organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­methyl 5-(2-chloro-4-fluoro­phen­yl)-2-phenyl­pyrrolidine-2,3,4-tri­carboxyl­ate

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: helongcwnu@yahoo.com.cn

(Received 24 October 2009; accepted 24 October 2009; online 31 October 2009)

The title compound, C22H21ClFNO6, was synthesized by the 1,3-dipolar cyclo­addition reaction of dimethyl maleate, methyl 2-amino-2-phenyl­acetate and 2-chloro-4-fluoro­benzaldehyde. The pyrrolidine ring possesses an envelope conformation and the two benzene rings are oriented at a dihedral angle of 68.28 (7)°. Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure. One methyl group is disordered over two positions with a site-occupancy ratio of 0.651 (12):0.349 (12).

Related literature

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005[Coldham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765-2810.]); Nair & Suja (2007[Nair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247-12275.]); Pandey et al. (2006[Pandey, G., Banerjee, P. & Gadre, S. R. (2006). Chem. Rev. 106, 4484-4517.]); Sardina & Rapoport (1996[Sardina, F. J. & Rapoport, H. (1996). Chem. Rev. 96, 1825-1872.]); Witherup et al. (1995[Witherup, K. M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682-6685.]). For a related structure, see: Yu et al. (2007[Yu, Z.-F., Li, J., Sun, J.-W. & Yu, L. (2007). Acta Cryst. E63, o17-o18.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21ClFNO6

  • Mr = 449.85

  • Orthorhombic, P 21 21 21

  • a = 9.474 (3) Å

  • b = 15.057 (8) Å

  • c = 15.182 (5) Å

  • V = 2165.7 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.98 mm−1

  • T = 298 K

  • 0.38 × 0.36 × 0.03 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.520, Tmax = 0.943

  • 32943 measured reflections

  • 3442 independent reflections

  • 3332 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.060

  • S = 1.05

  • 3442 reflections

  • 290 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1456 Friedel pairs

  • Flack parameter: −0.001 (11)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O5i 0.93 2.56 3.380 (3) 147
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted pyrrolidine compound is an important class of heterocyclic compounds with wide spread applications to the synthesis of biologically active compounds and natural products (Coldham et al., 2005; Nair et al., 2007; Pandey et al., 2006; Sardina et al., 1996; Witherup et al. 1995).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The pyrrolidine ring possesses an envelope conformation. The dihedral angle between the C1—C6 and C11—C16 benzene planes is 68.28 (7)°.

Related literature top

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005); Nair & Suja (2007); Pandey et al. (2006); Sardina & Rapoport (1996); Witherup et al. (1995). For a related structure, see: Yu et al. (2007).

Experimental top

2-Chloro-4-fluorobenzaldehyde (0.063 g, 0.4 mmol), anhydrous sodium sulfate (200 mg) and dimethyl maleate (0.029 g, 0.2 mmol) were added to a solution of methyl 2-amino-2-phenylacetate(0.049 g, 0.3 mmol) in chloroform (2 ml). To the stirred mixture, acetic acid (0.012 g, 0.2 mmol) was added. After the mixture had been stirred at 323k for 10 h, the reaction was quenched with a saturated solution of sodium bicarbonate (5 ml). The mixture was extracted with diethyl ether, evaporated and separated by flash chromatograghy. A colourless powder was obtained. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

Imino H atom was located in a difference Fourier map and positional parameters were refined, Uiso(H) = 1.2Ueq(N). The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding model, with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. One of methyl groups is disordered over two positions, site occupancy factors were refined to 0.651 (12):0.349 (12).

Structure description top

Substituted pyrrolidine compound is an important class of heterocyclic compounds with wide spread applications to the synthesis of biologically active compounds and natural products (Coldham et al., 2005; Nair et al., 2007; Pandey et al., 2006; Sardina et al., 1996; Witherup et al. 1995).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The pyrrolidine ring possesses an envelope conformation. The dihedral angle between the C1—C6 and C11—C16 benzene planes is 68.28 (7)°.

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005); Nair & Suja (2007); Pandey et al. (2006); Sardina & Rapoport (1996); Witherup et al. (1995). For a related structure, see: Yu et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
Trimethyl 5-(2-chloro-4-fluorophenyl)-2-phenylpyrrolidine-2,3,4-tricarboxylate top
Crystal data top
C22H21ClFNO6F(000) = 936
Mr = 449.85Dx = 1.380 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 23516 reflections
a = 9.474 (3) Åθ = 2.9–62.8°
b = 15.057 (8) ŵ = 1.98 mm1
c = 15.182 (5) ÅT = 298 K
V = 2165.7 (15) Å3Platelet, colourless
Z = 40.38 × 0.36 × 0.03 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
3442 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source3332 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 15.9149 pixels mm-1θmax = 62.6°, θmin = 4.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1717
Tmin = 0.520, Tmax = 0.943l = 1717
32943 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0318P)2 + 0.3155P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.060(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.12 e Å3
3442 reflectionsΔρmin = 0.16 e Å3
290 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0055 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1456 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.001 (11)
Crystal data top
C22H21ClFNO6V = 2165.7 (15) Å3
Mr = 449.85Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.474 (3) ŵ = 1.98 mm1
b = 15.057 (8) ÅT = 298 K
c = 15.182 (5) Å0.38 × 0.36 × 0.03 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
3442 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3332 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.943Rint = 0.025
32943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060Δρmax = 0.12 e Å3
S = 1.05Δρmin = 0.16 e Å3
3442 reflectionsAbsolute structure: Flack (1983), 1456 Friedel pairs
290 parametersAbsolute structure parameter: 0.001 (11)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.87819 (6)0.40571 (3)0.69190 (3)0.06039 (14)
F11.10815 (14)0.42498 (8)0.39470 (7)0.0789 (4)
O10.64936 (15)0.70388 (7)0.55124 (8)0.0578 (3)
O20.59938 (18)0.55992 (8)0.53671 (8)0.0715 (4)
O30.50206 (14)0.80786 (9)0.73253 (11)0.0735 (4)
O40.41937 (11)0.67622 (8)0.68953 (9)0.0568 (3)
O50.79799 (13)0.86655 (7)0.67762 (8)0.0553 (3)
O60.74501 (13)0.87248 (7)0.82137 (7)0.0509 (3)
N10.89048 (14)0.69866 (8)0.69034 (9)0.0390 (3)
H10.870 (2)0.7278 (11)0.6438 (12)0.047*
C11.0498 (2)0.46980 (13)0.46390 (11)0.0546 (4)
C21.00115 (19)0.42137 (12)0.53368 (11)0.0500 (4)
H21.00940.35980.53500.060*
C30.93922 (17)0.46752 (10)0.60228 (10)0.0417 (4)
C40.92532 (15)0.55915 (10)0.60251 (10)0.0386 (3)
C50.98023 (19)0.60471 (12)0.53049 (11)0.0509 (4)
H50.97450.66640.52930.061*
C61.0431 (2)0.56086 (13)0.46054 (12)0.0588 (5)
H61.07960.59210.41280.071*
C70.85178 (16)0.60535 (9)0.67778 (9)0.0379 (3)
H70.87830.57380.73180.045*
C80.68738 (15)0.60534 (10)0.67347 (10)0.0393 (3)
H80.64910.54730.69020.047*
C90.65018 (15)0.67691 (10)0.74326 (10)0.0390 (3)
H90.62960.64500.79800.047*
C100.79423 (16)0.72962 (10)0.75935 (10)0.0372 (3)
C110.85468 (17)0.70603 (9)0.85036 (10)0.0386 (3)
C120.99477 (17)0.68067 (11)0.86012 (11)0.0468 (4)
H121.05370.67880.81110.056*
C131.0475 (2)0.65805 (12)0.94231 (13)0.0589 (5)
H131.14100.64010.94770.071*
C140.9633 (2)0.66181 (12)1.01602 (12)0.0604 (5)
H140.99920.64641.07100.073*
C150.8256 (2)0.68856 (12)1.00731 (12)0.0565 (5)
H150.76850.69281.05690.068*
C160.77124 (19)0.70915 (11)0.92558 (11)0.0478 (4)
H160.67690.72540.92070.057*
C170.77865 (16)0.83067 (10)0.74725 (11)0.0409 (3)
C180.7123 (2)0.96590 (11)0.81177 (15)0.0666 (5)
H18A0.70120.99220.86900.100*
H18B0.62630.97240.77900.100*
H18C0.78780.99500.78100.100*
C190.51912 (18)0.73007 (12)0.72121 (11)0.0462 (4)
C200.2893 (2)0.71857 (16)0.66086 (19)0.0810 (7)
H20A0.22290.67390.64290.121*
H20B0.30880.75730.61210.121*
H20C0.25020.75240.70860.121*
C210.64215 (18)0.63050 (10)0.58152 (10)0.0442 (4)
C22A0.5863 (10)0.5705 (4)0.4390 (3)0.0813 (19)0.651 (12)
H22A0.67150.55050.41120.122*0.651 (12)
H22B0.57080.63190.42510.122*0.651 (12)
H22C0.50810.53580.41810.122*0.651 (12)
C22B0.5167 (16)0.5848 (8)0.4569 (7)0.0813 (19)0.349 (12)
H22D0.42600.60700.47440.122*0.349 (12)
H22E0.50460.53350.42010.122*0.349 (12)
H22F0.56640.63000.42480.122*0.349 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0909 (3)0.0400 (2)0.0503 (2)0.0019 (2)0.0084 (2)0.00626 (17)
F10.0926 (9)0.0837 (8)0.0604 (6)0.0170 (7)0.0228 (6)0.0173 (6)
O10.0762 (9)0.0468 (7)0.0505 (7)0.0035 (6)0.0099 (6)0.0073 (5)
O20.1081 (12)0.0502 (7)0.0562 (7)0.0174 (7)0.0325 (7)0.0010 (6)
O30.0495 (7)0.0544 (8)0.1167 (13)0.0096 (6)0.0117 (7)0.0141 (8)
O40.0371 (6)0.0568 (7)0.0766 (8)0.0006 (5)0.0088 (6)0.0026 (7)
O50.0692 (8)0.0449 (6)0.0519 (7)0.0018 (5)0.0049 (6)0.0112 (5)
O60.0651 (8)0.0368 (5)0.0507 (6)0.0065 (5)0.0016 (6)0.0044 (5)
N10.0423 (7)0.0352 (6)0.0393 (6)0.0019 (5)0.0035 (6)0.0011 (5)
C10.0541 (10)0.0627 (11)0.0468 (10)0.0104 (9)0.0073 (8)0.0100 (8)
C20.0556 (10)0.0442 (9)0.0502 (9)0.0081 (8)0.0030 (8)0.0062 (7)
C30.0452 (9)0.0401 (8)0.0399 (8)0.0012 (7)0.0021 (7)0.0014 (6)
C40.0372 (8)0.0399 (8)0.0387 (8)0.0003 (6)0.0026 (6)0.0005 (6)
C50.0582 (10)0.0446 (9)0.0499 (9)0.0028 (8)0.0104 (8)0.0041 (7)
C60.0666 (12)0.0620 (12)0.0478 (10)0.0016 (10)0.0155 (9)0.0046 (8)
C70.0412 (8)0.0349 (7)0.0376 (7)0.0011 (6)0.0000 (6)0.0004 (6)
C80.0409 (8)0.0351 (7)0.0419 (8)0.0020 (6)0.0008 (6)0.0021 (6)
C90.0374 (8)0.0407 (8)0.0389 (8)0.0026 (7)0.0007 (7)0.0022 (6)
C100.0365 (8)0.0372 (8)0.0380 (8)0.0002 (6)0.0017 (6)0.0001 (6)
C110.0420 (8)0.0329 (7)0.0410 (8)0.0010 (6)0.0030 (7)0.0002 (6)
C120.0405 (9)0.0459 (9)0.0541 (10)0.0006 (7)0.0036 (7)0.0052 (7)
C130.0521 (11)0.0548 (10)0.0697 (12)0.0039 (9)0.0210 (10)0.0005 (9)
C140.0737 (14)0.0547 (11)0.0529 (11)0.0088 (10)0.0200 (10)0.0087 (9)
C150.0655 (12)0.0618 (10)0.0421 (9)0.0092 (9)0.0007 (8)0.0058 (8)
C160.0450 (9)0.0541 (9)0.0443 (9)0.0005 (7)0.0005 (7)0.0030 (7)
C170.0386 (8)0.0377 (8)0.0465 (9)0.0006 (6)0.0021 (7)0.0002 (7)
C180.0837 (13)0.0395 (9)0.0766 (13)0.0132 (9)0.0060 (12)0.0070 (9)
C190.0404 (9)0.0466 (10)0.0517 (9)0.0001 (7)0.0018 (7)0.0010 (7)
C200.0436 (11)0.0816 (15)0.1177 (19)0.0075 (10)0.0185 (12)0.0039 (14)
C210.0432 (9)0.0443 (9)0.0450 (8)0.0014 (7)0.0051 (7)0.0002 (7)
C22A0.126 (6)0.070 (2)0.0474 (18)0.010 (3)0.027 (2)0.0089 (17)
C22B0.126 (6)0.070 (2)0.0474 (18)0.010 (3)0.027 (2)0.0089 (17)
Geometric parameters (Å, º) top
Cl1—C31.7469 (16)C8—H80.9800
F1—C11.366 (2)C9—C191.515 (2)
O1—C211.1987 (19)C9—C101.597 (2)
O2—C211.325 (2)C9—H90.9800
O2—C22B1.490 (7)C10—C111.537 (2)
O2—C22A1.497 (4)C10—C171.540 (2)
O3—C191.195 (2)C11—C121.389 (2)
O4—C191.335 (2)C11—C161.390 (2)
O4—C201.454 (2)C12—C131.387 (3)
O5—C171.201 (2)C12—H120.9300
O6—C171.3283 (19)C13—C141.375 (3)
O6—C181.448 (2)C13—H130.9300
N1—C71.4645 (18)C14—C151.371 (3)
N1—C101.465 (2)C14—H140.9300
N1—H10.855 (18)C15—C161.379 (2)
C1—C21.366 (3)C15—H150.9300
C1—C61.373 (3)C16—H160.9300
C2—C31.383 (2)C18—H18A0.9600
C2—H20.9300C18—H18B0.9600
C3—C41.386 (2)C18—H18C0.9600
C4—C51.392 (2)C20—H20A0.9600
C4—C71.508 (2)C20—H20B0.9600
C5—C61.385 (2)C20—H20C0.9600
C5—H50.9300C22A—H22A0.9600
C6—H60.9300C22A—H22B0.9600
C7—C81.559 (2)C22A—H22C0.9600
C7—H70.9800C22B—H22D0.9600
C8—C211.509 (2)C22B—H22E0.9600
C8—C91.552 (2)C22B—H22F0.9600
C21—O2—C22B112.1 (5)C12—C11—C10121.02 (14)
C21—O2—C22A116.7 (3)C16—C11—C10121.26 (14)
C22B—O2—C22A28.9 (4)C13—C12—C11120.50 (17)
C19—O4—C20116.19 (15)C13—C12—H12119.7
C17—O6—C18115.25 (14)C11—C12—H12119.7
C7—N1—C10104.04 (11)C14—C13—C12120.89 (17)
C7—N1—H1109.1 (12)C14—C13—H13119.6
C10—N1—H1106.6 (12)C12—C13—H13119.6
F1—C1—C2117.99 (17)C15—C14—C13119.02 (17)
F1—C1—C6118.91 (17)C15—C14—H14120.5
C2—C1—C6123.10 (16)C13—C14—H14120.5
C1—C2—C3117.32 (16)C14—C15—C16120.55 (18)
C1—C2—H2121.3C14—C15—H15119.7
C3—C2—H2121.3C16—C15—H15119.7
C2—C3—C4122.85 (15)C15—C16—C11121.28 (17)
C2—C3—Cl1117.35 (12)C15—C16—H16119.4
C4—C3—Cl1119.79 (12)C11—C16—H16119.4
C3—C4—C5116.95 (14)O5—C17—O6124.68 (14)
C3—C4—C7120.33 (13)O5—C17—C10122.33 (14)
C5—C4—C7122.72 (14)O6—C17—C10112.97 (13)
C6—C5—C4121.88 (16)O6—C18—H18A109.5
C6—C5—H5119.1O6—C18—H18B109.5
C4—C5—H5119.1H18A—C18—H18B109.5
C1—C6—C5117.86 (17)O6—C18—H18C109.5
C1—C6—H6121.1H18A—C18—H18C109.5
C5—C6—H6121.1H18B—C18—H18C109.5
N1—C7—C4115.18 (12)O3—C19—O4123.47 (16)
N1—C7—C8104.82 (12)O3—C19—C9126.67 (16)
C4—C7—C8115.45 (12)O4—C19—C9109.81 (14)
N1—C7—H7107.0O4—C20—H20A109.5
C4—C7—H7107.0O4—C20—H20B109.5
C8—C7—H7107.0H20A—C20—H20B109.5
C21—C8—C9113.13 (12)O4—C20—H20C109.5
C21—C8—C7108.82 (12)H20A—C20—H20C109.5
C9—C8—C7101.43 (11)H20B—C20—H20C109.5
C21—C8—H8111.0O1—C21—O2124.03 (15)
C9—C8—H8111.0O1—C21—C8124.77 (14)
C7—C8—H8111.0O2—C21—C8111.13 (13)
C19—C9—C8113.72 (13)O2—C22A—H22A109.5
C19—C9—C10118.14 (13)O2—C22A—H22B109.5
C8—C9—C10104.80 (12)H22A—C22A—H22B109.5
C19—C9—H9106.5O2—C22A—H22C109.5
C8—C9—H9106.5H22A—C22A—H22C109.5
C10—C9—H9106.5H22B—C22A—H22C109.5
N1—C10—C11109.71 (12)O2—C22B—H22D109.5
N1—C10—C17106.78 (12)O2—C22B—H22E109.5
C11—C10—C17111.80 (12)H22D—C22B—H22E109.5
N1—C10—C9105.33 (12)O2—C22B—H22F109.5
C11—C10—C9109.94 (12)H22D—C22B—H22F109.5
C17—C10—C9113.00 (12)H22E—C22B—H22F109.5
C12—C11—C16117.72 (15)
F1—C1—C2—C3178.45 (16)N1—C10—C11—C1214.85 (19)
C6—C1—C2—C31.8 (3)C17—C10—C11—C12103.41 (16)
C1—C2—C3—C40.0 (3)C9—C10—C11—C12130.23 (15)
C1—C2—C3—Cl1179.53 (14)N1—C10—C11—C16165.02 (14)
C2—C3—C4—C51.5 (2)C17—C10—C11—C1676.71 (18)
Cl1—C3—C4—C5177.95 (12)C9—C10—C11—C1649.64 (18)
C2—C3—C4—C7177.68 (14)C16—C11—C12—C131.0 (2)
Cl1—C3—C4—C72.8 (2)C10—C11—C12—C13178.87 (15)
C3—C4—C5—C61.5 (3)C11—C12—C13—C141.2 (3)
C7—C4—C5—C6177.73 (16)C12—C13—C14—C150.1 (3)
F1—C1—C6—C5178.39 (17)C13—C14—C15—C161.7 (3)
C2—C1—C6—C51.9 (3)C14—C15—C16—C111.9 (3)
C4—C5—C6—C10.2 (3)C12—C11—C16—C150.6 (2)
C10—N1—C7—C4173.79 (12)C10—C11—C16—C15179.57 (15)
C10—N1—C7—C845.80 (14)C18—O6—C17—O58.4 (2)
C3—C4—C7—N1156.57 (14)C18—O6—C17—C10172.84 (15)
C5—C4—C7—N124.3 (2)N1—C10—C17—O524.6 (2)
C3—C4—C7—C880.97 (18)C11—C10—C17—O5144.60 (15)
C5—C4—C7—C898.19 (18)C9—C10—C17—O590.74 (18)
N1—C7—C8—C2181.72 (14)N1—C10—C17—O6154.16 (13)
C4—C7—C8—C2146.10 (17)C11—C10—C17—O634.15 (18)
N1—C7—C8—C937.78 (14)C9—C10—C17—O690.51 (15)
C4—C7—C8—C9165.60 (12)C20—O4—C19—O35.6 (3)
C21—C8—C9—C1930.15 (18)C20—O4—C19—C9176.82 (16)
C7—C8—C9—C19146.52 (13)C8—C9—C19—O3140.85 (18)
C21—C8—C9—C10100.31 (14)C10—C9—C19—O317.4 (3)
C7—C8—C9—C1016.07 (14)C8—C9—C19—O441.67 (18)
C7—N1—C10—C1184.15 (14)C10—C9—C19—O4165.13 (13)
C7—N1—C10—C17154.52 (12)C22B—O2—C21—O119.4 (7)
C7—N1—C10—C934.13 (14)C22A—O2—C21—O112.0 (5)
C19—C9—C10—N1117.73 (14)C22B—O2—C21—C8163.6 (7)
C8—C9—C10—N110.09 (15)C22A—O2—C21—C8165.1 (5)
C19—C9—C10—C11124.14 (14)C9—C8—C21—O138.7 (2)
C8—C9—C10—C11108.04 (13)C7—C8—C21—O173.2 (2)
C19—C9—C10—C171.53 (19)C9—C8—C21—O2144.27 (15)
C8—C9—C10—C17126.29 (13)C7—C8—C21—O2103.82 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O5i0.932.563.380 (3)147
Symmetry code: (i) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC22H21ClFNO6
Mr449.85
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)9.474 (3), 15.057 (8), 15.182 (5)
V3)2165.7 (15)
Z4
Radiation typeCu Kα
µ (mm1)1.98
Crystal size (mm)0.38 × 0.36 × 0.03
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.520, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
32943, 3442, 3332
Rint0.025
(sin θ/λ)max1)0.576
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.05
No. of reflections3442
No. of parameters290
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.16
Absolute structureFlack (1983), 1456 Friedel pairs
Absolute structure parameter0.001 (11)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O5i0.932.563.380 (3)147.2
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

The diffraction measurements were made at Sichuan University. We acknowledge financial support from China West Normal University.

References

First citationColdham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765–2810.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247–12275.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPandey, G., Banerjee, P. & Gadre, S. R. (2006). Chem. Rev. 106, 4484–4517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSardina, F. J. & Rapoport, H. (1996). Chem. Rev. 96, 1825–1872.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitherup, K. M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682–6685.  CrossRef CAS Web of Science Google Scholar
First citationYu, Z.-F., Li, J., Sun, J.-W. & Yu, L. (2007). Acta Cryst. E63, o17–o18.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds