metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(ethyl­enedi­amine-κ2N,N′)bis­­(phenytoinato-κN)cobalt(II)

aHuaihai Institute of Technology, Jiangsu 222005, People's Republic of China, bHuaiyin Institute of Technology, Jiangsu 223003, People's Republic of China, and cCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: huxilan@hhit.edu.cn

(Received 19 October 2009; accepted 23 October 2009; online 31 October 2009)

The title compound [systematic name: bis(2,5-dioxo-4,4-diphenylimidazolidin-1-ido-κN1)bis(ethylenediamine-κ2N,N′)cobalt(II)], [Co(C15H11N2O2)2(C2H8N2)2], has site symmetry [\overline{1}]. The CoII cation is located on an inversion center and coordinated by two phenytoin anions and two ethyl­enediamine ligands in a distorted octa­hedral geometry. In the phenytoin anion, the two phenyl rings are twisted with respect to the central hydantoin ring, making dihedral angles of 77.49 (16) and 64.55 (15)°. Intra­molecular and inter­molecular N—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For applications of phenytoin, see: Akitsu & Einaga (2005[Akitsu, T. & Einaga, Y. (2005). Acta Cryst. C61, m183-m186.]); Akitsu et al. (1997[Akitsu, T., Komorita, S., Kushi, Y., Li, C., Kanehisa, N. & Kai, Y. (1997). Bull. Chem. Soc. Jpn, 70, 821-827.]). For related compounds, see: Hu et al. (2006[Hu, X.-L., Xu, X.-Y., Liu, H.-F., Xu, T.-T. & Wang, D.-Q. (2006). Acta Cryst. E62, m2976-m2977.], 2007[Hu, X.-L., Xu, X.-Y., Wang, D.-Q., Liu, H.-F. & Ying, F.-J. (2007). Acta Cryst. E63, m405-m406.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C15H11N2O2)2(C2H8N2)2]

  • Mr = 681.65

  • Monoclinic, P 21 /c

  • a = 11.8035 (12) Å

  • b = 12.3439 (13) Å

  • c = 11.0768 (10) Å

  • β = 92.277 (1)°

  • V = 1612.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 298 K

  • 0.52 × 0.42 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.751, Tmax = 0.854

  • 7877 measured reflections

  • 2836 independent reflections

  • 2201 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.08

  • 2836 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N2 2.180 (2)
Co1—N3 2.123 (2)
Co1—N4 2.171 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.00 2.861 (3) 173
N3—H3A⋯O1ii 0.90 2.18 2.947 (3) 143
N3—H3B⋯O2 0.90 2.20 2.966 (3) 143
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

5,5-Diphenylimidazoline-2,4-dione (phenytoin) compound is a widely used drug in the treatment of epilepsy and should be an excellent ligand for transition metal complex (Akitsu et al., 1997; Akitsu & Einaga, 2005). We have synthesized a series of complexes with 5,5-diphenylhydantoinate ligand (Hu et al., 2006, 2007). We report here the crystal structure of the title compound.

The compound (Fig. 1) consists of [Co(pht)2(en)2] (Hpht = 5,5-diphenylhydantoin; en = ethylendiamine) complex neutral molecule. The Co atom is coordinated by two nitrogen atoms from two Hpht ligands and four nitrogen atoms from two en ligands in a distorted octahedral CoN6 coordination environment (Table 1). The Co—N bond distances lie in the range of 2.123 (2) Å to 2.180 (2) Å. There are intra- and intermolecular N—H···O hydrogen bonds (Table 2).

Related literature top

For applications of phenytoin, see: Akitsu & Einaga (2005); Akitsu et al. (1997). For related compounds, see: Hu et al. (2006, 2007).

Experimental top

To a solution of Hpht (1 mmol) in methanol (10 ml) was added cobalt acetate tetrahydrate (0.5 mmol) and the solution of ethylenediamine (1 mmol) in methanol (10 ml). Then the mixture was sealed in a 25 ml stainless steel vessel with Teflon linear, and heated at 393 K for 50 h. After cooling to room temperature, the orange single crystals were obtained.

Refinement top

H atoms were placed at calculated positions with N—H = 0.86–0.90 Å and C—H = 0.93–0.97 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C,N).

Structure description top

5,5-Diphenylimidazoline-2,4-dione (phenytoin) compound is a widely used drug in the treatment of epilepsy and should be an excellent ligand for transition metal complex (Akitsu et al., 1997; Akitsu & Einaga, 2005). We have synthesized a series of complexes with 5,5-diphenylhydantoinate ligand (Hu et al., 2006, 2007). We report here the crystal structure of the title compound.

The compound (Fig. 1) consists of [Co(pht)2(en)2] (Hpht = 5,5-diphenylhydantoin; en = ethylendiamine) complex neutral molecule. The Co atom is coordinated by two nitrogen atoms from two Hpht ligands and four nitrogen atoms from two en ligands in a distorted octahedral CoN6 coordination environment (Table 1). The Co—N bond distances lie in the range of 2.123 (2) Å to 2.180 (2) Å. There are intra- and intermolecular N—H···O hydrogen bonds (Table 2).

For applications of phenytoin, see: Akitsu & Einaga (2005); Akitsu et al. (1997). For related compounds, see: Hu et al. (2006, 2007).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. The H-atom have been omitted for clarity.
bis(2,5-dioxo-4,4-diphenylimidazolidin-1-ido- κN1)bis(ethylenediamine-κ2N,N')cobalt(II) top
Crystal data top
[Co(C15H11N2O2)2(C2H8N2)2]F(000) = 714
Mr = 681.65Dx = 1.404 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3389 reflections
a = 11.8035 (12) Åθ = 2.4–26.9°
b = 12.3439 (13) ŵ = 0.58 mm1
c = 11.0768 (10) ÅT = 298 K
β = 92.277 (1)°Block, orange
V = 1612.6 (3) Å30.52 × 0.42 × 0.28 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2836 independent reflections
Radiation source: fine-focus sealed tube2201 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1411
Tmin = 0.751, Tmax = 0.854k = 1414
7877 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.9459P]
where P = (Fo2 + 2Fc2)/3
2836 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Co(C15H11N2O2)2(C2H8N2)2]V = 1612.6 (3) Å3
Mr = 681.65Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.8035 (12) ŵ = 0.58 mm1
b = 12.3439 (13) ÅT = 298 K
c = 11.0768 (10) Å0.52 × 0.42 × 0.28 mm
β = 92.277 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2836 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2201 reflections with I > 2σ(I)
Tmin = 0.751, Tmax = 0.854Rint = 0.053
7877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.08Δρmax = 0.45 e Å3
2836 reflectionsΔρmin = 0.63 e Å3
214 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.00000.02790 (18)
N10.69362 (19)0.2364 (2)0.21879 (19)0.0366 (6)
H10.70280.27320.28430.044*
N20.61498 (18)0.11950 (18)0.08239 (18)0.0300 (5)
N30.63769 (19)0.0802 (2)0.0794 (2)0.0412 (6)
H3A0.61630.10460.15340.049*
H3B0.69590.03390.08690.049*
N40.5465 (2)0.1072 (2)0.1492 (2)0.0437 (6)
H4A0.54990.07020.21930.052*
H4B0.49510.16060.15490.052*
O10.53186 (17)0.14774 (19)0.26695 (18)0.0513 (6)
O20.74262 (16)0.13811 (15)0.06839 (15)0.0335 (5)
C10.6080 (2)0.1661 (2)0.1968 (2)0.0336 (6)
C20.7082 (2)0.1602 (2)0.0329 (2)0.0277 (6)
C30.7685 (2)0.2423 (2)0.1181 (2)0.0304 (6)
C40.7646 (2)0.3540 (2)0.0582 (2)0.0353 (7)
C50.6736 (3)0.4219 (3)0.0689 (4)0.0608 (10)
H50.61480.40130.11740.073*
C60.6674 (4)0.5196 (3)0.0096 (5)0.0799 (13)
H60.60460.56420.01770.096*
C70.7544 (4)0.5513 (3)0.0617 (3)0.0715 (12)
H70.75040.61740.10190.086*
C80.8464 (4)0.4856 (3)0.0734 (3)0.0688 (12)
H80.90510.50670.12170.083*
C90.8516 (3)0.3875 (3)0.0129 (3)0.0538 (9)
H90.91480.34340.02030.065*
C100.8891 (2)0.2084 (2)0.1586 (2)0.0329 (6)
C110.9473 (3)0.2721 (3)0.2414 (3)0.0527 (9)
H110.91470.33620.26740.063*
C121.0538 (3)0.2423 (4)0.2868 (3)0.0681 (11)
H121.09210.28640.34300.082*
C131.1027 (3)0.1489 (4)0.2494 (3)0.0681 (12)
H131.17350.12820.28120.082*
C141.0475 (3)0.0858 (3)0.1654 (3)0.0618 (10)
H141.08170.02310.13800.074*
C150.9402 (3)0.1147 (3)0.1204 (3)0.0473 (8)
H150.90250.07050.06400.057*
C160.6722 (4)0.1698 (4)0.0025 (4)0.0868 (14)
H16A0.62940.23350.02770.104*
H16B0.75170.18490.01430.104*
C170.6569 (4)0.1520 (4)0.1242 (4)0.0873 (15)
H17A0.71530.10280.15510.105*
H17B0.66650.22020.16680.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0217 (3)0.0286 (3)0.0338 (3)0.0002 (2)0.00614 (19)0.0021 (2)
N10.0347 (13)0.0453 (15)0.0303 (12)0.0069 (11)0.0082 (10)0.0116 (11)
N20.0266 (12)0.0330 (13)0.0308 (11)0.0021 (10)0.0062 (9)0.0046 (10)
N30.0299 (13)0.0402 (14)0.0542 (14)0.0011 (11)0.0085 (11)0.0106 (12)
N40.0394 (14)0.0436 (16)0.0480 (14)0.0049 (12)0.0015 (11)0.0072 (12)
O10.0414 (12)0.0723 (17)0.0415 (11)0.0166 (11)0.0190 (10)0.0120 (11)
O20.0405 (11)0.0343 (11)0.0261 (9)0.0047 (9)0.0082 (8)0.0015 (8)
C10.0287 (14)0.0389 (17)0.0334 (14)0.0016 (13)0.0036 (11)0.0003 (12)
C20.0295 (14)0.0256 (14)0.0281 (13)0.0009 (11)0.0035 (11)0.0019 (11)
C30.0297 (14)0.0312 (15)0.0306 (13)0.0040 (12)0.0066 (11)0.0051 (11)
C40.0392 (16)0.0277 (15)0.0390 (15)0.0049 (13)0.0019 (12)0.0058 (12)
C50.048 (2)0.047 (2)0.088 (3)0.0023 (17)0.0093 (19)0.009 (2)
C60.075 (3)0.048 (3)0.116 (4)0.015 (2)0.003 (3)0.014 (2)
C70.114 (4)0.034 (2)0.066 (2)0.003 (2)0.001 (2)0.0057 (19)
C80.109 (4)0.042 (2)0.057 (2)0.009 (2)0.029 (2)0.0037 (17)
C90.069 (2)0.0373 (19)0.0565 (19)0.0007 (17)0.0248 (17)0.0010 (16)
C100.0281 (14)0.0396 (17)0.0314 (14)0.0046 (13)0.0058 (11)0.0019 (12)
C110.0349 (17)0.066 (2)0.0576 (19)0.0035 (17)0.0022 (14)0.0179 (17)
C120.0347 (19)0.107 (3)0.062 (2)0.011 (2)0.0046 (16)0.019 (2)
C130.0327 (18)0.110 (4)0.062 (2)0.006 (2)0.0013 (17)0.013 (2)
C140.047 (2)0.063 (2)0.075 (2)0.0152 (19)0.0041 (18)0.007 (2)
C150.0419 (18)0.047 (2)0.0531 (18)0.0017 (16)0.0014 (14)0.0023 (16)
C160.079 (3)0.077 (3)0.106 (4)0.046 (3)0.026 (3)0.009 (3)
C170.072 (3)0.094 (4)0.097 (3)0.043 (3)0.011 (2)0.037 (3)
Geometric parameters (Å, º) top
Co1—N2i2.180 (2)C5—H50.9300
Co1—N22.180 (2)C6—C71.377 (6)
Co1—N32.123 (2)C6—H60.9300
Co1—N3i2.123 (2)C7—C81.365 (6)
Co1—N4i2.171 (2)C7—H70.9300
Co1—N42.171 (2)C8—C91.384 (5)
N1—C11.347 (3)C8—H80.9300
N1—C31.452 (3)C9—H90.9300
N1—H10.8600C10—C111.372 (4)
N2—C21.346 (3)C10—C151.378 (4)
N2—C11.397 (3)C11—C121.386 (5)
N3—C161.444 (5)C11—H110.9300
N3—H3A0.9000C12—C131.362 (6)
N3—H3B0.9000C12—H120.9300
N4—C171.452 (5)C13—C141.359 (5)
N4—H4A0.9000C13—H130.9300
N4—H4B0.9000C14—C151.389 (5)
O1—C11.232 (3)C14—H140.9300
O2—C21.239 (3)C15—H150.9300
C2—C31.540 (4)C16—C171.439 (6)
C3—C41.530 (4)C16—H16A0.9700
C3—C101.533 (4)C16—H16B0.9700
C4—C51.371 (4)C17—H17A0.9700
C4—C91.383 (4)C17—H17B0.9700
C5—C61.374 (5)
N3—Co1—N3i180.00 (17)C9—C4—C3120.4 (3)
N3—Co1—N4i98.26 (10)C4—C5—C6121.5 (4)
N3i—Co1—N4i81.74 (10)C4—C5—H5119.2
N3—Co1—N481.74 (10)C6—C5—H5119.2
N3i—Co1—N498.26 (10)C5—C6—C7119.8 (4)
N4i—Co1—N4180.00 (13)C5—C6—H6120.1
N3—Co1—N2i89.15 (9)C7—C6—H6120.1
N3i—Co1—N2i90.85 (9)C8—C7—C6120.0 (4)
N4i—Co1—N2i87.67 (9)C8—C7—H7120.0
N4—Co1—N2i92.33 (9)C6—C7—H7120.0
N3—Co1—N290.85 (9)C7—C8—C9119.6 (4)
N3i—Co1—N289.15 (9)C7—C8—H8120.2
N4i—Co1—N292.33 (9)C9—C8—H8120.2
N4—Co1—N287.67 (9)C4—C9—C8121.2 (4)
N2i—Co1—N2180.00 (13)C4—C9—H9119.4
C1—N1—C3111.7 (2)C8—C9—H9119.4
C1—N1—H1124.2C11—C10—C15118.2 (3)
C3—N1—H1124.2C11—C10—C3118.2 (3)
C2—N2—C1107.1 (2)C15—C10—C3123.5 (3)
C2—N2—Co1125.97 (16)C10—C11—C12120.9 (4)
C1—N2—Co1126.87 (17)C10—C11—H11119.5
C16—N3—Co1108.4 (2)C12—C11—H11119.5
C16—N3—H3A110.0C13—C12—C11120.2 (4)
Co1—N3—H3A110.0C13—C12—H12119.9
C16—N3—H3B110.0C11—C12—H12119.9
Co1—N3—H3B110.0C14—C13—C12119.8 (3)
H3A—N3—H3B108.4C14—C13—H13120.1
C17—N4—Co1106.7 (2)C12—C13—H13120.1
C17—N4—H4A110.4C13—C14—C15120.2 (4)
Co1—N4—H4A110.4C13—C14—H14119.9
C17—N4—H4B110.4C15—C14—H14119.9
Co1—N4—H4B110.4C10—C15—C14120.6 (3)
H4A—N4—H4B108.6C10—C15—H15119.7
O1—C1—N1124.4 (3)C14—C15—H15119.7
O1—C1—N2124.6 (3)C17—C16—N3114.5 (3)
N1—C1—N2111.0 (2)C17—C16—H16A108.6
O2—C2—N2126.1 (2)N3—C16—H16A108.6
O2—C2—C3122.7 (2)C17—C16—H16B108.6
N2—C2—C3111.2 (2)N3—C16—H16B108.6
N1—C3—C4111.7 (2)H16A—C16—H16B107.6
N1—C3—C10110.4 (2)C16—C17—N4113.1 (3)
C4—C3—C10112.6 (2)C16—C17—H17A109.0
N1—C3—C299.0 (2)N4—C17—H17A109.0
C4—C3—C2108.7 (2)C16—C17—H17B109.0
C10—C3—C2113.6 (2)N4—C17—H17B109.0
C5—C4—C9117.9 (3)H17A—C17—H17B107.8
C5—C4—C3121.6 (3)
N3—Co1—N2—C236.0 (2)O2—C2—C3—C463.0 (3)
N3i—Co1—N2—C2144.0 (2)N2—C2—C3—C4115.9 (2)
N4i—Co1—N2—C262.3 (2)O2—C2—C3—C1063.3 (3)
N4—Co1—N2—C2117.7 (2)N2—C2—C3—C10117.7 (2)
N2i—Co1—N2—C2164 (100)N1—C3—C4—C522.4 (4)
N3—Co1—N2—C1142.2 (2)C10—C3—C4—C5147.3 (3)
N3i—Co1—N2—C137.8 (2)C2—C3—C4—C585.8 (3)
N4i—Co1—N2—C1119.5 (2)N1—C3—C4—C9160.3 (3)
N4—Co1—N2—C160.5 (2)C10—C3—C4—C935.4 (4)
N2i—Co1—N2—C118 (100)C2—C3—C4—C991.5 (3)
N3i—Co1—N3—C1663 (100)C9—C4—C5—C61.0 (5)
N4i—Co1—N3—C16170.8 (3)C3—C4—C5—C6176.4 (3)
N4—Co1—N3—C169.2 (3)C4—C5—C6—C70.5 (7)
N2i—Co1—N3—C1683.3 (3)C5—C6—C7—C80.0 (7)
N2—Co1—N3—C1696.7 (3)C6—C7—C8—C90.2 (6)
N3—Co1—N4—C1713.2 (3)C5—C4—C9—C81.2 (5)
N3i—Co1—N4—C17166.8 (3)C3—C4—C9—C8176.2 (3)
N4i—Co1—N4—C17140 (100)C7—C8—C9—C40.8 (6)
N2i—Co1—N4—C17102.0 (3)N1—C3—C10—C1165.3 (3)
N2—Co1—N4—C1778.0 (3)C4—C3—C10—C1160.3 (3)
C3—N1—C1—O1178.6 (3)C2—C3—C10—C11175.5 (3)
C3—N1—C1—N20.7 (3)N1—C3—C10—C15111.6 (3)
C2—N2—C1—O1179.1 (3)C4—C3—C10—C15122.8 (3)
Co1—N2—C1—O12.4 (4)C2—C3—C10—C151.5 (4)
C2—N2—C1—N11.1 (3)C15—C10—C11—C121.0 (5)
Co1—N2—C1—N1179.62 (18)C3—C10—C11—C12176.2 (3)
C1—N2—C2—O2180.0 (3)C10—C11—C12—C130.2 (6)
Co1—N2—C2—O21.5 (4)C11—C12—C13—C141.3 (6)
C1—N2—C2—C31.1 (3)C12—C13—C14—C151.9 (6)
Co1—N2—C2—C3179.66 (16)C11—C10—C15—C140.3 (5)
C1—N1—C3—C4114.4 (3)C3—C10—C15—C14176.6 (3)
C1—N1—C3—C10119.5 (3)C13—C14—C15—C101.1 (5)
C1—N1—C3—C20.0 (3)Co1—N3—C16—C1731.8 (5)
O2—C2—C3—N1179.7 (2)N3—C16—C17—N446.5 (6)
N2—C2—C3—N10.7 (3)Co1—N4—C17—C1634.6 (5)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.862.002.861 (3)173
N3—H3A···O1i0.902.182.947 (3)143
N3—H3B···O20.902.202.966 (3)143
Symmetry codes: (i) x+1, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C15H11N2O2)2(C2H8N2)2]
Mr681.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.8035 (12), 12.3439 (13), 11.0768 (10)
β (°) 92.277 (1)
V3)1612.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.52 × 0.42 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.751, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
7877, 2836, 2201
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.08
No. of reflections2836
No. of parameters214
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.63

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N22.180 (2)Co1—N42.171 (2)
Co1—N32.123 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.002.861 (3)173.4
N3—H3A···O1ii0.902.182.947 (3)142.8
N3—H3B···O20.902.202.966 (3)142.5
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

We are grateful for financial support from the Key Project for Fundamental Research of the Education Committee of Jiangsu Province (07KJA15011) and the Natural Science Foundation of Huaihai Institute of Technology, China (KX07042).

References

First citationAkitsu, T. & Einaga, Y. (2005). Acta Cryst. C61, m183–m186.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAkitsu, T., Komorita, S., Kushi, Y., Li, C., Kanehisa, N. & Kai, Y. (1997). Bull. Chem. Soc. Jpn, 70, 821–827.  CrossRef CAS Web of Science Google Scholar
First citationHu, X.-L., Xu, X.-Y., Wang, D.-Q., Liu, H.-F. & Ying, F.-J. (2007). Acta Cryst. E63, m405–m406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, X.-L., Xu, X.-Y., Liu, H.-F., Xu, T.-T. & Wang, D.-Q. (2006). Acta Cryst. E62, m2976–m2977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds