organic compounds
2,2,6,6-Tetramethylpiperidinium triisopropoxysilanethiolate
aDepartment of Inorganic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicz St., 80233 - PL Gdańsk, Poland
*Correspondence e-mail: kasiab29@wp.pl
The crystal of the title compound, C9H20N+·C9H21O3SSi−, is built of aggregates, each made up of two 2,2,6,6-tetramethylpiperidinium cations and two triisopropoxysilanethiolate anions. The aggregates are linked by four N—H⋯S bonds and correspond to an R24(8) graph-set motif.
Related literature
For the structures of similar compounds and comparison of bond distances, see Baranowska, Chojnacki, Gosiewska & Wojnowski (2006); Baranowska, Chojnacki, Konitz et al. (2006); Baranowska & Piwowarska (2008); Becker et al. (2004). For the graph-set description of hydrogen-bonding patterns, see Bernstein et al. (1995); Etter (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536809042962/ya2106sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809042962/ya2106Isup2.hkl
Tri-iso-propoxysilanethiol (2 mmol) was dissolved in 8 ml of propanol-2 and 2,2,6,6-tetramethylpiperidine (0,338 ml, 2 mmol) was added. The solvent was then added gradually until a white deposit formed was completely dissolved. The solution was left to stand at 4 °C for a few days for crystallization. The obtained colourless crystals were suitable for X-ray
The product is hygroscopic and slowly oxidizes in the air, therefore all operations were carried out using a vacuum-nitrogen line and Schlenk techniques.Hydrogen atoms were placed in geometrically calculated positions (C—H 0.98 Å for methyl, 0.99 Å for methylene and 1.00 Å for methine H atoms) and refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(C) for methylene and methine and 1.5Ueq(C) for methyl groups. Hydrogen atoms of ammonium group were found in the difference map and refined in isotropic approximation constrained to produce N—H bonds equal within 0.04 Å (SADI instruction of SHELXL97; Sheldrick, 2008)
Hydrogen bonding is arguably the most prominent interaction in selfassembly of molecules in crystals and plays an important role in determining structure of chemical and biological systems. Hydrogen bonds of the (+)N···H–S(–)type have gained relatively little attention, as these bonds are mostly weak and quite seldom lead to the proton transfer. One notable exception are silanethiolates, where ionization of the SH group is facilitated by the neighbouring silicon atom. The salts of these anions with primary
as counter-ions often feature tetrameric aggregates with a cubane-like hydrogen bonded core (Becker et al., 2004). Secondary give derivatives with discrete dimeric units in the solid state (Baranowska, Chojnacki, Konitz et al. 2006).We present here the
of the title compound, which was obtained by the reaction of tri-iso-propoxysilanethiol with 2,2,6,6-tetramethylpiperidine.The
is built of aggregates, made up of two tri-iso-propoxysilanethiolate anions and two piperidinium cations (Fig. 1). The aggregates contain eight-membered ring built due to the formation of four charge-assisted (+)N–H···S(–)hydrogen bonds (graph theory motif R24(8) according to Etter, 1990; Bernstein et al., 1995). The N···S distances (Table 1) lie in the range comparable with the values observed in aromatic (Baranowska & Piwowarska, 2008) or silanethiolates (Baranowska, Chojnacki, Gosiewska, Wojnowski, 2006).For the structures of similar compounds and comparison of bond distances, see Baranowska, Chojnacki, Gosiewska & Wojnowski (2006); Baranowska, Chojnacki, Konitz et al. (2006); Baranowska & Piwowarska (2008); Becker et al. (2004). For the graph-set description of hydrogen-bonding patterns, see Bernstein et al. (1995); Etter (1990).
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).C9H20N+·C9H21O3SSi− | Z = 2 |
Mr = 379.67 | F(000) = 420 |
Triclinic, P1 | Dx = 1.114 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.2433 (6) Å | Cell parameters from 5191 reflections |
b = 11.5545 (8) Å | θ = 2.4–28.8° |
c = 11.7593 (7) Å | µ = 0.21 mm−1 |
α = 85.955 (5)° | T = 120 K |
β = 77.190 (6)° | Prism, colourless |
γ = 67.620 (6)° | 0.42 × 0.39 × 0.33 mm |
V = 1132.28 (13) Å3 |
Oxford Diffraction KM4/Xcalibur diffractometer with Sapphire2 detector | 4209 independent reflections |
Graphite monochromator | 3561 reflections with I > 2σ(I) |
Detector resolution: 8.1883 pixels mm-1 | Rint = 0.015 |
ω scans | θmax = 25.5°, θmin = 2.4° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) | h = −10→11 |
Tmin = 0.908, Tmax = 0.934 | k = −13→13 |
6937 measured reflections | l = −7→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0855P)2] where P = (Fo2 + 2Fc2)/3 |
4209 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.45 e Å−3 |
1 restraint | Δρmin = −0.43 e Å−3 |
C9H20N+·C9H21O3SSi− | γ = 67.620 (6)° |
Mr = 379.67 | V = 1132.28 (13) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.2433 (6) Å | Mo Kα radiation |
b = 11.5545 (8) Å | µ = 0.21 mm−1 |
c = 11.7593 (7) Å | T = 120 K |
α = 85.955 (5)° | 0.42 × 0.39 × 0.33 mm |
β = 77.190 (6)° |
Oxford Diffraction KM4/Xcalibur diffractometer with Sapphire2 detector | 4209 independent reflections |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) | 3561 reflections with I > 2σ(I) |
Tmin = 0.908, Tmax = 0.934 | Rint = 0.015 |
6937 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 1 restraint |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.45 e Å−3 |
4209 reflections | Δρmin = −0.43 e Å−3 |
235 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7770 (2) | 0.42248 (16) | −0.00766 (13) | 0.0205 (4) | |
H1 | 0.7182 | 0.3662 | −0.0104 | 0.025* | |
C2 | 0.6713 (2) | 0.55565 (17) | −0.02787 (15) | 0.0272 (4) | |
H2A | 0.5712 | 0.5799 | 0.031 | 0.041* | |
H2B | 0.6476 | 0.5616 | −0.1058 | 0.041* | |
H2C | 0.7266 | 0.6117 | −0.022 | 0.041* | |
C3 | 0.9338 (2) | 0.37720 (18) | −0.09727 (15) | 0.0302 (4) | |
H3A | 0.9935 | 0.4305 | −0.0932 | 0.045* | |
H3B | 0.9115 | 0.3814 | −0.1755 | 0.045* | |
H3C | 0.9975 | 0.2905 | −0.0809 | 0.045* | |
C4 | 1.0748 (2) | 0.28839 (16) | 0.23790 (15) | 0.0236 (4) | |
H4 | 1.0715 | 0.3583 | 0.182 | 0.028* | |
C5 | 1.1457 (3) | 0.3044 (3) | 0.33692 (19) | 0.0506 (6) | |
H5A | 1.0774 | 0.3838 | 0.3781 | 0.076* | |
H5B | 1.253 | 0.3049 | 0.3057 | 0.076* | |
H5C | 1.1527 | 0.235 | 0.3912 | 0.076* | |
C6 | 1.1706 (3) | 0.1663 (2) | 0.1731 (2) | 0.0481 (6) | |
H6A | 1.1779 | 0.0969 | 0.2274 | 0.072* | |
H6B | 1.2783 | 0.1635 | 0.1377 | 0.072* | |
H6C | 1.1179 | 0.1587 | 0.1119 | 0.072* | |
C7 | 0.7501 (2) | 0.09780 (16) | 0.18044 (15) | 0.0246 (4) | |
H7 | 0.6694 | 0.1273 | 0.255 | 0.03* | |
C8 | 0.6687 (3) | 0.0770 (2) | 0.0905 (2) | 0.0460 (6) | |
H8A | 0.5784 | 0.1542 | 0.0818 | 0.069* | |
H8B | 0.6295 | 0.0096 | 0.1156 | 0.069* | |
H8C | 0.7452 | 0.0538 | 0.0156 | 0.069* | |
C9 | 0.8863 (3) | −0.01829 (18) | 0.2035 (2) | 0.0416 (5) | |
H9A | 0.9654 | −0.0482 | 0.1306 | 0.062* | |
H9B | 0.8453 | −0.0834 | 0.2343 | 0.062* | |
H9C | 0.9369 | 0.0013 | 0.2605 | 0.062* | |
C10 | 0.3378 (2) | 0.77040 (17) | 0.24261 (14) | 0.0256 (4) | |
H10A | 0.3714 | 0.6889 | 0.2026 | 0.031* | |
H10B | 0.2393 | 0.828 | 0.2184 | 0.031* | |
C11 | 0.4694 (2) | 0.82307 (17) | 0.20331 (15) | 0.0280 (4) | |
H11A | 0.4912 | 0.8302 | 0.1173 | 0.034* | |
H11B | 0.4333 | 0.9078 | 0.2376 | 0.034* | |
C12 | 0.6221 (2) | 0.73804 (16) | 0.24148 (14) | 0.0233 (4) | |
H12A | 0.705 | 0.7745 | 0.216 | 0.028* | |
H12B | 0.6617 | 0.6555 | 0.202 | 0.028* | |
C13 | 0.5987 (2) | 0.71909 (15) | 0.37349 (14) | 0.0197 (4) | |
C14 | 0.5719 (2) | 0.83674 (16) | 0.44152 (16) | 0.0290 (4) | |
H14A | 0.5284 | 0.8278 | 0.5242 | 0.044* | |
H14B | 0.496 | 0.9102 | 0.4105 | 0.044* | |
H14C | 0.6739 | 0.8473 | 0.4333 | 0.044* | |
C15 | 0.7431 (2) | 0.61143 (15) | 0.40297 (15) | 0.0234 (4) | |
H15A | 0.8393 | 0.6312 | 0.3766 | 0.035* | |
H15B | 0.7574 | 0.5346 | 0.3637 | 0.035* | |
H15C | 0.7255 | 0.5993 | 0.4875 | 0.035* | |
C16 | 0.2995 (2) | 0.75210 (16) | 0.37445 (14) | 0.0218 (4) | |
C17 | 0.2107 (2) | 0.87568 (17) | 0.44395 (16) | 0.0319 (4) | |
H17A | 0.2099 | 0.8596 | 0.527 | 0.048* | |
H17B | 0.1004 | 0.9126 | 0.4327 | 0.048* | |
H17C | 0.265 | 0.9337 | 0.4166 | 0.048* | |
C18 | 0.1976 (2) | 0.67189 (17) | 0.40504 (15) | 0.0255 (4) | |
H18A | 0.2555 | 0.5901 | 0.3656 | 0.038* | |
H18B | 0.0963 | 0.7139 | 0.3795 | 0.038* | |
H18C | 0.1757 | 0.6603 | 0.4896 | 0.038* | |
O1 | 0.81444 (14) | 0.41560 (10) | 0.10576 (9) | 0.0198 (3) | |
O2 | 0.91262 (14) | 0.29862 (11) | 0.28713 (10) | 0.0212 (3) | |
O3 | 0.81113 (14) | 0.19313 (10) | 0.13885 (10) | 0.0233 (3) | |
Si1 | 0.77654 (5) | 0.32207 (4) | 0.20952 (4) | 0.01653 (15) | |
S1 | 0.55226 (5) | 0.38899 (4) | 0.31590 (3) | 0.01896 (14) | |
N1 | 0.45724 (16) | 0.67745 (12) | 0.41129 (12) | 0.0182 (3) | |
H1A | 0.489 (3) | 0.5932 (17) | 0.3823 (19) | 0.046 (6)* | |
H1B | 0.437 (2) | 0.6748 (18) | 0.4920 (15) | 0.033 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0237 (9) | 0.0253 (9) | 0.0159 (8) | −0.0128 (8) | −0.0048 (7) | 0.0011 (6) |
C2 | 0.0229 (9) | 0.0336 (10) | 0.0226 (9) | −0.0078 (8) | −0.0055 (7) | 0.0023 (7) |
C3 | 0.0304 (11) | 0.0329 (10) | 0.0224 (9) | −0.0099 (9) | 0.0024 (8) | −0.0050 (7) |
C4 | 0.0152 (9) | 0.0275 (9) | 0.0286 (9) | −0.0100 (8) | −0.0036 (7) | 0.0046 (7) |
C5 | 0.0249 (11) | 0.0914 (19) | 0.0412 (13) | −0.0269 (13) | −0.0081 (9) | −0.0038 (12) |
C6 | 0.0200 (10) | 0.0409 (12) | 0.0749 (17) | −0.0051 (10) | −0.0006 (11) | −0.0118 (11) |
C7 | 0.0254 (10) | 0.0226 (9) | 0.0265 (9) | −0.0123 (8) | 0.0003 (7) | −0.0025 (7) |
C8 | 0.0505 (15) | 0.0505 (13) | 0.0541 (14) | −0.0334 (12) | −0.0207 (12) | 0.0073 (11) |
C9 | 0.0400 (13) | 0.0258 (10) | 0.0625 (14) | −0.0147 (10) | −0.0153 (11) | 0.0079 (9) |
C10 | 0.0215 (9) | 0.0296 (9) | 0.0209 (9) | −0.0043 (8) | −0.0050 (7) | 0.0022 (7) |
C11 | 0.0295 (10) | 0.0269 (9) | 0.0220 (9) | −0.0068 (8) | −0.0033 (8) | 0.0055 (7) |
C12 | 0.0238 (9) | 0.0233 (9) | 0.0223 (9) | −0.0107 (8) | −0.0007 (7) | 0.0015 (7) |
C13 | 0.0200 (9) | 0.0202 (8) | 0.0199 (8) | −0.0094 (7) | −0.0023 (7) | −0.0015 (6) |
C14 | 0.0344 (11) | 0.0262 (9) | 0.0288 (10) | −0.0140 (9) | −0.0044 (8) | −0.0067 (7) |
C15 | 0.0199 (9) | 0.0249 (9) | 0.0272 (9) | −0.0096 (8) | −0.0059 (7) | −0.0013 (7) |
C16 | 0.0168 (8) | 0.0223 (9) | 0.0205 (8) | −0.0010 (7) | −0.0036 (7) | −0.0007 (7) |
C17 | 0.0279 (10) | 0.0267 (10) | 0.0301 (10) | 0.0005 (8) | −0.0022 (8) | −0.0041 (8) |
C18 | 0.0171 (9) | 0.0312 (10) | 0.0252 (9) | −0.0061 (8) | −0.0038 (7) | −0.0003 (7) |
O1 | 0.0239 (6) | 0.0233 (6) | 0.0161 (6) | −0.0124 (5) | −0.0057 (5) | 0.0009 (5) |
O2 | 0.0149 (6) | 0.0279 (6) | 0.0208 (6) | −0.0084 (5) | −0.0036 (5) | 0.0028 (5) |
O3 | 0.0258 (7) | 0.0200 (6) | 0.0230 (6) | −0.0114 (5) | 0.0034 (5) | −0.0040 (5) |
Si1 | 0.0155 (3) | 0.0168 (2) | 0.0167 (2) | −0.00606 (19) | −0.00172 (18) | −0.00110 (17) |
S1 | 0.0151 (2) | 0.0219 (2) | 0.0187 (2) | −0.00605 (18) | −0.00163 (16) | −0.00349 (16) |
N1 | 0.0169 (7) | 0.0187 (7) | 0.0178 (7) | −0.0053 (6) | −0.0033 (6) | −0.0006 (6) |
C1—O1 | 1.4399 (18) | C10—H10A | 0.99 |
C1—C2 | 1.512 (2) | C10—H10B | 0.99 |
C1—C3 | 1.519 (2) | C11—C12 | 1.523 (2) |
C1—H1 | 1.00 | C11—H11A | 0.99 |
C2—H2A | 0.98 | C11—H11B | 0.99 |
C2—H2B | 0.98 | C12—C13 | 1.531 (2) |
C2—H2C | 0.98 | C12—H12A | 0.99 |
C3—H3A | 0.98 | C12—H12B | 0.99 |
C3—H3B | 0.98 | C13—C15 | 1.526 (2) |
C3—H3C | 0.98 | C13—N1 | 1.527 (2) |
C4—O2 | 1.444 (2) | C13—C14 | 1.536 (2) |
C4—C6 | 1.502 (3) | C14—H14A | 0.98 |
C4—C5 | 1.510 (2) | C14—H14B | 0.98 |
C4—H4 | 1.00 | C14—H14C | 0.98 |
C5—H5A | 0.98 | C15—H15A | 0.98 |
C5—H5B | 0.98 | C15—H15B | 0.98 |
C5—H5C | 0.98 | C15—H15C | 0.98 |
C6—H6A | 0.98 | C16—N1 | 1.525 (2) |
C6—H6B | 0.98 | C16—C18 | 1.531 (2) |
C6—H6C | 0.98 | C16—C17 | 1.535 (2) |
C7—O3 | 1.430 (2) | C17—H17A | 0.98 |
C7—C8 | 1.506 (3) | C17—H17B | 0.98 |
C7—C9 | 1.507 (3) | C17—H17C | 0.98 |
C7—H7 | 1.00 | C18—H18A | 0.98 |
C8—H8A | 0.98 | C18—H18B | 0.98 |
C8—H8B | 0.98 | C18—H18C | 0.98 |
C8—H8C | 0.98 | O1—Si1 | 1.6408 (11) |
C9—H9A | 0.98 | O2—Si1 | 1.6441 (11) |
C9—H9B | 0.98 | O3—Si1 | 1.6452 (11) |
C9—H9C | 0.98 | Si1—S1 | 2.0558 (6) |
C10—C11 | 1.530 (3) | N1—H1A | 0.966 (17) |
C10—C16 | 1.530 (2) | N1—H1B | 0.927 (17) |
O1—C1—C2 | 108.93 (13) | C10—C11—H11A | 109.6 |
O1—C1—C3 | 107.87 (14) | C12—C11—H11B | 109.6 |
C2—C1—C3 | 112.55 (14) | C10—C11—H11B | 109.6 |
O1—C1—H1 | 109.1 | H11A—C11—H11B | 108.1 |
C2—C1—H1 | 109.1 | C11—C12—C13 | 113.24 (15) |
C3—C1—H1 | 109.1 | C11—C12—H12A | 108.9 |
C1—C2—H2A | 109.5 | C13—C12—H12A | 108.9 |
C1—C2—H2B | 109.5 | C11—C12—H12B | 108.9 |
H2A—C2—H2B | 109.5 | C13—C12—H12B | 108.9 |
C1—C2—H2C | 109.5 | H12A—C12—H12B | 107.7 |
H2A—C2—H2C | 109.5 | C15—C13—N1 | 105.89 (13) |
H2B—C2—H2C | 109.5 | C15—C13—C12 | 110.41 (14) |
C1—C3—H3A | 109.5 | N1—C13—C12 | 107.30 (12) |
C1—C3—H3B | 109.5 | C15—C13—C14 | 108.82 (13) |
H3A—C3—H3B | 109.5 | N1—C13—C14 | 111.15 (14) |
C1—C3—H3C | 109.5 | C12—C13—C14 | 113.03 (14) |
H3A—C3—H3C | 109.5 | C13—C14—H14A | 109.5 |
H3B—C3—H3C | 109.5 | C13—C14—H14B | 109.5 |
O2—C4—C6 | 111.26 (14) | H14A—C14—H14B | 109.5 |
O2—C4—C5 | 107.29 (15) | C13—C14—H14C | 109.5 |
C6—C4—C5 | 112.44 (17) | H14A—C14—H14C | 109.5 |
O2—C4—H4 | 108.6 | H14B—C14—H14C | 109.5 |
C6—C4—H4 | 108.6 | C13—C15—H15A | 109.5 |
C5—C4—H4 | 108.6 | C13—C15—H15B | 109.5 |
C4—C5—H5A | 109.5 | H15A—C15—H15B | 109.5 |
C4—C5—H5B | 109.5 | C13—C15—H15C | 109.5 |
H5A—C5—H5B | 109.5 | H15A—C15—H15C | 109.5 |
C4—C5—H5C | 109.5 | H15B—C15—H15C | 109.5 |
H5A—C5—H5C | 109.5 | N1—C16—C10 | 107.55 (13) |
H5B—C5—H5C | 109.5 | N1—C16—C18 | 106.11 (13) |
C4—C6—H6A | 109.5 | C10—C16—C18 | 110.72 (14) |
C4—C6—H6B | 109.5 | N1—C16—C17 | 110.86 (13) |
H6A—C6—H6B | 109.5 | C10—C16—C17 | 113.25 (14) |
C4—C6—H6C | 109.5 | C18—C16—C17 | 108.14 (15) |
H6A—C6—H6C | 109.5 | C16—C17—H17A | 109.5 |
H6B—C6—H6C | 109.5 | C16—C17—H17B | 109.5 |
O3—C7—C8 | 107.94 (15) | H17A—C17—H17B | 109.5 |
O3—C7—C9 | 108.78 (15) | C16—C17—H17C | 109.5 |
C8—C7—C9 | 113.02 (17) | H17A—C17—H17C | 109.5 |
O3—C7—H7 | 109 | H17B—C17—H17C | 109.5 |
C8—C7—H7 | 109 | C16—C18—H18A | 109.5 |
C9—C7—H7 | 109 | C16—C18—H18B | 109.5 |
C7—C8—H8A | 109.5 | H18A—C18—H18B | 109.5 |
C7—C8—H8B | 109.5 | C16—C18—H18C | 109.5 |
H8A—C8—H8B | 109.5 | H18A—C18—H18C | 109.5 |
C7—C8—H8C | 109.5 | H18B—C18—H18C | 109.5 |
H8A—C8—H8C | 109.5 | C1—O1—Si1 | 124.60 (10) |
H8B—C8—H8C | 109.5 | C4—O2—Si1 | 123.87 (10) |
C7—C9—H9A | 109.5 | C7—O3—Si1 | 126.27 (11) |
C7—C9—H9B | 109.5 | O1—Si1—O2 | 104.18 (6) |
H9A—C9—H9B | 109.5 | O1—Si1—O3 | 103.66 (6) |
C7—C9—H9C | 109.5 | O2—Si1—O3 | 110.48 (6) |
H9A—C9—H9C | 109.5 | O1—Si1—S1 | 116.03 (5) |
H9B—C9—H9C | 109.5 | O2—Si1—S1 | 109.64 (5) |
C11—C10—C16 | 113.34 (14) | O3—Si1—S1 | 112.43 (5) |
C11—C10—H10A | 108.9 | C16—N1—C13 | 119.89 (13) |
C16—C10—H10A | 108.9 | C16—N1—H1A | 105.6 (13) |
C11—C10—H10B | 108.9 | C13—N1—H1A | 108.5 (14) |
C16—C10—H10B | 108.9 | C16—N1—H1B | 108.0 (13) |
H10A—C10—H10B | 107.7 | C13—N1—H1B | 106.7 (13) |
C12—C11—C10 | 110.38 (14) | H1A—N1—H1B | 107.6 (18) |
C12—C11—H11A | 109.6 | ||
C16—C10—C11—C12 | 57.4 (2) | C1—O1—Si1—O3 | 37.28 (14) |
C10—C11—C12—C13 | −57.91 (19) | C1—O1—Si1—S1 | −86.47 (13) |
C11—C12—C13—C15 | 167.08 (14) | C4—O2—Si1—O1 | −35.98 (13) |
C11—C12—C13—N1 | 52.13 (18) | C4—O2—Si1—O3 | 74.77 (13) |
C11—C12—C13—C14 | −70.76 (19) | C4—O2—Si1—S1 | −160.78 (11) |
C11—C10—C16—N1 | −51.19 (19) | C7—O3—Si1—O1 | −158.72 (12) |
C11—C10—C16—C18 | −166.70 (14) | C7—O3—Si1—O2 | 90.20 (13) |
C11—C10—C16—C17 | 71.65 (19) | C7—O3—Si1—S1 | −32.64 (14) |
C2—C1—O1—Si1 | 123.01 (13) | C10—C16—N1—C13 | 50.41 (18) |
C3—C1—O1—Si1 | −114.55 (14) | C18—C16—N1—C13 | 168.93 (13) |
C6—C4—O2—Si1 | −72.47 (18) | C17—C16—N1—C13 | −73.89 (18) |
C5—C4—O2—Si1 | 164.15 (14) | C15—C13—N1—C16 | −168.72 (13) |
C8—C7—O3—Si1 | 126.51 (15) | C12—C13—N1—C16 | −50.79 (18) |
C9—C7—O3—Si1 | −110.51 (16) | C14—C13—N1—C16 | 73.25 (17) |
C1—O1—Si1—O2 | 152.92 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1 | 0.97 (2) | 2.35 (2) | 3.3166 (14) | 177 (2) |
N1—H1B···S1i | 0.93 (2) | 2.34 (2) | 3.2354 (14) | 163 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C9H20N+·C9H21O3SSi− |
Mr | 379.67 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 9.2433 (6), 11.5545 (8), 11.7593 (7) |
α, β, γ (°) | 85.955 (5), 77.190 (6), 67.620 (6) |
V (Å3) | 1132.28 (13) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.42 × 0.39 × 0.33 |
Data collection | |
Diffractometer | Oxford Diffraction KM4/Xcalibur diffractometer with Sapphire2 detector |
Absorption correction | Analytical (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.908, 0.934 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6937, 4209, 3561 |
Rint | 0.015 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.122, 1.10 |
No. of reflections | 4209 |
No. of parameters | 235 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.45, −0.43 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1 | 0.966 (17) | 2.352 (17) | 3.3166 (14) | 177 (2) |
N1—H1B···S1i | 0.927 (17) | 2.338 (17) | 3.2354 (14) | 163.0 (17) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors thank Dr Agnieszka Pladzyk and Dr Jarosław Chojnacki for helpful discussions during the preparation of the manuscript.
References
Baranowska, K., Chojnacki, J., Gosiewska, M. & Wojnowski, W. (2006). Z. Anorg. Allg. Chem. 632, 1086–1090. Web of Science CSD CrossRef CAS Google Scholar
Baranowska, K., Chojnacki, J., Konitz, A., Wojnowski, W. & Becker, B. (2006). Polyhedron, 25, 1555–1560. Web of Science CSD CrossRef CAS Google Scholar
Baranowska, K. & Piwowarska, N. (2008). Acta Cryst. E64, o1781. Web of Science CSD CrossRef IUCr Journals Google Scholar
Becker, B., Baranowska, K., Chojnacki, J. & Wojnowski, W. (2004). Chem. Commun. pp. 620–621. Web of Science CSD CrossRef Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrogen bonding is arguably the most prominent interaction in selfassembly of molecules in crystals and plays an important role in determining structure of chemical and biological systems. Hydrogen bonds of the (+)N···H–S(–)type have gained relatively little attention, as these bonds are mostly weak and quite seldom lead to the proton transfer. One notable exception are silanethiolates, where ionization of the SH group is facilitated by the neighbouring silicon atom. The salts of these anions with primary amines as counter-ions often feature tetrameric aggregates with a cubane-like hydrogen bonded core (Becker et al., 2004). Secondary amines give derivatives with discrete dimeric units in the solid state (Baranowska, Chojnacki, Konitz et al. 2006).
We present here the crystal structure of the title compound, which was obtained by the reaction of tri-iso-propoxysilanethiol with 2,2,6,6-tetramethylpiperidine.
The crystal structure is built of aggregates, made up of two tri-iso-propoxysilanethiolate anions and two piperidinium cations (Fig. 1). The aggregates contain eight-membered ring built due to the formation of four charge-assisted (+)N–H···S(–)hydrogen bonds (graph theory motif R24(8) according to Etter, 1990; Bernstein et al., 1995). The N···S distances (Table 1) lie in the range comparable with the values observed in aromatic thiolates (Baranowska & Piwowarska, 2008) or silanethiolates (Baranowska, Chojnacki, Gosiewska, Wojnowski, 2006).