metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[bis­(phenethyl­ammonium) [di­bromido­plumbate(II)]-di-μ-bromido]]

aInstitute of Physics, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan, bCREST, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan, cDepartment of Applied Chemistry, Tohoku University, Graduate School of Engineering, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan, dMolecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan, and eInstitute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tukuba 305-0801, Japan
*Correspondence e-mail: shibuken@gakushikai.jp

(Received 12 August 2009; accepted 14 September 2009; online 7 October 2009)

Crystals of the title compound, {(C6H5C2H4NH3)2[PbBr4]}n, were grown at room temperature from a solution in N,N-dimethyl­formamide (DMF) using nitro­methane as the poor solvent. This perovskite-type organic–inorganic hybrid compound consists of well ordered sheets of corner-sharing disordered PbBr6 octa­hedra separated by bilayers of phenethyl­ammonium cations. The octa­hedra are rotated and tilted due to N—H⋯Br hydrogen bonds with the ammonium groups, generating a superstructure in the unit cell similar to that of the tetra­chloridoplumbate (C6H5C2H4NH3)2[PbCl4].

Related literature

The title compound has been studied previously and the lattice parameters reported without the complete structure (Mitzi, 1999[Mitzi, D. B. (1999). J. Solid State Chem. 145, 694-704.]). The optical characteristics have been investigated using thin films, see: Cheng et al. (2005[Cheng, Z. Y., Wang, H. F., Quan, Z. W., Lin, C. K., Lin, J. & Han, Y. C. (2005). J. Cryst. Growth 285, 352-357.]); Kitazawa & Watanabe (2005[Kitazawa, N. & Watanabe, Y. (2005). Surf. Coat. Technol. 198, 9-13.]). Promising applications have been reported on electroluminescent devices and scintillators, see: Era et al. (1995[Era, M., Morimoto, S., Tsutsui, T. & Saito, S. (1995). Synth. Met. 71, 2013-2014.]); Kishimoto et al. (2008[Kishimoto, S., Shibuya, K., Nishikido, F., Koshimizu, M., Haruki, R. & Yoda, Y. (2008). Appl. Phys. Lett. 93, 261901 1-3.]); van der Eijk et al. (2008[Eijk, C. W. E. van der, de Haas, J. T. M., Rodnyi, P. A., Khodyuk, I. V., Shibuya, K., Nishikido, F. & Koshimizu, M. (2008). Conf. Rec. IEEE 2008 Nucl. Sci. Symp. Med. Img. Conf., Dresden, Germany, Oct. 19-25, N69-3.]). Structural data of some related materials have been published; for (C6H5C2H4NH3)2PbCl4, see: Mitzi (1999[Mitzi, D. B. (1999). J. Solid State Chem. 145, 694-704.]); for (C6H5C2H4NH3)2CuBr4, see: Willett (1990[Willett, R. D. (1990). Acta Cryst. C46, 565-568.]); for (C6H5C2H4NH3)2ZnBr4, see: Huh et al. (2006[Huh, Y.-D., Kim, J.-H., Kweon, S. S., Kuk, W.-K., Hwang, C.-S., Hyun, J.-W., Kim, Y.-J. & Park, Y.-B. (2006). Curr. Appl. Phys. 6, 219-223.]); for (C6H5C2H4NH3)PbBr3, see: Billing & Lemmerer (2003[Billing, D. G. & Lemmerer, A. (2003). Acta Cryst. E59, m381-m383.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). For halogen hydrogen bonding, see: Chapuis et al. (1976[Chapuis, G., Kind, R. & Arend, H. (1976). Phys. Status Solidi A 36, 285-295.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H12N)2[PbBr4]

  • Mr = 771.20

  • Triclinic, [P \overline 1]

  • a = 11.6150 (4) Å

  • b = 11.6275 (5) Å

  • c = 17.5751 (6) Å

  • α = 99.5472 (12)°

  • β = 105.7245 (10)°

  • γ = 89.9770 (12)°

  • V = 2250.62 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 14.63 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.03 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1999[Higashi, T. (1999). ABSCOR. Rigaku Corporation, Japan.]) Tmin = 0.106, Tmax = 0.645

  • 20072 measured reflections

  • 10077 independent reflections

  • 7157 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.106

  • S = 0.97

  • 10077 reflections

  • 416 parameters

  • H-atom parameters constrained

  • Δρmax = 3.26 e Å−3

  • Δρmin = −2.53 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pb1—Br3 2.8786 (8)
Pb1—Br4 2.9927 (7)
Pb1—Br1 2.9957 (7)
Pb1—Br6 3.0080 (7)
Pb1—Br5 3.0095 (7)
Pb1—Br2 3.1965 (8)
Pb2—Br8 2.8755 (8)
Pb2—Br5i 2.9935 (6)
Pb2—Br6 2.9957 (7)
Pb2—Br1ii 3.0082 (7)
Pb2—Br4iii 3.0110 (7)
Pb2—Br7 3.1982 (8)
Symmetry codes: (i) -x+1, -y, -z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.89 3.18 3.508 (5) 104
N1—H3⋯Br2 0.89 2.54 3.411 (5) 165
N2—H13⋯Br6 0.89 3.17 3.509 (5) 105
N2—H14⋯Br7 0.89 2.54 3.416 (5) 167
N3—H26⋯Br7 0.89 2.71 3.448 (6) 142
N3—H27⋯Br2 0.89 2.62 3.486 (6) 164
N4—H37⋯Br4 0.89 2.68 3.465 (5) 148
N4—H39⋯Br2 0.89 2.73 3.462 (6) 140

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998[Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas & Rigaku Corporation, 2008[Rigaku Americas & Rigaku Corporation (2008). CrystalStructure. Rigaku Americas, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Recently, much attention has been paid to low-dimensional materials that often exhibit characteristic electronic properties considerably different from those of bulk ones. However, their crystallographic studies are limited because their anisotropic growth nature makes it difficult to obtain a good single crystal. Mitzi reported the structure of the tetrachloroplumbate, (C6H5C2H4NH3)2PbCl4, whose single crystals required approximately one year to be grown up. The present paper is the first report of the detailed structure of the tetrabromoplumbate, whose single crystals were grown up in approximately two months; in order to compare with some related materials: see the tetrachloroplumbate, the tetrabromozincate, (C6H5C2H4NH3)2ZnBr4 (Huh et al., 2006), and the tribromoplumbate, (C6H5C2H4NH3)PbBr3 (Billing & Lemmerer, 2003).

Fig. 1 shows the packing diagram of (C6H5C2H4NH3)2PbBr4, viewed approximately along the c axis. The sheets of corner-sharing PbBr6 octahedra are separated by bilayers of phenethylammonium cations. The corner-sharing PbBr6 octahedra are the common structure among bis-(phenethylammonium) tetrahaloplumbates, (C6H5C2H4NH3)2PbX4 (X = Cl, Br, and I), regardless of the halogen, but are different from face-sharing PbBr6 octahedra of the tribromoplumbate, (C6H5C2H4NH3)PbBr3, and from isolated tetrahedral ZnBr4 of the tetrabromozincate, (C6H5C2H4NH3)2ZnBr4. As the structure of halometalate is notably controlled by surrounding organic molecules, hydrogen bondings between them are discussed later.

Dashed line in Fig. 1 displays the triclinic unit cell, which is similar to the triclinic unit cell of the tetrachloroplumbate, (C6H5C2H4NH3)2PbCl4, but different from the monoclinic unit cell of the tetraiodoplumbate, (C6H5C2H4NH3)2PbI4. The present tetrabromoplumbate possesses two independent but similar Pb atoms with distorted octahedral coordination. The Pb—Br bond lengths range from 2.8755 (8) to 3.1982 (8) Å (average: 3.0136 (7) Å) and Br—Pb—Br bond angles range from 83.44 (2)° to 96.67 (2)° and from 170.97 (2)° to 179.36 (2)°. These angles are somewhat different from those of the perfect octahedron, i.e., 90.0° and 180°, respectively. Furthermore, the bridging Pb—Br—Pb bond angles significantly differ from 180° and range from 150.77 (3)° to 152.15 (3)°. This indicates that adjacent PbBr6 are rotated relative to each other.

Fig. 2 shows the relative rotation of PbBr6 in the sheet and the hydrogen bondings between the octahedra and ammonium groups. Each ammonium group interacts with three halogen anions through N—H···Br hydrogen bonding in "terminal halogen configuration" involving two terminal halogen anions and one bridging halogen anion (Chapuis et al., 1976). The average hydrogen-bonding distance is 2.630 (2) Å, which is considerably shorter than the sum of the van der Waals radii for H (1.20–1.45 Å) and Br (1.95 Å) (Bondi, 1964). As a result, the opposite sides of the quadrangle, defined by one set of four PbBr6 octahedra, are "pinched-in" or "pushed-out" as shown in Fig. 2. In addition, there are four independent phenethylammonium depicted as PE1, PE2, PE3, and PE4, having similar bond lengths and bond angles. Therefore, two sides of the unit cell along with a and b axes are about twice length of a PbBr6 to have a superstructure in it.

There is no significant π-π interaction found in the organic bilayers because the adjacent aromatic rings are considerably separated by centroid-to-centroid distance of 5.748 (9) Å between PE1 and PE4, and 5.787 (9) Å between PE2 and PE3, respectively. The van der Waals radius for aromatic carbon atoms is about 1.77 Å (Bondi, 1964).

Related literature top

The title compound has been studied previously and the lattice parameters reported without the complete structure (Mitzi, 1999). The optical characteristics have been investigated using thin films, see: Cheng et al. (2005); Kitazawa & Watanabe (2005). Promising applications have been reported on electroluminescent devices and scintillators, see: Era et al. (1995); Kishimoto et al. (2008); van der Eijk et al. (2008). Structural data of some related materials have been published; for (C6H5C2H4NH3)2PbCl4, see: Mitzi (1999); for (C6H5C2H4NH3)2CuBr4, see: Willett (1990); for (C6H5C2H4NH3)2ZnBr4, see: Huh et al. (2006); for (C6H5C2H4NH3)PbBr3, see: Billing & Lemmerer (2003). For van der Waals radii, see: Bondi (1964). For halogen hydrogen bonding, see: Chapuis et al. (1976);

Experimental top

Single crystals were obtained in the following three steps. First, phenethylamine bromide, C6H5C2H2NH3Br, as the precursor was synthesized at 10 C° from stoichiometric amount of hydrobromic acid, HBr, and phenethylamine, C6H5C2H2NH2, by their acid-base reaction in a flask. After evaporating the solvent, water, at 70 C°, the white deposition was washed by diethyl ether to remove unreacted reagents and dried in vacuum. Second, the objective compound was synthesized at 25 C° in dry nitrogen atmosphere from stoichiometric amount of the precursor and lead bromide (II), PbBr2, using dehydrated N,N'-dimethylformamide (DMF) as a good solvent. The purity of PbBr2 powder was 4 N, and it was used as delivered from Kojundo Chemical Laboratory Co., Japan. Third, the solution was filtered and contained in a glass bottle for the crystal growth. The bottle was contained in a shaded desiccator where another bottle with nitromethane as a poor solvent was also contained. Then, the vapor of the poor solvent was gradually diffused into the solution to reduce the solubility. Settling it two months grew colorless transparent crystals at the bottom of the former bottle. The crystal size was typically 8 mm × 6 mm × 1 mm, and the one used for the crystallographic study was 0.25 mm × 0.20 mm × 0.03 mm.

Refinement top

The structure was solved by direct methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F2 was based on 10107 observed reflections and 416 variable parameters and converged (largest parameter shift was 0.00 times its e.s.d.) with unweighted and weighted agreement factors of R1 = 0.0460 and wR2 = 0.1483. The standard deviation of an observation of unit weight was 1.06. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 3.95 and -2.77 e-3, respectively.

Structure description top

Recently, much attention has been paid to low-dimensional materials that often exhibit characteristic electronic properties considerably different from those of bulk ones. However, their crystallographic studies are limited because their anisotropic growth nature makes it difficult to obtain a good single crystal. Mitzi reported the structure of the tetrachloroplumbate, (C6H5C2H4NH3)2PbCl4, whose single crystals required approximately one year to be grown up. The present paper is the first report of the detailed structure of the tetrabromoplumbate, whose single crystals were grown up in approximately two months; in order to compare with some related materials: see the tetrachloroplumbate, the tetrabromozincate, (C6H5C2H4NH3)2ZnBr4 (Huh et al., 2006), and the tribromoplumbate, (C6H5C2H4NH3)PbBr3 (Billing & Lemmerer, 2003).

Fig. 1 shows the packing diagram of (C6H5C2H4NH3)2PbBr4, viewed approximately along the c axis. The sheets of corner-sharing PbBr6 octahedra are separated by bilayers of phenethylammonium cations. The corner-sharing PbBr6 octahedra are the common structure among bis-(phenethylammonium) tetrahaloplumbates, (C6H5C2H4NH3)2PbX4 (X = Cl, Br, and I), regardless of the halogen, but are different from face-sharing PbBr6 octahedra of the tribromoplumbate, (C6H5C2H4NH3)PbBr3, and from isolated tetrahedral ZnBr4 of the tetrabromozincate, (C6H5C2H4NH3)2ZnBr4. As the structure of halometalate is notably controlled by surrounding organic molecules, hydrogen bondings between them are discussed later.

Dashed line in Fig. 1 displays the triclinic unit cell, which is similar to the triclinic unit cell of the tetrachloroplumbate, (C6H5C2H4NH3)2PbCl4, but different from the monoclinic unit cell of the tetraiodoplumbate, (C6H5C2H4NH3)2PbI4. The present tetrabromoplumbate possesses two independent but similar Pb atoms with distorted octahedral coordination. The Pb—Br bond lengths range from 2.8755 (8) to 3.1982 (8) Å (average: 3.0136 (7) Å) and Br—Pb—Br bond angles range from 83.44 (2)° to 96.67 (2)° and from 170.97 (2)° to 179.36 (2)°. These angles are somewhat different from those of the perfect octahedron, i.e., 90.0° and 180°, respectively. Furthermore, the bridging Pb—Br—Pb bond angles significantly differ from 180° and range from 150.77 (3)° to 152.15 (3)°. This indicates that adjacent PbBr6 are rotated relative to each other.

Fig. 2 shows the relative rotation of PbBr6 in the sheet and the hydrogen bondings between the octahedra and ammonium groups. Each ammonium group interacts with three halogen anions through N—H···Br hydrogen bonding in "terminal halogen configuration" involving two terminal halogen anions and one bridging halogen anion (Chapuis et al., 1976). The average hydrogen-bonding distance is 2.630 (2) Å, which is considerably shorter than the sum of the van der Waals radii for H (1.20–1.45 Å) and Br (1.95 Å) (Bondi, 1964). As a result, the opposite sides of the quadrangle, defined by one set of four PbBr6 octahedra, are "pinched-in" or "pushed-out" as shown in Fig. 2. In addition, there are four independent phenethylammonium depicted as PE1, PE2, PE3, and PE4, having similar bond lengths and bond angles. Therefore, two sides of the unit cell along with a and b axes are about twice length of a PbBr6 to have a superstructure in it.

There is no significant π-π interaction found in the organic bilayers because the adjacent aromatic rings are considerably separated by centroid-to-centroid distance of 5.748 (9) Å between PE1 and PE4, and 5.787 (9) Å between PE2 and PE3, respectively. The van der Waals radius for aromatic carbon atoms is about 1.77 Å (Bondi, 1964).

The title compound has been studied previously and the lattice parameters reported without the complete structure (Mitzi, 1999). The optical characteristics have been investigated using thin films, see: Cheng et al. (2005); Kitazawa & Watanabe (2005). Promising applications have been reported on electroluminescent devices and scintillators, see: Era et al. (1995); Kishimoto et al. (2008); van der Eijk et al. (2008). Structural data of some related materials have been published; for (C6H5C2H4NH3)2PbCl4, see: Mitzi (1999); for (C6H5C2H4NH3)2CuBr4, see: Willett (1990); for (C6H5C2H4NH3)2ZnBr4, see: Huh et al. (2006); for (C6H5C2H4NH3)PbBr3, see: Billing & Lemmerer (2003). For van der Waals radii, see: Bondi (1964). For halogen hydrogen bonding, see: Chapuis et al. (1976);

Computing details top

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO (Rigaku Corporation, 1998); data reduction: CrystalStructure (Rigaku Americas & Rigaku Corporation, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Packing diagram of (C6H5C2H4NH3)2PbBr4, approximately viewed down (a) the a axis and (b) the b axis. Dashed line shows the outline of two triclinic unit cells along with the c axis. For clarity, the atoms are represented as spheres with each uniform size for the PbBr6 octahedra and the phenethylammonium, respectively. Hydrogen atoms are omitted.
[Figure 2] Fig. 2. The relative rotation of PbBr6 due to hydrogen bonding (dashed lines) between the octahedra and ammonium groups. The structure is approximately viewed down (a) the b axis and (b) the a axis. The thermal ellipsoids are drawn at 50% probability for nitrogen, bromine, and lead atoms. The hydrogen atoms of nothing to do with hydrogen bonding are omitted.
Poly[bis(phenethylammonium) [[dibromidoplumbate(II)]-di-µ-bromido]] top
Crystal data top
(C8H12N)2[PbBr4]Z = 4
Mr = 771.20F(000) = 1424.00
Triclinic, P1Dx = 2.276 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 11.6150 (4) ÅCell parameters from 15239 reflections
b = 11.6275 (5) Åθ = 3.2–27.5°
c = 17.5751 (6) ŵ = 14.63 mm1
α = 99.5472 (12)°T = 296 K
β = 105.7245 (10)°Platelet, colourless
γ = 89.9770 (12)°0.25 × 0.20 × 0.03 mm
V = 2250.62 (15) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
7157 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.053
ω scansθmax = 27.5°
Absorption correction: numerical
see: Higashi (1999)
h = 1512
Tmin = 0.106, Tmax = 0.645k = 1515
20072 measured reflectionsl = 2222
10077 independent reflections
Refinement top
Refinement on F20 restraints
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0442P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
10077 reflectionsΔρmax = 3.26 e Å3
416 parametersΔρmin = 2.53 e Å3
Crystal data top
(C8H12N)2[PbBr4]γ = 89.9770 (12)°
Mr = 771.20V = 2250.62 (15) Å3
Triclinic, P1Z = 4
a = 11.6150 (4) ÅMo Kα radiation
b = 11.6275 (5) ŵ = 14.63 mm1
c = 17.5751 (6) ÅT = 296 K
α = 99.5472 (12)°0.25 × 0.20 × 0.03 mm
β = 105.7245 (10)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
10077 independent reflections
Absorption correction: numerical
see: Higashi (1999)
7157 reflections with I > 2σ(I)
Tmin = 0.106, Tmax = 0.645Rint = 0.053
20072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 0.97Δρmax = 3.26 e Å3
10077 reflectionsΔρmin = 2.53 e Å3
416 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.24494 (2)0.239633 (18)0.011473 (16)0.03270 (15)
Pb20.74492 (2)0.254601 (18)0.011604 (16)0.03274 (15)
Br10.00101 (6)0.18802 (6)0.00154 (5)0.04426 (17)
Br20.31464 (7)0.27662 (6)0.18009 (5)0.04282 (16)
Br30.18198 (7)0.20941 (6)0.18389 (5)0.04710 (18)
Br40.18722 (7)0.49165 (5)0.00100 (5)0.04628 (18)
Br50.31258 (7)0.00779 (5)0.00106 (5)0.04622 (18)
Br60.49894 (6)0.31257 (6)0.00149 (5)0.04407 (18)
Br70.81414 (7)0.31351 (6)0.18005 (5)0.04330 (17)
Br80.68260 (7)0.19889 (6)0.18383 (5)0.04685 (17)
N10.1391 (5)0.0296 (4)0.1519 (3)0.0467 (14)
N20.6387 (5)0.5470 (4)0.1515 (3)0.0488 (15)
N30.5666 (5)0.1314 (4)0.1523 (3)0.0452 (14)
N40.0652 (5)0.4444 (4)0.1512 (3)0.0488 (15)
C10.0360 (7)0.0491 (7)0.1886 (5)0.057 (2)
C20.0764 (7)0.1128 (6)0.2729 (5)0.057 (2)
C30.1601 (7)0.0445 (6)0.3284 (4)0.0496 (19)
C40.2817 (8)0.0695 (7)0.3537 (5)0.061 (2)
C50.3586 (10)0.0075 (9)0.4031 (6)0.083 (3)
C60.3178 (12)0.0828 (9)0.4286 (5)0.092 (3)
C70.1951 (13)0.1109 (8)0.4068 (6)0.093 (3)
C80.1187 (9)0.0466 (7)0.3569 (5)0.069 (2)
C90.5357 (7)0.5449 (7)0.1881 (5)0.056 (2)
C100.5782 (7)0.5256 (6)0.2735 (4)0.055 (2)
C110.6609 (8)0.6222 (6)0.3296 (4)0.052 (2)
C120.6160 (9)0.7258 (7)0.3569 (5)0.068 (2)
C130.6902 (13)0.8155 (8)0.4068 (6)0.090 (3)
C140.8131 (12)0.8005 (9)0.4275 (5)0.092 (3)
C150.8591 (10)0.6986 (9)0.4008 (5)0.080 (3)
C160.7830 (9)0.6098 (8)0.3539 (5)0.064 (2)
C170.5851 (7)0.0204 (6)0.1850 (4)0.057 (2)
C180.5733 (8)0.0381 (6)0.2699 (4)0.058 (2)
C190.6595 (7)0.1290 (6)0.3289 (4)0.0483 (19)
C200.6198 (8)0.2342 (7)0.3589 (5)0.063 (2)
C210.6982 (12)0.3185 (8)0.4121 (6)0.084 (3)
C220.8178 (11)0.2988 (9)0.4339 (5)0.085 (3)
C230.8600 (9)0.1948 (9)0.4045 (5)0.079 (2)
C240.7809 (8)0.1109 (8)0.3529 (5)0.063 (2)
C250.0873 (7)0.5722 (5)0.1864 (5)0.055 (2)
C260.0736 (8)0.5965 (6)0.2690 (5)0.061 (2)
C270.1587 (8)0.5336 (6)0.3276 (4)0.053 (2)
C280.2787 (8)0.5620 (8)0.3514 (5)0.067 (2)
C290.3581 (9)0.5032 (9)0.4037 (6)0.083 (3)
C300.3166 (12)0.4151 (9)0.4318 (5)0.094 (3)
C310.1934 (12)0.3866 (8)0.4114 (6)0.088 (3)
C320.1190 (9)0.4465 (7)0.3589 (5)0.071 (2)
H10.11220.00840.10170.056*
H20.19280.01240.18040.056*
H30.17300.09830.15190.056*
H40.02320.09360.15680.069*
H50.00170.02570.18780.069*
H60.00680.13030.29250.068*
H70.11640.18630.27370.068*
H80.31260.13100.33630.073*
H90.44010.02800.41930.100*
H100.37100.12660.46060.110*
H110.16530.17160.42550.111*
H120.03690.06530.34190.082*
H130.61150.55850.10100.059*
H140.67410.47920.15230.059*
H150.69130.60460.17950.059*
H160.49640.61840.18650.068*
H170.47780.48300.15700.068*
H180.61940.45310.27450.066*
H190.50900.51680.29320.066*
H200.53390.73510.34140.082*
H210.65920.88450.42620.108*
H220.86480.86110.46020.111*
H230.94140.68990.41450.096*
H240.81390.53900.33770.077*
H250.57380.11940.10240.054*
H260.62130.18560.18290.054*
H270.49380.15550.15190.054*
H280.66410.00650.18480.068*
H290.52630.03900.15120.068*
H300.49230.06010.26870.070*
H310.58490.03570.28910.070*
H320.53870.24850.34300.075*
H330.67000.38820.43310.101*
H340.87130.35620.46880.102*
H350.94140.18160.41960.094*
H360.80920.04030.33360.076*
H370.07380.43240.10180.059*
H380.00890.42200.14960.059*
H390.11750.40330.18160.059*
H400.16760.59670.18740.066*
H410.03120.61710.15260.066*
H420.00780.57440.26700.073*
H430.08580.67980.28860.073*
H440.30760.62240.33210.080*
H450.43950.52420.41940.099*
H460.37020.37290.46490.113*
H470.16360.32910.43290.105*
H480.03730.42700.34380.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.027 (12)0.02690 (13)0.04648 (18)0.00509 (10)0.01243 (12)0.01035 (11)
Pb20.027 (12)0.02591 (13)0.04690 (18)0.00448 (10)0.01214 (12)0.00715 (11)
Br10.0289 (3)0.0460 (4)0.0576 (5)0.0041 (2)0.0130 (3)0.0062 (3)
Br20.0381 (4)0.0421 (3)0.0472 (4)0.0046 (3)0.0104 (3)0.0071 (3)
Br30.0522 (4)0.0434 (4)0.0430 (4)0.0007 (3)0.0087 (3)0.0074 (3)
Br40.0558 (4)0.0270 (3)0.0602 (4)0.0065 (3)0.0206 (4)0.0115 (3)
Br50.0557 (4)0.0268 (3)0.0604 (4)0.0064 (3)0.0212 (4)0.0105 (3)
Br60.0276 (3)0.0502 (4)0.0577 (5)0.0072 (3)0.0131 (3)0.0163 (3)
Br70.0384 (4)0.0435 (3)0.0482 (4)0.0037 (3)0.0105 (3)0.0109 (3)
Br80.0509 (4)0.0438 (4)0.0432 (4)0.0082 (3)0.0077 (3)0.0086 (3)
N10.053 (4)0.043 (3)0.041 (3)0.010 (2)0.006 (3)0.007 (2)
N20.052 (4)0.043 (3)0.050 (4)0.003 (2)0.009 (3)0.012 (2)
N30.036 (3)0.053 (3)0.048 (3)0.001 (2)0.015 (3)0.008 (2)
N40.044 (3)0.051 (3)0.054 (4)0.009 (2)0.016 (3)0.011 (3)
C10.046 (4)0.067 (5)0.063 (5)0.010 (4)0.014 (4)0.024 (4)
C20.060 (5)0.062 (5)0.056 (5)0.013 (4)0.027 (4)0.012 (4)
C30.060 (5)0.049 (4)0.041 (4)0.006 (3)0.020 (4)0.001 (3)
C40.068 (6)0.064 (5)0.051 (5)0.000 (4)0.016 (4)0.009 (4)
C50.072 (7)0.108 (8)0.058 (6)0.003 (6)0.000 (5)0.014 (5)
C60.118 (11)0.090 (8)0.042 (5)0.026 (7)0.016 (6)0.004 (5)
C70.163 (13)0.055 (6)0.056 (6)0.003 (6)0.019 (7)0.019 (4)
C80.085 (7)0.067 (5)0.055 (5)0.010 (4)0.020 (5)0.011 (4)
C90.040 (4)0.061 (5)0.060 (5)0.005 (3)0.008 (4)0.003 (4)
C100.052 (5)0.066 (5)0.050 (5)0.004 (4)0.021 (4)0.005 (4)
C110.064 (5)0.054 (4)0.047 (5)0.010 (4)0.024 (4)0.018 (3)
C120.076 (7)0.074 (6)0.059 (6)0.019 (5)0.022 (5)0.018 (4)
C130.145 (11)0.058 (6)0.062 (7)0.020 (6)0.023 (7)0.005 (5)
C140.129 (12)0.079 (7)0.045 (5)0.028 (7)0.009 (6)0.002 (5)
C150.081 (8)0.106 (8)0.049 (6)0.006 (6)0.016 (5)0.011 (5)
C160.075 (7)0.073 (6)0.051 (5)0.020 (5)0.026 (5)0.011 (4)
C170.066 (5)0.041 (4)0.060 (5)0.013 (3)0.007 (4)0.015 (3)
C180.068 (6)0.059 (5)0.050 (5)0.003 (4)0.011 (4)0.024 (4)
C190.057 (5)0.052 (4)0.039 (4)0.002 (3)0.012 (4)0.018 (3)
C200.066 (6)0.070 (5)0.054 (5)0.014 (4)0.017 (4)0.017 (4)
C210.138 (11)0.057 (6)0.054 (6)0.011 (6)0.024 (7)0.003 (4)
C220.108 (10)0.087 (7)0.043 (5)0.021 (6)0.006 (6)0.006 (5)
C230.055 (6)0.113 (8)0.060 (6)0.007 (6)0.007 (5)0.007 (6)
C240.062 (6)0.077 (6)0.049 (5)0.014 (4)0.014 (4)0.009 (4)
C250.057 (5)0.037 (4)0.064 (5)0.002 (3)0.008 (4)0.003 (3)
C260.067 (6)0.048 (4)0.061 (5)0.017 (4)0.012 (4)0.005 (4)
C270.068 (6)0.047 (4)0.048 (5)0.005 (3)0.029 (4)0.000 (3)
C280.061 (6)0.086 (6)0.058 (5)0.004 (4)0.019 (5)0.020 (4)
C290.065 (7)0.113 (8)0.059 (6)0.003 (6)0.007 (5)0.003 (6)
C300.135 (11)0.083 (7)0.045 (6)0.043 (7)0.002 (7)0.004 (5)
C310.136 (11)0.063 (6)0.057 (6)0.005 (6)0.014 (7)0.011 (5)
C320.077 (7)0.069 (6)0.064 (6)0.012 (5)0.017 (5)0.004 (4)
Geometric parameters (Å, º) top
Pb1—Br32.8786 (8)C31—C321.365 (14)
Pb1—Br42.9927 (7)N1—H10.890
Pb1—Br12.9957 (7)N1—H20.890
Pb1—Br63.0080 (7)N1—H30.890
Pb1—Br53.0095 (7)N2—H130.890
Pb1—Br23.1965 (8)N2—H140.890
Pb2—Br82.8755 (8)N2—H150.890
Pb2—Br5i2.9935 (6)N3—H250.890
Pb2—Br62.9957 (7)N3—H260.890
Pb2—Br1ii3.0082 (7)N3—H270.890
Pb2—Br4iii3.0110 (7)N4—H370.890
Pb2—Br73.1982 (8)N4—H380.890
Br1—Pb2iv3.0082 (7)N4—H390.890
Br4—Pb2iii3.0110 (7)C1—H40.970
Br5—Pb2i2.9935 (6)C1—H50.970
N1—C11.507 (9)C2—H60.970
N2—C91.505 (9)C2—H70.970
N3—C171.491 (8)C4—H80.930
N4—C251.505 (8)C5—H90.930
C1—C21.491 (11)C6—H100.930
C2—C31.506 (11)C7—H110.930
C3—C41.377 (12)C8—H120.930
C3—C81.383 (10)C9—H160.970
C4—C51.364 (13)C9—H170.970
C5—C61.342 (13)C10—H180.970
C6—C71.395 (15)C10—H190.970
C7—C81.382 (14)C12—H200.930
C9—C101.502 (11)C13—H210.930
C10—C111.509 (11)C14—H220.930
C11—C121.377 (11)C15—H230.930
C11—C161.381 (12)C16—H240.930
C12—C131.374 (14)C17—H280.970
C13—C141.393 (16)C17—H290.970
C14—C151.364 (14)C18—H300.970
C15—C161.361 (13)C18—H310.970
C17—C181.516 (11)C20—H320.930
C18—C191.506 (11)C21—H330.930
C19—C201.380 (11)C22—H340.930
C19—C241.385 (12)C23—H350.930
C20—C211.379 (13)C24—H360.930
C21—C221.368 (15)C25—H400.970
C22—C231.378 (13)C25—H410.970
C23—C241.369 (12)C26—H420.970
C25—C261.483 (11)C26—H430.970
C26—C271.507 (12)C28—H440.930
C27—C281.366 (12)C29—H450.930
C27—C321.365 (10)C30—H460.930
C28—C291.382 (13)C31—H470.930
C29—C301.350 (13)C32—H480.930
C30—C311.403 (15)
Br1···N13.507 (5)H10···H44ix3.328
Br1···N1v3.412 (5)H11···C21vii3.569
Br1···N43.564 (5)H11···C22vii3.047
Br2···N13.411 (5)H11···C23vii3.135
Br2···N33.486 (6)H11···C26ix3.454
Br2···N43.462 (5)H11···C27ix3.563
Br3···N2iii3.393 (5)H11···C28ix3.551
Br4···N43.466 (7)H11···H23xii3.005
Br4···N4vi3.546 (5)H11···H34vii3.161
Br5···N33.566 (5)H11···H35vii3.301
Br5···N3i3.473 (6)H11···H43ix2.654
Br6···N23.510 (5)H11···H44ix3.366
Br6···N2iii3.402 (6)H12···Br3v3.408
Br6···N33.577 (6)H12···H22xii3.448
Br7···N23.416 (5)H12···H23xii3.596
Br7···N33.448 (5)H12···H35iv3.295
Br7···N4ii3.483 (6)H12···H36iv2.893
Br8···N1i3.395 (5)H12···H43ix3.057
N1···Br13.507 (5)H13···Br3iii3.459
N1···Br1v3.412 (5)H13···Br4iii3.284
N1···Br23.411 (5)H13···Br63.171
N1···Br8i3.395 (5)H13···Br6iii2.604
N2···Br3iii3.393 (5)H14···Br4iii3.522
N2···Br63.510 (5)H14···Br63.209
N2···Br6iii3.402 (6)H14···Br72.544
N2···Br73.416 (5)H15···Br3iii2.596
N3···Br23.486 (6)H15···H42ii3.459
N3···Br53.566 (5)H16···Br6iii3.540
N3···Br5i3.473 (6)H16···Br8iii2.968
N3···Br63.577 (6)H17···Br23.203
N3···Br73.448 (5)H17···Br63.166
N4···Br13.564 (5)H18···Br73.412
N4···Br23.462 (5)H18···C203.150
N4···Br43.466 (7)H18···C213.031
N4···Br4vi3.546 (5)H18···H263.259
N4···Br7iv3.483 (6)H18···H323.090
Br1···H13.181H18···H332.914
Br1···H1v2.608H19···Br23.547
Br1···H33.189H19···C283.128
Br1···H43.177H19···C292.968
Br1···H5v3.550H19···H323.371
Br1···H373.073H19···H333.240
Br1···H383.459H19···H442.833
Br2···H32.544H19···H452.545
Br2···H73.426H20···Br8iii3.392
Br2···H83.462H20···H10x3.403
Br2···H173.203H20···H31x3.066
Br2···H193.547H20···H442.889
Br2···H272.623H20···H453.321
Br2···H303.547H21···C5viii3.116
Br2···H323.368H21···C6viii3.096
Br2···H373.426H21···C18x3.445
Br2···H392.726H21···C19x3.553
Br3···H5v2.971H21···C24x3.564
Br3···H12v3.408H21···H9x3.028
Br3···H13iii3.459H21···H9viii3.243
Br3···H15iii2.596H21···H10x3.564
Br3···H28i2.961H21···H10viii3.244
Br3···H41vi3.296H21···H31x2.649
Br3···H42vi3.486H21···H36x3.389
Br3···H43vi3.521H22···C8viii3.521
Br4···H13iii3.284H22···C23xi3.562
Br4···H14iii3.522H22···H12xiii3.448
Br4···H372.679H22···H35xi2.747
Br4···H37vi3.273H22···H36x3.236
Br4···H38vi3.171H22···H47viii3.200
Br4···H403.403H23···C22xi3.283
Br4···H41vi3.218H23···C23xi3.442
Br5···H13.283H23···C26ii3.360
Br5···H33.524H23···H11xiii3.005
Br5···H253.281H23···H12xiii3.596
Br5···H25i2.693H23···H34xi2.678
Br5···H273.221H23···H35xi2.998
Br5···H28i3.380H23···H42ii2.924
Br5···H293.166H23···H43ii3.107
Br6···H133.171H23···H47viii3.269
Br6···H13iii2.604H23···H48ii3.409
Br6···H143.209H24···Br73.485
Br6···H16iii3.540H24···C213.486
Br6···H173.166H24···C223.490
Br6···H253.071H24···H333.342
Br6···H273.466H24···H343.326
Br7···H4ii3.216H24···H42ii2.751
Br7···H6ii3.529H24···H48ii2.887
Br7···H142.544H25···Br53.281
Br7···H183.412H25···Br5i2.693
Br7···H243.485H25···Br63.071
Br7···H253.416H25···Br73.416
Br7···H262.706H26···Br72.706
Br7···H38ii2.632H26···H183.259
Br7···H42ii3.545H27···Br22.623
Br7···H48ii3.382H27···Br53.221
Br8···H1i3.444H27···Br63.466
Br8···H2i2.606H28···Br3i2.961
Br8···H16iii2.968H28···Br5i3.380
Br8···H20iii3.392H29···Br53.166
Br8···H29i3.284H29···Br8i3.284
Br8···H30i3.506H30···Br23.547
Br8···H31i3.521H30···Br8i3.506
Br8···H40iii2.965H30···C43.185
C2···H35iv3.354H30···C53.291
C2···H473.372H30···H23.444
C3···H35iv3.594H30···H82.732
C3···H473.502H30···H92.951
C4···H303.185H31···Br8i3.521
C4···H473.545H31···C12ix3.178
C5···H9vii3.442H31···C13ix2.928
C5···H10vii3.513H31···H93.184
C5···H21viii3.116H31···H20ix3.066
C5···H303.291H31···H21ix2.649
C6···H9vii3.290H32···Br23.368
C6···H21viii3.096H32···H82.925
C6···H44ix3.550H32···H93.415
C7···H43ix2.957H32···H183.090
C7···H44ix3.554H32···H193.371
C8···H22viii3.521H32···H453.580
C8···H35iv3.572H32···H463.429
C8···H43ix3.192H33···C103.380
C10···H333.380H33···C113.501
C10···H453.380H33···C163.533
C11···H333.501H33···C29viii3.039
C12···H31x3.178H33···C30viii2.982
C12···H46viii3.473H33···C31viii3.481
C13···H31x2.928H33···H182.914
C13···H36x3.533H33···H193.240
C13···H46viii3.588H33···H243.342
C13···H47viii3.553H33···H453.082
C14···H35xi3.325H33···H45viii3.208
C14···H36x3.463H33···H46viii3.154
C14···H47viii3.037H34···C15xi3.472
C15···H34xi3.472H34···C31viii3.564
C15···H35xi3.443H34···C32viii3.457
C15···H42ii3.294H34···H11vii3.161
C15···H47viii3.072H34···H23xi2.678
C16···H333.533H34···H243.326
C16···H42ii3.195H34···H48ii3.483
C16···H47viii3.576H35···C2ii3.354
C18···H93.407H35···C3ii3.594
C18···H21ix3.445H35···C8ii3.572
C19···H21ix3.553H35···C14xi3.325
C20···H10vii3.574H35···C15xi3.443
C20···H183.150H35···H6ii2.529
C21···H11vii3.569H35···H11vii3.301
C21···H183.031H35···H12ii3.295
C21···H243.486H35···H22xi2.747
C22···H11vii3.047H35···H23xi2.998
C22···H23xi3.283H35···H47ii3.033
C22···H243.490H36···C13ix3.533
C23···H6ii2.944H36···C14ix3.463
C23···H11vii3.135H36···H6ii2.833
C23···H22xi3.562H36···H12ii2.893
C23···H23xi3.442H36···H21ix3.389
C24···H6ii3.106H36···H22ix3.236
C24···H21ix3.564H37···Br13.073
C26···H11x3.454H37···Br23.426
C26···H23iv3.360H37···Br42.679
C27···H11x3.563H37···Br4vi3.273
C28···H11x3.551H38···Br13.459
C28···H193.128H38···Br4vi3.171
C29···H192.968H38···Br7iv2.632
C29···H33viii3.039H39···Br22.726
C29···H45viii3.416H39···H33.582
C29···H46viii3.509H39···H73.217
C30···H83.442H40···Br43.403
C30···H33viii2.982H40···Br8iii2.965
C30···H45viii3.277H41···Br3vi3.296
C31···H73.007H41···Br4vi3.218
C31···H83.489H42···Br3vi3.486
C31···H33viii3.481H42···Br7iv3.545
C31···H34viii3.564H42···C15iv3.294
C32···H73.142H42···C16iv3.195
C32···H34viii3.457H42···H15iv3.459
H1···Br13.181H42···H23iv2.924
H1···Br1v2.608H42···H24iv2.751
H1···Br53.283H43···Br3vi3.521
H1···Br8i3.444H43···C7x2.957
H2···Br8i2.606H43···C8x3.192
H2···H303.444H43···H11x2.654
H3···Br13.189H43···H12x3.057
H3···Br22.544H43···H23iv3.107
H3···Br53.524H44···C6x3.550
H3···H393.582H44···C7x3.554
H4···Br13.177H44···H10x3.328
H4···Br7iv3.216H44···H11x3.366
H5···Br1v3.550H44···H192.833
H5···Br3v2.971H44···H202.889
H6···Br7iv3.529H45···C103.380
H6···C23iv2.944H45···C29viii3.416
H6···C24iv3.106H45···C30viii3.277
H6···H35iv2.529H45···H192.545
H6···H36iv2.833H45···H203.321
H6···H473.229H45···H323.580
H6···H483.411H45···H333.082
H7···Br23.426H45···H33viii3.208
H7···C313.007H45···H45viii2.949
H7···C323.142H45···H46viii2.686
H7···H393.217H46···C12viii3.473
H7···H472.919H46···C13viii3.588
H7···H483.108H46···C29viii3.509
H8···Br23.462H46···H83.246
H8···C303.442H46···H323.429
H8···C313.489H46···H33viii3.154
H8···H302.732H46···H45viii2.686
H8···H322.925H47···C23.372
H8···H463.246H47···C33.502
H8···H473.387H47···C43.545
H9···C5vii3.442H47···C13viii3.553
H9···C6vii3.290H47···C14viii3.037
H9···C183.407H47···C15viii3.072
H9···H9vii2.979H47···C16viii3.576
H9···H10vii2.696H47···H63.229
H9···H21ix3.028H47···H72.919
H9···H21viii3.243H47···H83.387
H9···H302.951H47···H22viii3.200
H9···H313.184H47···H23viii3.269
H9···H323.415H47···H35iv3.033
H10···C5vii3.513H48···Br7iv3.382
H10···C20vii3.574H48···H63.411
H10···H9vii2.696H48···H73.108
H10···H20ix3.403H48···H23iv3.409
H10···H21ix3.564H48···H24iv2.887
H10···H21viii3.244H48···H34iv3.483
Br3—Pb1—Br490.86 (2)C17—N3—H27109.5
Br3—Pb1—Br196.54 (2)H25—N3—H27109.5
Br4—Pb1—Br188.17 (2)H26—N3—H27109.5
Br3—Pb1—Br691.58 (2)C25—N4—H37109.5
Br4—Pb1—Br688.03 (2)C25—N4—H38109.5
Br1—Pb1—Br6171.08 (2)H37—N4—H38109.5
Br3—Pb1—Br596.46 (2)C25—N4—H39109.5
Br4—Pb1—Br5172.68 (2)H37—N4—H39109.5
Br1—Pb1—Br591.34 (2)H38—N4—H39109.5
Br6—Pb1—Br591.41 (2)C2—C1—H4109.3
Br3—Pb1—Br2179.289 (18)N1—C1—H4109.3
Br4—Pb1—Br288.44 (2)C2—C1—H5109.3
Br1—Pb1—Br283.56 (2)N1—C1—H5109.3
Br6—Pb1—Br288.28 (2)H4—C1—H5108.0
Br5—Pb1—Br284.24 (2)C1—C2—H6109.0
Br8—Pb2—Br5i91.00 (2)C3—C2—H6109.0
Br8—Pb2—Br696.67 (2)C1—C2—H7109.0
Br5i—Pb2—Br688.12 (2)C3—C2—H7109.0
Br8—Pb2—Br1ii91.54 (2)H6—C2—H7107.8
Br5i—Pb2—Br1ii87.98 (2)C5—C4—H8118.7
Br6—Pb2—Br1ii170.97 (2)C3—C4—H8118.7
Br8—Pb2—Br4iii96.35 (2)C6—C5—H9119.7
Br5i—Pb2—Br4iii172.63 (2)C4—C5—H9119.7
Br6—Pb2—Br4iii91.46 (2)C5—C6—H10120.1
Br1ii—Pb2—Br4iii91.36 (2)C7—C6—H10120.1
Br8—Pb2—Br7179.356 (18)C8—C7—H11120.6
Br5i—Pb2—Br788.37 (2)C6—C7—H11120.6
Br6—Pb2—Br783.44 (2)C7—C8—H12119.0
Br1ii—Pb2—Br788.31 (2)C3—C8—H12119.0
Br4iii—Pb2—Br784.28 (2)C10—C9—H16109.4
Pb1—Br1—Pb2iv150.77 (3)N2—C9—H16109.4
Pb1—Br4—Pb2iii152.07 (3)C10—C9—H17109.4
Pb2i—Br5—Pb1152.15 (3)N2—C9—H17109.4
Pb2—Br6—Pb1150.86 (3)H16—C9—H17108.0
C2—C1—N1111.6 (7)C9—C10—H18108.7
C1—C2—C3112.9 (7)C11—C10—H18108.7
C4—C3—C8116.4 (8)C9—C10—H19108.7
C4—C3—C2121.9 (7)C11—C10—H19108.7
C8—C3—C2121.7 (8)H18—C10—H19107.6
C5—C4—C3122.5 (9)C13—C12—H20119.4
C6—C5—C4120.6 (11)C11—C12—H20119.4
C5—C6—C7119.8 (10)C12—C13—H21120.9
C8—C7—C6118.7 (9)C14—C13—H21120.9
C7—C8—C3122.0 (10)C15—C14—H22119.4
C10—C9—N2111.0 (7)C13—C14—H22119.4
C9—C10—C11114.4 (6)C16—C15—H23120.4
C12—C11—C16118.4 (9)C14—C15—H23120.4
C12—C11—C10120.5 (9)C15—C16—H24119.2
C16—C11—C10121.1 (8)C11—C16—H24119.2
C13—C12—C11121.3 (10)N3—C17—H28109.5
C12—C13—C14118.3 (10)C18—C17—H28109.5
C15—C14—C13121.2 (10)N3—C17—H29109.5
C16—C15—C14119.1 (11)C18—C17—H29109.5
C15—C16—C11121.6 (9)H28—C17—H29108.1
N3—C17—C18110.7 (6)C19—C18—H30108.5
C19—C18—C17114.9 (6)C17—C18—H30108.5
C20—C19—C24118.1 (8)C19—C18—H31108.5
C20—C19—C18120.7 (8)C17—C18—H31108.5
C24—C19—C18121.1 (8)H30—C18—H31107.5
C21—C20—C19121.1 (10)C21—C20—H32119.4
C22—C21—C20119.4 (10)C19—C20—H32119.4
C21—C22—C23120.6 (10)C22—C21—H33120.3
C24—C23—C22119.4 (10)C20—C21—H33120.3
C23—C24—C19121.3 (9)C21—C22—H34119.7
C26—C25—N4111.4 (6)C23—C22—H34119.7
C25—C26—C27114.2 (7)C24—C23—H35120.3
C28—C27—C32117.6 (9)C22—C23—H35120.3
C28—C27—C26121.0 (7)C23—C24—H36119.3
C32—C27—C26121.5 (8)C19—C24—H36119.3
C27—C28—C29121.6 (9)C26—C25—H40109.4
C30—C29—C28119.4 (11)N4—C25—H40109.4
C29—C30—C31120.6 (10)C26—C25—H41109.4
C32—C31—C30117.5 (10)N4—C25—H41109.4
C27—C32—C31123.1 (10)H40—C25—H41108.0
C1—N1—H1109.5C25—C26—H42108.7
C1—N1—H2109.5C27—C26—H42108.7
H1—N1—H2109.5C25—C26—H43108.7
C1—N1—H3109.5C27—C26—H43108.7
H1—N1—H3109.5H42—C26—H43107.6
H2—N1—H3109.5C27—C28—H44119.2
C9—N2—H13109.5C29—C28—H44119.2
C9—N2—H14109.5C30—C29—H45120.3
H13—N2—H14109.5C28—C29—H45120.3
C9—N2—H15109.5C29—C30—H46119.7
H13—N2—H15109.5C31—C30—H46119.7
H14—N2—H15109.5C32—C31—H47121.2
C17—N3—H25109.5C30—C31—H47121.2
C17—N3—H26109.5C27—C32—H48118.4
H25—N3—H26109.5C31—C32—H48118.4
Br3—Pb1—Br1—Pb2iv71.22 (6)C9—C10—C11—C1276.7 (9)
Br4—Pb1—Br1—Pb2iv19.43 (6)C9—C10—C11—C16102.4 (9)
Br5—Pb1—Br1—Pb2iv167.88 (6)C16—C11—C12—C130.5 (13)
Br2—Pb1—Br1—Pb2iv108.07 (6)C10—C11—C12—C13178.7 (8)
Br3—Pb1—Br4—Pb2iii89.77 (6)C11—C12—C13—C141.7 (14)
Br1—Pb1—Br4—Pb2iii173.72 (6)C12—C13—C14—C151.5 (16)
Br6—Pb1—Br4—Pb2iii1.78 (6)C13—C14—C15—C160.8 (15)
Br2—Pb1—Br4—Pb2iii90.11 (6)C14—C15—C16—C113.0 (14)
Br3—Pb1—Br5—Pb2i92.15 (6)C12—C11—C16—C152.9 (13)
Br1—Pb1—Br5—Pb2i4.58 (7)C10—C11—C16—C15176.3 (7)
Br6—Pb1—Br5—Pb2i176.10 (6)N3—C17—C18—C1958.9 (9)
Br2—Pb1—Br5—Pb2i87.97 (6)C17—C18—C19—C20109.3 (9)
Br8—Pb2—Br6—Pb171.35 (6)C17—C18—C19—C2469.1 (9)
Br5i—Pb2—Br6—Pb119.43 (6)C24—C19—C20—C210.8 (12)
Br4iii—Pb2—Br6—Pb1167.92 (6)C18—C19—C20—C21179.2 (7)
Br7—Pb2—Br6—Pb1108.01 (6)C19—C20—C21—C221.8 (13)
Br3—Pb1—Br6—Pb276.20 (6)C20—C21—C22—C231.5 (15)
Br4—Pb1—Br6—Pb2167.00 (6)C21—C22—C23—C240.2 (15)
Br5—Pb1—Br6—Pb220.30 (6)C22—C23—C24—C190.8 (14)
Br2—Pb1—Br6—Pb2104.50 (6)C20—C19—C24—C230.5 (12)
N1—C1—C2—C364.3 (9)C18—C19—C24—C23177.9 (7)
C1—C2—C3—C4103.1 (9)N4—C25—C26—C2760.4 (10)
C1—C2—C3—C877.0 (10)C25—C26—C27—C2868.7 (11)
C8—C3—C4—C50.9 (13)C25—C26—C27—C32111.4 (9)
C2—C3—C4—C5179.2 (9)C32—C27—C28—C291.7 (14)
C3—C4—C5—C60.9 (16)C26—C27—C28—C29178.4 (9)
C4—C5—C6—C72.5 (17)C27—C28—C29—C300.3 (16)
C5—C6—C7—C82.2 (17)C28—C29—C30—C313.0 (17)
C6—C7—C8—C30.4 (16)C29—C30—C31—C323.7 (16)
C4—C3—C8—C71.1 (13)C28—C27—C32—C310.9 (14)
C2—C3—C8—C7179.0 (9)C26—C27—C32—C31179.2 (9)
N2—C9—C10—C1164.1 (9)C30—C31—C32—C271.8 (16)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x, y, z; (vi) x, y+1, z; (vii) x+1, y, z+1; (viii) x+1, y+1, z+1; (ix) x, y1, z; (x) x, y+1, z; (xi) x+2, y+1, z+1; (xii) x1, y1, z; (xiii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.893.183.508 (5)104
N1—H3···Br20.892.543.411 (5)165
N2—H13···Br60.893.173.509 (5)105
N2—H14···Br70.892.543.416 (5)167
N3—H26···Br70.892.713.448 (6)142
N3—H27···Br20.892.623.486 (6)164
N4—H37···Br40.892.683.465 (5)148
N4—H39···Br20.892.733.462 (6)140

Experimental details

Crystal data
Chemical formula(C8H12N)2[PbBr4]
Mr771.20
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.6150 (4), 11.6275 (5), 17.5751 (6)
α, β, γ (°)99.5472 (12), 105.7245 (10), 89.9770 (12)
V3)2250.62 (15)
Z4
Radiation typeMo Kα
µ (mm1)14.63
Crystal size (mm)0.25 × 0.20 × 0.03
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
see: Higashi (1999)
Tmin, Tmax0.106, 0.645
No. of measured, independent and
observed [I > 2σ(I)] reflections
20072, 10077, 7157
Rint0.053
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 0.97
No. of reflections10077
No. of parameters416
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.26, 2.53

Computer programs: PROCESS-AUTO (Rigaku Corporation, 1998), CrystalStructure (Rigaku Americas & Rigaku Corporation, 2008), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2009), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Pb1—Br32.8786 (8)C7—C81.382 (14)
Pb1—Br42.9927 (7)C9—C101.502 (11)
Pb1—Br12.9957 (7)C10—C111.509 (11)
Pb1—Br63.0080 (7)C11—C121.377 (11)
Pb1—Br53.0095 (7)C11—C161.381 (12)
Pb1—Br23.1965 (8)C12—C131.374 (14)
Pb2—Br82.8755 (8)C13—C141.393 (16)
Pb2—Br5i2.9935 (6)C14—C151.364 (14)
Pb2—Br62.9957 (7)C15—C161.361 (13)
Pb2—Br1ii3.0082 (7)C17—C181.516 (11)
Pb2—Br4iii3.0110 (7)C18—C191.506 (11)
Pb2—Br73.1982 (8)C19—C201.380 (11)
Br1—Pb2iv3.0082 (7)C19—C241.385 (12)
Br4—Pb2iii3.0110 (7)C20—C211.379 (13)
Br5—Pb2i2.9935 (6)C21—C221.368 (15)
N1—C11.507 (9)C22—C231.378 (13)
N2—C91.505 (9)C23—C241.369 (12)
N3—C171.491 (8)C25—C261.483 (11)
N4—C251.505 (8)C26—C271.507 (12)
C1—C21.491 (11)C27—C281.366 (12)
C2—C31.506 (11)C27—C321.365 (10)
C3—C41.377 (12)C28—C291.382 (13)
C3—C81.383 (10)C29—C301.350 (13)
C4—C51.364 (13)C30—C311.403 (15)
C5—C61.342 (13)C31—C321.365 (14)
C6—C71.395 (15)
Br3—Pb1—Br490.86 (2)Br5i—Pb2—Br688.12 (2)
Br3—Pb1—Br196.54 (2)Br8—Pb2—Br1ii91.54 (2)
Br4—Pb1—Br188.17 (2)Br5i—Pb2—Br1ii87.98 (2)
Br3—Pb1—Br691.58 (2)Br6—Pb2—Br1ii170.97 (2)
Br4—Pb1—Br688.03 (2)Br8—Pb2—Br4iii96.35 (2)
Br1—Pb1—Br6171.08 (2)Br5i—Pb2—Br4iii172.63 (2)
Br3—Pb1—Br596.46 (2)Br6—Pb2—Br4iii91.46 (2)
Br4—Pb1—Br5172.68 (2)Br1ii—Pb2—Br4iii91.36 (2)
Br1—Pb1—Br591.34 (2)Br8—Pb2—Br7179.356 (18)
Br6—Pb1—Br591.41 (2)Br5i—Pb2—Br788.37 (2)
Br3—Pb1—Br2179.289 (18)Br6—Pb2—Br783.44 (2)
Br4—Pb1—Br288.44 (2)Br1ii—Pb2—Br788.31 (2)
Br1—Pb1—Br283.56 (2)Br4iii—Pb2—Br784.28 (2)
Br6—Pb1—Br288.28 (2)Pb1—Br1—Pb2iv150.77 (3)
Br5—Pb1—Br284.24 (2)Pb1—Br4—Pb2iii152.07 (3)
Br8—Pb2—Br5i91.00 (2)Pb2i—Br5—Pb1152.15 (3)
Br8—Pb2—Br696.67 (2)Pb2—Br6—Pb1150.86 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.893.183.508 (5)104
N1—H3···Br20.892.543.411 (5)165
N2—H13···Br60.893.173.509 (5)105
N2—H14···Br70.892.543.416 (5)167
N3—H26···Br70.892.713.448 (6)142
N3—H27···Br20.892.623.486 (6)164
N4—H37···Br40.892.683.465 (5)148
N4—H39···Br20.892.733.462 (6)140
 

Acknowledgements

This study was supported financially by CREST from the Japan Science and Technology Agency. The authors thank Professor H. Adachi of Osaka University and Sosho Inc. for careful advice on the refinement. We thank Dr Y. Takeoka of Sophia University for helpful advice on the synthesis.

References

First citationBilling, D. G. & Lemmerer, A. (2003). Acta Cryst. E59, m381–m383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationChapuis, G., Kind, R. & Arend, H. (1976). Phys. Status Solidi A 36, 285–295.  CrossRef CAS Google Scholar
First citationCheng, Z. Y., Wang, H. F., Quan, Z. W., Lin, C. K., Lin, J. & Han, Y. C. (2005). J. Cryst. Growth 285, 352–357.  Web of Science CrossRef CAS Google Scholar
First citationEijk, C. W. E. van der, de Haas, J. T. M., Rodnyi, P. A., Khodyuk, I. V., Shibuya, K., Nishikido, F. & Koshimizu, M. (2008). Conf. Rec. IEEE 2008 Nucl. Sci. Symp. Med. Img. Conf., Dresden, Germany, Oct. 19–25, N69-3.  Google Scholar
First citationEra, M., Morimoto, S., Tsutsui, T. & Saito, S. (1995). Synth. Met. 71, 2013–2014.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1999). ABSCOR. Rigaku Corporation, Japan.  Google Scholar
First citationHuh, Y.-D., Kim, J.-H., Kweon, S. S., Kuk, W.-K., Hwang, C.-S., Hyun, J.-W., Kim, Y.-J. & Park, Y.-B. (2006). Curr. Appl. Phys. 6, 219–223.  Web of Science CSD CrossRef Google Scholar
First citationKishimoto, S., Shibuya, K., Nishikido, F., Koshimizu, M., Haruki, R. & Yoda, Y. (2008). Appl. Phys. Lett. 93, 261901 1–3.  Google Scholar
First citationKitazawa, N. & Watanabe, Y. (2005). Surf. Coat. Technol. 198, 9–13.  Web of Science CrossRef CAS Google Scholar
First citationMitzi, D. B. (1999). J. Solid State Chem. 145, 694–704.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRigaku Americas & Rigaku Corporation (2008). CrystalStructure. Rigaku Americas, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWillett, R. D. (1990). Acta Cryst. C46, 565–568.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds