organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[(R)-(2-Chloro­phen­yl)(cyclo­pent­yl)meth­yl]-N-[(R)-(2-hydr­­oxy-5-methyl­phen­yl)(phen­yl)meth­yl]acetamide

aSchool of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China, bJincheng Pharmaceutical Co Ltd, Shandong Provience 255100, People's Republic of China, and cDepartment of Materials Science and Chemical Engineering, Taishan University, Taishan 271021, People's Republic of China
*Correspondence e-mail: 153725248@163.com

(Received 17 October 2009; accepted 27 October 2009; online 31 October 2009)

In the title compound, C28H30ClNO2, the cyclo­pentane ring adopts an envelope conformation. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds, forming chains running along the a axis.

Related literature

For general background to amides, see: Calligaris et al. (1972[Calligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.]); Ali et al. (2002[Ali, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). Inorg. Biochem. 92, 141-148.]); Cukurovali et al. (2002[Cukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171-176.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]); Kargar et al. (2009[Kargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403-m404.]); Takenaka et al. (2002[Takenaka, N., Huang, Y. & Rawal, V. H. (2002). Tetrahedron, 58, 8299-8305.]); Varlamov et al. (2003[Varlamov, A. V., Zubkov, F. I., Boltukhina, E. V., Sidorenko, N. V. & Borisov, R. S. (2003). Tetrahedron Lett. 44, 3641-3643.]); Zhang et al. (2003[Zhang, G.-Y., Liao, Y.-Q., Wang, Z.-H., Nohira, H. & Hirose, T. (2003). Tetrahedron Asymmetry, 14, 3297-3300.]). For the synthesis, see: Yang et al. (2005[Yang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, o262-o264.]).

[Scheme 1]

Experimental

Crystal data
  • C28H30ClNO2

  • Mr = 447.98

  • Orthorhombic, P 21 21 21

  • a = 8.8038 (8) Å

  • b = 11.3417 (10) Å

  • c = 25.485 (2) Å

  • V = 2544.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 298 K

  • 0.24 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.960, Tmax = 0.980

  • 13334 measured reflections

  • 4452 independent reflections

  • 2845 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.186

  • S = 1.05

  • 4452 reflections

  • 290 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1871 Friedel pairs

  • Flack parameter: 0.04 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.637 (3) 172
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff base compounds have been widely used in organic and bioinorganic chemistry due to their significant biological activities (Ali et al., 2002; Sriram et al., 2006; Cukurovali et al., 2002). These compounds have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Calligaris et al., 1972). Therefore, the design and syntheis of Schiff bases with various functionalities has become an important field of research nowdays (Takenaka et al., 2002; Varlamov et al., 2003; Zhang et al., 2003). As part of our continuing research of Schiff bases, we report the crystal structure of the title compound, which was acetylated from the corresponding aminophenol.

As shown in Fig. 1, the configuration at the new chiral center (C8) is R. The C9—C14 and C18—C23 aromatic rings are approximately vertical, the dihedral angle between their planes being 83.59 (17)°; the dihedral angle between the planes of the C1—C6 and C18—C23 aromatic rings is 17.45 (19)°, while that between the C1—C6 and C9—C14 planes is 78.89 (16)°. The intermolecular O1—H1···O2 hydrogen-bonding interactions are present in the crystal packing (Table 1 and Fig. 2).

Related literature top

For general background to Schiff bases, see: Calligaris et al. (1972); Ali et al. (2002); Cukurovali et al. (2002); Sriram et al. (2006); Kargar et al. (2009); Takenaka et al. (2002); Varlamov et al. (2003); Zhang et al. (2003). For the synthesis, see: Yang et al. (2005).

Experimental top

The chiral aminophenol was prepared by a condensation reaction of (R)-1-(2-chlorophenyl)-1-cyclopentylmethanamine and (2-hydroxy-5-methylphenyl)(phenyl)methanone followed by reduction with NaBH4. The detailed procedure is similar to that reported by Yang et al. (2005). Then the aminophenol was reacted with acetic anhydride (5 equivalents) in a THF solution (10 ml) at room temperature for 12 h to obtain the title compound. After removal of the solvent, water (20 ml) was added to the residue, stirred and filtrated. Further purification of the filter cake was carried out by thin-layer silica-gel chromatography (chloroform) to give a colorless solid (yield 70.1%). Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of the n-hexane/ethyl acetate solution (3:2 v/v).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H = 0.93–0.98 Å and O–H = 0.82 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C,O) for methyl H atoms and hydroxy-H atoms, and 1.2Ueq(C) for the others.

Structure description top

The Schiff base compounds have been widely used in organic and bioinorganic chemistry due to their significant biological activities (Ali et al., 2002; Sriram et al., 2006; Cukurovali et al., 2002). These compounds have also been used as versatile ligands in coordination chemistry (Kargar et al., 2009; Calligaris et al., 1972). Therefore, the design and syntheis of Schiff bases with various functionalities has become an important field of research nowdays (Takenaka et al., 2002; Varlamov et al., 2003; Zhang et al., 2003). As part of our continuing research of Schiff bases, we report the crystal structure of the title compound, which was acetylated from the corresponding aminophenol.

As shown in Fig. 1, the configuration at the new chiral center (C8) is R. The C9—C14 and C18—C23 aromatic rings are approximately vertical, the dihedral angle between their planes being 83.59 (17)°; the dihedral angle between the planes of the C1—C6 and C18—C23 aromatic rings is 17.45 (19)°, while that between the C1—C6 and C9—C14 planes is 78.89 (16)°. The intermolecular O1—H1···O2 hydrogen-bonding interactions are present in the crystal packing (Table 1 and Fig. 2).

For general background to Schiff bases, see: Calligaris et al. (1972); Ali et al. (2002); Cukurovali et al. (2002); Sriram et al. (2006); Kargar et al. (2009); Takenaka et al. (2002); Varlamov et al. (2003); Zhang et al. (2003). For the synthesis, see: Yang et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram of (I), dashed lines represent hydrogen bonding.
N-[(R)-(2-chlorophenyl)(cyclopentyl)methyl]- N-[(R)-(2-hydroxy-5-methylphenyl)(phenyl)methyl]acetamide top
Crystal data top
C28H30ClNO2F(000) = 952
Mr = 447.98Dx = 1.169 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2267 reflections
a = 8.8038 (8) Åθ = 2.5–19.1°
b = 11.3417 (10) ŵ = 0.17 mm1
c = 25.485 (2) ÅT = 298 K
V = 2544.7 (4) Å3Block, colourless
Z = 40.24 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4452 independent reflections
Radiation source: fine-focus sealed tube2845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.960, Tmax = 0.980k = 1213
13334 measured reflectionsl = 2630
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.1097P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4452 reflectionsΔρmax = 0.33 e Å3
290 parametersΔρmin = 0.37 e Å3
0 restraintsAbsolute structure: Flack (1983), 1871 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (16)
Crystal data top
C28H30ClNO2V = 2544.7 (4) Å3
Mr = 447.98Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.8038 (8) ŵ = 0.17 mm1
b = 11.3417 (10) ÅT = 298 K
c = 25.485 (2) Å0.24 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4452 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2845 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.980Rint = 0.034
13334 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.186Δρmax = 0.33 e Å3
S = 1.05Δρmin = 0.37 e Å3
4452 reflectionsAbsolute structure: Flack (1983), 1871 Friedel pairs
290 parametersAbsolute structure parameter: 0.04 (16)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.8441 (4)1.17857 (19)0.06402 (7)0.1811 (11)
O10.2924 (3)0.8872 (3)0.12767 (13)0.0864 (9)
H10.20200.90410.12560.130*
O21.0028 (3)0.9464 (3)0.13070 (14)0.0927 (10)
N10.7501 (3)0.9350 (2)0.13768 (11)0.0520 (7)
C10.3627 (4)0.9125 (3)0.08087 (15)0.0626 (9)
C20.5208 (3)0.9060 (3)0.08034 (14)0.0536 (9)
C30.5941 (4)0.9335 (3)0.03418 (15)0.0628 (10)
H30.69960.92970.03330.075*
C40.5179 (5)0.9666 (4)0.01089 (15)0.0746 (12)
C50.3620 (6)0.9721 (4)0.00895 (17)0.0834 (13)
H50.30810.99420.03870.100*
C60.2852 (4)0.9457 (4)0.03610 (19)0.0769 (12)
H60.17970.95010.03660.092*
C70.6058 (8)0.9962 (6)0.06040 (18)0.125 (2)
H7A0.69820.95120.06130.188*
H7B0.62971.07880.06070.188*
H7C0.54530.97730.09060.188*
C80.6007 (3)0.8750 (3)0.13155 (14)0.0512 (8)
H80.53650.90940.15900.061*
C90.6029 (4)0.7431 (4)0.14369 (18)0.0672 (11)
C100.5359 (5)0.6629 (4)0.1108 (3)0.0967 (16)
H100.49090.68910.07990.116*
C110.5336 (7)0.5430 (5)0.1227 (4)0.127 (2)
H110.48500.49060.10030.152*
C120.6012 (8)0.5029 (6)0.1664 (4)0.135 (3)
H120.60320.42240.17330.162*
C130.6684 (7)0.5812 (6)0.2016 (3)0.121 (2)
H130.71330.55340.23220.146*
C140.6677 (5)0.7034 (5)0.1903 (2)0.0923 (14)
H140.71020.75680.21390.111*
C150.8845 (4)0.8931 (4)0.12091 (16)0.0655 (10)
C160.8935 (4)0.7808 (4)0.0899 (2)0.0860 (14)
H16A0.97200.78750.06390.129*
H16B0.79790.76660.07290.129*
H16C0.91620.71630.11300.129*
C170.7476 (4)1.0531 (3)0.16311 (13)0.0566 (8)
H170.84681.08920.15640.068*
C180.6322 (6)1.1299 (4)0.13737 (15)0.0781 (12)
C190.6669 (10)1.1861 (4)0.0904 (2)0.127 (2)
C200.5516 (12)1.2498 (6)0.0618 (3)0.149 (2)
H200.57301.28800.03040.179*
C210.4125 (12)1.2510 (7)0.0828 (4)0.156 (3)
H210.33631.28900.06400.187*
C220.3740 (9)1.2019 (6)0.1287 (4)0.152 (3)
H220.27551.20790.14160.182*
C230.4846 (6)1.1424 (5)0.1564 (3)0.1053 (17)
H230.45991.10950.18870.126*
C240.7295 (5)1.0460 (4)0.22294 (17)0.0842 (12)
H240.63171.00950.23160.101*
C250.8582 (7)0.9781 (6)0.24986 (19)0.1152 (16)
H25A0.82330.89970.25910.138*
H25B0.94320.97010.22590.138*
C260.9037 (9)1.0362 (7)0.2938 (3)0.150 (2)
H26A1.01371.03560.29580.180*
H26B0.86460.99590.32460.180*
C270.8506 (8)1.1554 (7)0.2936 (2)0.1364 (19)
H27A0.93551.20910.28930.164*
H27B0.80081.17330.32660.164*
C280.7391 (7)1.1699 (5)0.24837 (19)0.1022 (14)
H28A0.77591.22760.22330.123*
H28B0.64041.19480.26110.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.303 (3)0.1376 (15)0.1031 (11)0.0737 (18)0.0624 (16)0.0110 (10)
O10.0368 (13)0.119 (3)0.103 (2)0.0043 (13)0.0143 (14)0.021 (2)
O20.0339 (12)0.114 (2)0.130 (3)0.0049 (14)0.0073 (15)0.034 (2)
N10.0335 (12)0.0595 (17)0.0629 (16)0.0023 (12)0.0005 (13)0.0064 (13)
C10.0391 (18)0.074 (2)0.075 (2)0.0015 (17)0.0032 (18)0.0019 (19)
C20.0383 (17)0.056 (2)0.067 (2)0.0048 (14)0.0028 (15)0.0060 (16)
C30.053 (2)0.071 (2)0.065 (2)0.0095 (17)0.0037 (18)0.0108 (18)
C40.080 (3)0.084 (3)0.060 (2)0.031 (2)0.003 (2)0.009 (2)
C50.091 (3)0.087 (3)0.071 (3)0.012 (3)0.024 (3)0.003 (2)
C60.049 (2)0.088 (3)0.093 (3)0.0030 (19)0.020 (2)0.005 (2)
C70.149 (5)0.164 (6)0.063 (3)0.065 (4)0.003 (3)0.010 (3)
C80.0328 (15)0.057 (2)0.064 (2)0.0000 (13)0.0049 (15)0.0002 (16)
C90.0408 (17)0.060 (2)0.101 (3)0.0027 (16)0.0080 (19)0.008 (2)
C100.073 (3)0.066 (3)0.151 (5)0.008 (2)0.007 (3)0.002 (3)
C110.109 (4)0.060 (3)0.212 (7)0.004 (3)0.001 (5)0.004 (4)
C120.109 (5)0.074 (4)0.221 (8)0.019 (4)0.044 (5)0.028 (5)
C130.103 (4)0.103 (5)0.157 (6)0.023 (4)0.021 (4)0.058 (5)
C140.075 (3)0.093 (4)0.109 (3)0.009 (2)0.010 (3)0.030 (3)
C150.0380 (19)0.079 (3)0.080 (2)0.0035 (18)0.0028 (17)0.008 (2)
C160.049 (2)0.093 (3)0.116 (3)0.013 (2)0.022 (2)0.024 (3)
C170.0516 (18)0.060 (2)0.058 (2)0.0015 (18)0.0008 (17)0.0073 (16)
C180.113 (3)0.055 (2)0.066 (2)0.020 (2)0.028 (2)0.0157 (19)
C190.227 (6)0.063 (3)0.091 (3)0.020 (4)0.053 (4)0.011 (3)
C200.237 (7)0.098 (4)0.111 (4)0.032 (5)0.063 (5)0.011 (3)
C210.215 (7)0.099 (4)0.153 (6)0.060 (5)0.088 (6)0.031 (4)
C220.152 (5)0.115 (5)0.187 (6)0.066 (4)0.051 (5)0.060 (4)
C230.085 (3)0.088 (3)0.143 (4)0.044 (3)0.048 (3)0.046 (3)
C240.082 (3)0.106 (3)0.065 (2)0.003 (2)0.019 (2)0.016 (2)
C250.129 (4)0.132 (4)0.084 (3)0.010 (3)0.048 (3)0.006 (3)
C260.147 (4)0.177 (5)0.126 (4)0.022 (4)0.053 (3)0.028 (4)
C270.133 (4)0.156 (4)0.120 (3)0.000 (4)0.044 (3)0.042 (3)
C280.102 (3)0.126 (3)0.078 (3)0.010 (3)0.015 (3)0.037 (3)
Geometric parameters (Å, º) top
Cl1—C191.701 (9)C14—H140.9300
O1—C11.374 (5)C15—C161.501 (6)
O1—H10.8200C16—H16A0.9600
O2—C151.230 (4)C16—H16B0.9600
N1—C151.345 (4)C16—H16C0.9600
N1—C171.488 (4)C17—C181.490 (5)
N1—C81.489 (4)C17—C241.535 (6)
C1—C61.382 (6)C17—H170.9800
C1—C21.394 (5)C18—C191.391 (8)
C2—C31.377 (5)C18—C231.394 (7)
C2—C81.524 (5)C19—C201.443 (9)
C3—C41.382 (6)C20—C211.337 (12)
C3—H30.9300C20—H200.9300
C4—C51.374 (7)C21—C221.340 (11)
C4—C71.518 (6)C21—H210.9300
C5—C61.366 (6)C22—C231.379 (9)
C5—H50.9300C22—H220.9300
C6—H60.9300C23—H230.9300
C7—H7A0.9600C24—C251.532 (7)
C7—H7B0.9600C24—C281.550 (7)
C7—H7C0.9600C24—H240.9800
C8—C91.528 (5)C25—C261.361 (8)
C8—H80.9800C25—H25A0.9700
C9—C101.370 (7)C25—H25B0.9700
C9—C141.394 (6)C26—C271.430 (10)
C10—C111.393 (8)C26—H26A0.9700
C10—H100.9300C26—H26B0.9700
C11—C121.343 (11)C27—C281.523 (8)
C11—H110.9300C27—H27A0.9700
C12—C131.394 (10)C27—H27B0.9700
C12—H120.9300C28—H28A0.9700
C13—C141.415 (8)C28—H28B0.9700
C13—H130.9300
C1—O1—H1109.5C15—C16—H16C109.5
C15—N1—C17118.0 (3)H16A—C16—H16C109.5
C15—N1—C8125.6 (3)H16B—C16—H16C109.5
C17—N1—C8116.3 (2)N1—C17—C18110.2 (3)
O1—C1—C6123.5 (3)N1—C17—C24112.8 (3)
O1—C1—C2116.6 (3)C18—C17—C24113.4 (3)
C6—C1—C2119.9 (4)N1—C17—H17106.7
C3—C2—C1117.7 (3)C18—C17—H17106.7
C3—C2—C8124.6 (3)C24—C17—H17106.7
C1—C2—C8117.7 (3)C19—C18—C23117.2 (5)
C2—C3—C4122.9 (3)C19—C18—C17119.8 (5)
C2—C3—H3118.5C23—C18—C17122.8 (4)
C4—C3—H3118.5C18—C19—C20120.6 (8)
C5—C4—C3117.9 (4)C18—C19—Cl1121.2 (5)
C5—C4—C7122.0 (4)C20—C19—Cl1118.1 (6)
C3—C4—C7120.2 (4)C21—C20—C19116.6 (8)
C6—C5—C4121.0 (4)C21—C20—H20121.7
C6—C5—H5119.5C19—C20—H20121.7
C4—C5—H5119.5C20—C21—C22125.2 (8)
C5—C6—C1120.6 (4)C20—C21—H21117.4
C5—C6—H6119.7C22—C21—H21117.4
C1—C6—H6119.7C21—C22—C23118.2 (8)
C4—C7—H7A109.5C21—C22—H22120.9
C4—C7—H7B109.5C23—C22—H22120.9
H7A—C7—H7B109.5C22—C23—C18122.0 (7)
C4—C7—H7C109.5C22—C23—H23119.0
H7A—C7—H7C109.5C18—C23—H23119.0
H7B—C7—H7C109.5C25—C24—C17113.2 (4)
N1—C8—C2113.1 (3)C25—C24—C28103.2 (4)
N1—C8—C9114.5 (3)C17—C24—C28111.2 (4)
C2—C8—C9113.9 (3)C25—C24—H24109.7
N1—C8—H8104.6C17—C24—H24109.7
C2—C8—H8104.6C28—C24—H24109.7
C9—C8—H8104.6C26—C25—C24110.1 (5)
C10—C9—C14118.9 (4)C26—C25—H25A109.6
C10—C9—C8121.4 (4)C24—C25—H25A109.6
C14—C9—C8119.6 (4)C26—C25—H25B109.6
C9—C10—C11121.4 (6)C24—C25—H25B109.6
C9—C10—H10119.3H25A—C25—H25B108.2
C11—C10—H10119.3C25—C26—C27111.0 (6)
C12—C11—C10120.3 (7)C25—C26—H26A109.4
C12—C11—H11119.8C27—C26—H26A109.4
C10—C11—H11119.8C25—C26—H26B109.4
C11—C12—C13120.4 (6)C27—C26—H26B109.4
C11—C12—H12119.8H26A—C26—H26B108.0
C13—C12—H12119.8C26—C27—C28108.4 (5)
C12—C13—C14119.5 (6)C26—C27—H27A110.0
C12—C13—H13120.3C28—C27—H27A110.0
C14—C13—H13120.3C26—C27—H27B110.0
C9—C14—C13119.4 (6)C28—C27—H27B110.0
C9—C14—H14120.3H27A—C27—H27B108.4
C13—C14—H14120.3C27—C28—C24104.7 (4)
O2—C15—N1120.4 (3)C27—C28—H28A110.8
O2—C15—C16118.6 (3)C24—C28—H28A110.8
N1—C15—C16120.9 (3)C27—C28—H28B110.8
C15—C16—H16A109.5C24—C28—H28B110.8
C15—C16—H16B109.5H28A—C28—H28B108.9
H16A—C16—H16B109.5
O1—C1—C2—C3178.6 (3)C8—N1—C15—O2175.7 (4)
C6—C1—C2—C30.1 (5)C17—N1—C15—C16173.5 (4)
O1—C1—C2—C81.6 (5)C8—N1—C15—C164.4 (6)
C6—C1—C2—C8176.9 (3)C15—N1—C17—C18127.5 (4)
C1—C2—C3—C40.1 (6)C8—N1—C17—C1850.6 (4)
C8—C2—C3—C4176.9 (3)C15—N1—C17—C24104.7 (4)
C2—C3—C4—C50.1 (6)C8—N1—C17—C2477.2 (4)
C2—C3—C4—C7179.8 (4)N1—C17—C18—C1980.3 (5)
C3—C4—C5—C60.0 (7)C24—C17—C18—C19152.2 (4)
C7—C4—C5—C6179.7 (5)N1—C17—C18—C2395.1 (4)
C4—C5—C6—C10.1 (7)C24—C17—C18—C2332.4 (5)
O1—C1—C6—C5178.6 (4)C23—C18—C19—C202.8 (7)
C2—C1—C6—C50.2 (6)C17—C18—C19—C20172.9 (5)
C15—N1—C8—C289.0 (4)C23—C18—C19—Cl1179.0 (4)
C17—N1—C8—C288.9 (3)C17—C18—C19—Cl15.3 (6)
C15—N1—C8—C943.7 (5)C18—C19—C20—C210.2 (9)
C17—N1—C8—C9138.3 (3)Cl1—C19—C20—C21178.1 (6)
C3—C2—C8—N130.9 (5)C19—C20—C21—C222.6 (12)
C1—C2—C8—N1145.9 (3)C20—C21—C22—C231.8 (12)
C3—C2—C8—C9102.2 (4)C21—C22—C23—C181.5 (9)
C1—C2—C8—C981.0 (4)C19—C18—C23—C223.7 (7)
N1—C8—C9—C10133.2 (4)C17—C18—C23—C22171.8 (5)
C2—C8—C9—C100.9 (5)N1—C17—C24—C2560.2 (5)
N1—C8—C9—C1449.9 (5)C18—C17—C24—C25173.7 (4)
C2—C8—C9—C14177.7 (3)N1—C17—C24—C28175.9 (3)
C14—C9—C10—C111.1 (7)C18—C17—C24—C2858.1 (5)
C8—C9—C10—C11177.9 (4)C17—C24—C25—C26136.6 (6)
C9—C10—C11—C121.7 (9)C28—C24—C25—C2616.2 (7)
C10—C11—C12—C132.9 (10)C24—C25—C26—C2716.4 (10)
C11—C12—C13—C141.4 (10)C25—C26—C27—C289.3 (10)
C10—C9—C14—C132.6 (7)C26—C27—C28—C241.3 (8)
C8—C9—C14—C13179.5 (4)C25—C24—C28—C279.9 (6)
C12—C13—C14—C91.4 (8)C17—C24—C28—C27131.6 (5)
C17—N1—C15—O26.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.637 (3)172
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC28H30ClNO2
Mr447.98
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.8038 (8), 11.3417 (10), 25.485 (2)
V3)2544.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.24 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
13334, 4452, 2845
Rint0.034
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.186, 1.05
No. of reflections4452
No. of parameters290
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.37
Absolute structureFlack (1983), 1871 Friedel pairs
Absolute structure parameter0.04 (16)

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.822.637 (3)172.1
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors are grateful to the Natural Science Foundation of Shandong Province, China (grant No. G0231) and the Foundation of the Education Ministry of China for Returned Students (grant No. G0220) for financial support. The X-ray data were collected at Taishan University, China.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J. & Tarafder, M. T. H. (2002). Inorg. Biochem. 92, 141–148.  Google Scholar
First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M., Nardin, G. & Randaccio, L. (1972). Coord. Chem. Rev. 7, 385–403.  CrossRef CAS Web of Science Google Scholar
First citationCukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem. 27, 171–176.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKargar, H., Jamshidvand, A., Fun, H.-K. & Kia, R. (2009). Acta Cryst. E65, m403–m404.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTakenaka, N., Huang, Y. & Rawal, V. H. (2002). Tetrahedron, 58, 8299–8305.  Web of Science CrossRef CAS Google Scholar
First citationVarlamov, A. V., Zubkov, F. I., Boltukhina, E. V., Sidorenko, N. V. & Borisov, R. S. (2003). Tetrahedron Lett. 44, 3641–3643.  Web of Science CrossRef CAS Google Scholar
First citationYang, X.-F., Zhang, G.-Y., Zhang, Y., Zhao, J.-Y. & Wang, X.-B. (2005). Acta Cryst. C61, o262–o264.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, G.-Y., Liao, Y.-Q., Wang, Z.-H., Nohira, H. & Hirose, T. (2003). Tetrahedron Asymmetry, 14, 3297–3300.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds