528, 3077, 1858
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.104, 1.06
No. of reflections3077
No. of parameters199
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0084P)2 + 19.8791P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.59, 0.67

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N12.034 (4)Cu1—Cl22.2663 (17)
Cu1—N22.010 (4)Cu1—Cl2i2.9858 (18)
Cu1—Cl12.2598 (15)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.912.513.386 (5)161.4
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

We acknowledge the financial support of the Science Foundation of Huaihai Institute of Technology, China.

References

First citationAlves, W. A., Santos, R. H., Paduan-Filho, A., Becerra, C. C., Borin, A. C. & Ferreira, A. M. (2004). Inorg. Chim. Acta, 357, 2269–2278.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYang, S.-P., Han, L.-J., Xia, H.-T., Wang, D.-Q. & Liu, Y.-F. (2007). Acta Cryst. C63, m610–m614.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds