metal-organic compounds
Poly[[triaqua(μ3-pyridine-2,4,6-tricarboxylato)gadolinium(III)] monohydrate]
aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: xcuwaller@163.com
The title compound, {[Gd(C8H2NO6)(H2O)3]·H2O}n, was obtained in water under hydrothermal conditions. The GdIII ions are nine-coordinated by two O and one N atoms from one pyridine-2,4,6-tricarboxylate ligand, two O atoms from another ligand, one O atom from a third ligand and three coordinated water molecules. Each ligand binds three metal centers. Two-dimensional layers are formed through the Gd—O bonds and the layers are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network.
Related literature
For related structures, see: Gao et al. (2006); Ghosh & Bharadwaj (2005); Wang et al. (2007); Fu & Xu (2008); Li et al. (2008). For general background to lanthanide-organic frameworks and their properties, see: Parker (2000); Tobisch (2005); Pan et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).
Supporting information
https://doi.org/10.1107/S1600536809038793/zq2008sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809038793/zq2008Isup2.hkl
A mixture of H3pta (0.0422 g, 0.2 mmol), GdCl3.6H2O (0.0743 g, 0.2 mmol) and deionized water (15 ml) was put in a teflon-lined steel bomb and heated at 453 K for 3 days, then cooled the bomb at a rate of 2 K/hour. The colorless crystals suitable for X-ray diffraction measurements were obtained. Spectroscopic analysis: IR (KBr, ν cm-1): 3606, 3382, 1631, 1608, 1582, 1549, 1445, 1395, 1352, 1277, 1235, 1110, 1025, 950, 931, 818, 791, 740, 664, 623, 587, 543, 479, 435. Elemental analysis, calculated for C8H10GdNO10: C, 21.97; H, 2.30; N, 3.20.%; found: C, 22.18; H, 2.11; N, 3.54%.
All hydrogen atoms bonded to carbon atoms were positioned geometrically and refined as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The H atoms of water molecules were found from difference Fourier maps and included in the final refinements with a restraint of O—H = 0.75 - 0.85 Å and Uiso(H) = 1.5 Ueq(O).
The preparation and property researching of metal-organic frameworks have attracted widespread interest in recent years due to their potential application in the areas of magnetism, luminescence, adsorption, catalysis and so on (Parker, 2000; Tobisch, 2005; Pan et al., 2003). Multicarboxylic acids containing pyridyl rings were widely used and many 1-D, 2-D and 3-D coordination polymers with novel structures have been reported. Especially, complexes with pyridine-2,4,6-tricarboxylato (H3pta = pyridine-2,4,6-tricarboxylic acid) ligands have been recently reported (Li et al., 2008; Wang et al., 2007; Fu et al., 2008.). The title compound is a new GdIII complex built with pta ligands and prepared under hydrothermal conditions.
As shown in Fig. 1, the local geometry of GdIII ion is a distorted monocapped antitetragonal prism. Each pta ligand connects three GdIII ions with oxgen atoms of the carboxyl groups and the nitrogen atom. There are three coordination water molecules on each GdIII ion. A two-dimentional layer is constructed by the bonding among oxygen atoms and GdIII ions (see Fig. 2). In addition, a lattice water molecule per
is in the Many O—H···O hydrogen bonds are formed between the oxygen atoms of water molecules and the oxygen atoms of caboxyl groups. As a result, the three-dimensional network formed by hydrogen bonds is shown in Fig. 3.For related crystal structures, see: Gao et al. (2006); Ghosh & Bharadwaj (2005); Wang et al. (2007); Fu et al. (2008); Li et al. (2008). For general background to lanthanide-organic frameworks and their properties, see: Parker (2000); Tobisch (2005); Pan et al. (2003).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. | |
Fig. 2. The packing of (I), showing the two-dimensional layers formed by Gd—O bonds. | |
Fig. 3. View of the three-dimensional network constructed by O—H···O hydrogen bonds (dashed lines). All H atoms were omitted for clarity. |
[Gd(C8H2NO6)(H2O)3]·H2O | F(000) = 836 |
Mr = 437.42 | Dx = 2.503 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -P 2ybc | Cell parameters from 3775 reflections |
a = 11.896 (3) Å | θ = 1.7–28.7° |
b = 7.2696 (14) Å | µ = 5.77 mm−1 |
c = 13.505 (3) Å | T = 113 K |
β = 96.259 (3)° | Block, colourless |
V = 1160.9 (4) Å3 | 0.12 × 0.10 × 0.08 mm |
Z = 4 |
Rigaku Saturn diffractometer | 2776 independent reflections |
Radiation source: rotating anode | 2366 reflections with I > 2σ(I) |
Confocal monochromator | Rint = 0.038 |
Detector resolution: 7.31 pixels mm-1 | θmax = 27.9°, θmin = 1.7° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | k = −8→9 |
Tmin = 0.544, Tmax = 0.655 | l = −17→17 |
10599 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0242P)2] where P = (Fo2 + 2Fc2)/3 |
2776 reflections | (Δ/σ)max = 0.001 |
206 parameters | Δρmax = 0.64 e Å−3 |
8 restraints | Δρmin = −1.29 e Å−3 |
[Gd(C8H2NO6)(H2O)3]·H2O | V = 1160.9 (4) Å3 |
Mr = 437.42 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.896 (3) Å | µ = 5.77 mm−1 |
b = 7.2696 (14) Å | T = 113 K |
c = 13.505 (3) Å | 0.12 × 0.10 × 0.08 mm |
β = 96.259 (3)° |
Rigaku Saturn diffractometer | 2776 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 2366 reflections with I > 2σ(I) |
Tmin = 0.544, Tmax = 0.655 | Rint = 0.038 |
10599 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 8 restraints |
wR(F2) = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.64 e Å−3 |
2776 reflections | Δρmin = −1.29 e Å−3 |
206 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Gd1 | 0.283337 (12) | 0.28362 (2) | 0.703522 (11) | 0.00496 (6) | |
O1 | 0.46782 (18) | 0.4287 (3) | 0.74763 (16) | 0.0085 (5) | |
O2 | 0.58731 (18) | 0.5825 (3) | 0.85710 (16) | 0.0080 (4) | |
O3 | 0.3449 (2) | 1.0594 (3) | 1.05119 (16) | 0.0101 (5) | |
O4 | 0.25022 (19) | 0.8881 (3) | 1.14877 (16) | 0.0111 (5) | |
O5 | 0.10951 (19) | 0.3347 (3) | 0.77338 (17) | 0.0118 (5) | |
O6 | 0.00718 (19) | 0.4715 (3) | 0.88248 (16) | 0.0105 (5) | |
O7 | 0.3762 (2) | 0.1238 (3) | 0.85200 (17) | 0.0109 (5) | |
H7A | 0.425 (3) | 0.051 (4) | 0.838 (3) | 0.016* | |
H7B | 0.369 (3) | 0.110 (5) | 0.9117 (19) | 0.016* | |
O8 | 0.1937 (2) | −0.0211 (3) | 0.71872 (18) | 0.0117 (5) | |
H8A | 0.129 (2) | −0.034 (5) | 0.690 (3) | 0.018* | |
H8B | 0.225 (3) | −0.109 (4) | 0.709 (3) | 0.018* | |
O9 | 0.1329 (2) | 0.2581 (3) | 0.56658 (18) | 0.0135 (5) | |
H9A | 0.081 (3) | 0.185 (4) | 0.571 (3) | 0.020* | |
H9B | 0.121 (3) | 0.314 (5) | 0.513 (2) | 0.020* | |
O10 | 0.0781 (2) | 0.4862 (3) | 0.40873 (19) | 0.0194 (6) | |
H10A | 0.106 (4) | 0.505 (6) | 0.357 (2) | 0.029* | |
H10B | 0.016 (3) | 0.531 (5) | 0.392 (3) | 0.029* | |
N1 | 0.2963 (2) | 0.4907 (3) | 0.85098 (19) | 0.0060 (5) | |
C1 | 0.3938 (3) | 0.5761 (4) | 0.8822 (2) | 0.0055 (6) | |
C2 | 0.4007 (3) | 0.7107 (4) | 0.9553 (2) | 0.0073 (6) | |
H2 | 0.4699 | 0.7730 | 0.9744 | 0.009* | |
C3 | 0.3035 (3) | 0.7525 (4) | 1.0003 (2) | 0.0082 (6) | |
C4 | 0.2043 (3) | 0.6563 (4) | 0.9712 (2) | 0.0073 (6) | |
H4 | 0.1385 | 0.6761 | 1.0037 | 0.009* | |
C5 | 0.2035 (3) | 0.5320 (4) | 0.8944 (2) | 0.0070 (6) | |
C6 | 0.4912 (3) | 0.5242 (4) | 0.8255 (2) | 0.0068 (6) | |
C7 | 0.3007 (3) | 0.9081 (4) | 1.0720 (2) | 0.0077 (6) | |
C8 | 0.0974 (3) | 0.4387 (4) | 0.8469 (2) | 0.0072 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Gd1 | 0.00489 (8) | 0.00531 (9) | 0.00486 (9) | 0.00011 (6) | 0.00130 (6) | −0.00021 (6) |
O1 | 0.0066 (11) | 0.0089 (11) | 0.0103 (12) | −0.0013 (8) | 0.0017 (9) | −0.0024 (9) |
O2 | 0.0051 (11) | 0.0103 (11) | 0.0082 (11) | −0.0021 (8) | −0.0006 (9) | 0.0004 (8) |
O3 | 0.0137 (12) | 0.0071 (11) | 0.0099 (12) | −0.0012 (9) | 0.0034 (9) | −0.0026 (9) |
O4 | 0.0143 (13) | 0.0104 (12) | 0.0094 (12) | −0.0038 (9) | 0.0059 (9) | −0.0025 (9) |
O5 | 0.0075 (12) | 0.0142 (11) | 0.0142 (12) | −0.0027 (9) | 0.0030 (9) | −0.0062 (9) |
O6 | 0.0054 (11) | 0.0150 (12) | 0.0111 (12) | 0.0014 (9) | 0.0015 (9) | −0.0024 (9) |
O7 | 0.0132 (13) | 0.0111 (12) | 0.0086 (12) | 0.0047 (9) | 0.0023 (10) | 0.0035 (9) |
O8 | 0.0084 (12) | 0.0096 (12) | 0.0166 (13) | 0.0008 (9) | −0.0005 (10) | −0.0012 (10) |
O9 | 0.0135 (13) | 0.0173 (13) | 0.0088 (12) | −0.0061 (9) | −0.0027 (10) | 0.0041 (9) |
O10 | 0.0237 (16) | 0.0199 (13) | 0.0141 (14) | 0.0057 (11) | 0.0010 (12) | 0.0048 (11) |
N1 | 0.0057 (13) | 0.0058 (12) | 0.0065 (13) | 0.0006 (9) | 0.0012 (10) | 0.0008 (10) |
C1 | 0.0072 (15) | 0.0040 (14) | 0.0056 (15) | −0.0021 (11) | 0.0024 (12) | 0.0023 (11) |
C2 | 0.0071 (15) | 0.0054 (14) | 0.0094 (16) | −0.0029 (11) | 0.0015 (12) | 0.0004 (12) |
C3 | 0.0097 (17) | 0.0102 (16) | 0.0042 (15) | 0.0004 (11) | −0.0011 (12) | 0.0011 (11) |
C4 | 0.0061 (15) | 0.0070 (14) | 0.0092 (16) | 0.0013 (11) | 0.0026 (12) | 0.0021 (12) |
C5 | 0.0059 (15) | 0.0073 (15) | 0.0083 (16) | 0.0010 (11) | 0.0021 (12) | 0.0009 (12) |
C6 | 0.0095 (16) | 0.0038 (14) | 0.0071 (16) | 0.0000 (11) | 0.0007 (12) | 0.0014 (11) |
C7 | 0.0054 (15) | 0.0101 (15) | 0.0070 (16) | 0.0018 (11) | −0.0017 (12) | 0.0000 (12) |
C8 | 0.0065 (16) | 0.0060 (15) | 0.0095 (16) | −0.0008 (11) | 0.0023 (12) | 0.0021 (12) |
Gd1—O2i | 2.335 (2) | O7—H7B | 0.83 (2) |
Gd1—O5 | 2.393 (2) | O8—H8A | 0.82 (3) |
Gd1—O9 | 2.437 (3) | O8—H8B | 0.75 (2) |
Gd1—O1 | 2.449 (2) | O9—H9A | 0.82 (2) |
Gd1—O7 | 2.471 (2) | O9—H9B | 0.83 (2) |
Gd1—O8 | 2.477 (2) | O10—H10A | 0.81 (2) |
Gd1—N1 | 2.488 (2) | O10—H10B | 0.82 (3) |
Gd1—O4ii | 2.517 (2) | N1—C5 | 1.339 (4) |
Gd1—O3ii | 2.530 (2) | N1—C1 | 1.342 (4) |
Gd1—C7ii | 2.880 (3) | C1—C2 | 1.386 (4) |
O1—C6 | 1.266 (4) | C1—C6 | 1.504 (4) |
O2—C6 | 1.250 (4) | C2—C3 | 1.397 (4) |
O2—Gd1iii | 2.335 (2) | C2—H2 | 0.9500 |
O3—C7 | 1.264 (4) | C3—C4 | 1.391 (4) |
O3—Gd1iv | 2.530 (2) | C3—C7 | 1.492 (4) |
O4—C7 | 1.261 (4) | C4—C5 | 1.374 (4) |
O4—Gd1iv | 2.517 (2) | C4—H4 | 0.9500 |
O5—C8 | 1.269 (4) | C5—C8 | 1.513 (4) |
O6—C8 | 1.245 (4) | C7—Gd1iv | 2.880 (3) |
O7—H7A | 0.82 (2) | ||
O2i—Gd1—O5 | 150.00 (8) | C6—O1—Gd1 | 123.22 (19) |
O2i—Gd1—O9 | 98.27 (8) | C6—O2—Gd1iii | 134.9 (2) |
O5—Gd1—O9 | 73.52 (8) | C7—O3—Gd1iv | 92.69 (17) |
O2i—Gd1—O1 | 75.39 (7) | C7—O4—Gd1iv | 93.35 (18) |
O5—Gd1—O1 | 128.84 (7) | C8—O5—Gd1 | 125.3 (2) |
O9—Gd1—O1 | 141.45 (7) | Gd1—O7—H7A | 112 (3) |
O2i—Gd1—O7 | 74.73 (7) | Gd1—O7—H7B | 140 (3) |
O5—Gd1—O7 | 94.71 (8) | H7A—O7—H7B | 107 (4) |
O9—Gd1—O7 | 143.75 (8) | Gd1—O8—H8A | 117 (3) |
O1—Gd1—O7 | 72.28 (7) | Gd1—O8—H8B | 121 (3) |
O2i—Gd1—O8 | 77.00 (7) | H8A—O8—H8B | 106 (4) |
O5—Gd1—O8 | 73.01 (8) | Gd1—O9—H9A | 119 (3) |
O9—Gd1—O8 | 72.98 (8) | Gd1—O9—H9B | 131 (3) |
O1—Gd1—O8 | 138.37 (7) | H9A—O9—H9B | 109 (4) |
O7—Gd1—O8 | 70.78 (8) | H10A—O10—H10B | 98 (4) |
O2i—Gd1—N1 | 132.39 (8) | C5—N1—C1 | 118.9 (3) |
O5—Gd1—N1 | 64.62 (8) | C5—N1—Gd1 | 120.3 (2) |
O9—Gd1—N1 | 129.04 (8) | C1—N1—Gd1 | 120.47 (19) |
O1—Gd1—N1 | 64.48 (7) | N1—C1—C2 | 122.2 (3) |
O7—Gd1—N1 | 69.63 (8) | N1—C1—C6 | 114.3 (3) |
O8—Gd1—N1 | 117.68 (8) | C2—C1—C6 | 123.4 (3) |
O2i—Gd1—O4ii | 125.38 (7) | C1—C2—C3 | 118.4 (3) |
O5—Gd1—O4ii | 81.63 (7) | C1—C2—H2 | 120.8 |
O9—Gd1—O4ii | 76.75 (8) | C3—C2—H2 | 120.8 |
O1—Gd1—O4ii | 76.74 (7) | C4—C3—C2 | 119.0 (3) |
O7—Gd1—O4ii | 136.55 (8) | C4—C3—C7 | 119.1 (3) |
O8—Gd1—O4ii | 144.83 (8) | C2—C3—C7 | 121.7 (3) |
N1—Gd1—O4ii | 69.84 (8) | C5—C4—C3 | 118.7 (3) |
O2i—Gd1—O3ii | 74.76 (7) | C5—C4—H4 | 120.7 |
O5—Gd1—O3ii | 126.13 (8) | C3—C4—H4 | 120.7 |
O9—Gd1—O3ii | 70.79 (8) | N1—C5—C4 | 122.7 (3) |
O1—Gd1—O3ii | 70.88 (7) | N1—C5—C8 | 113.8 (3) |
O7—Gd1—O3ii | 136.76 (8) | C4—C5—C8 | 123.4 (3) |
O8—Gd1—O3ii | 129.52 (7) | O2—C6—O1 | 125.4 (3) |
N1—Gd1—O3ii | 112.32 (8) | O2—C6—C1 | 117.9 (3) |
O4ii—Gd1—O3ii | 51.91 (7) | O1—C6—C1 | 116.7 (3) |
O2i—Gd1—C7ii | 100.19 (8) | O4—C7—O3 | 122.0 (3) |
O5—Gd1—C7ii | 104.20 (8) | O4—C7—C3 | 119.5 (3) |
O9—Gd1—C7ii | 71.79 (8) | O3—C7—C3 | 118.4 (3) |
O1—Gd1—C7ii | 72.09 (8) | O4—C7—Gd1iv | 60.73 (15) |
O7—Gd1—C7ii | 144.11 (8) | O3—C7—Gd1iv | 61.32 (15) |
O8—Gd1—C7ii | 143.83 (9) | C3—C7—Gd1iv | 176.6 (2) |
N1—Gd1—C7ii | 91.16 (8) | O6—C8—O5 | 126.3 (3) |
O4ii—Gd1—C7ii | 25.92 (7) | O6—C8—C5 | 117.7 (3) |
O3ii—Gd1—C7ii | 25.99 (7) | O5—C8—C5 | 116.0 (3) |
O2i—Gd1—O1—C6 | −147.2 (2) | Gd1—N1—C1—C2 | 171.2 (2) |
O5—Gd1—O1—C6 | 12.7 (3) | C5—N1—C1—C6 | −177.8 (3) |
O9—Gd1—O1—C6 | 127.9 (2) | Gd1—N1—C1—C6 | −4.0 (3) |
O7—Gd1—O1—C6 | −68.8 (2) | N1—C1—C2—C3 | 2.6 (4) |
O8—Gd1—O1—C6 | −97.2 (2) | C6—C1—C2—C3 | 177.5 (3) |
N1—Gd1—O1—C6 | 6.5 (2) | C1—C2—C3—C4 | 0.9 (4) |
O4ii—Gd1—O1—C6 | 80.3 (2) | C1—C2—C3—C7 | −173.7 (3) |
O3ii—Gd1—O1—C6 | 134.2 (2) | C2—C3—C4—C5 | −4.3 (5) |
C7ii—Gd1—O1—C6 | 106.8 (2) | C7—C3—C4—C5 | 170.5 (3) |
O2i—Gd1—O5—C8 | 133.9 (2) | C1—N1—C5—C4 | −1.1 (4) |
O9—Gd1—O5—C8 | −148.4 (3) | Gd1—N1—C5—C4 | −174.9 (2) |
O1—Gd1—O5—C8 | −4.4 (3) | C1—N1—C5—C8 | 175.1 (3) |
O7—Gd1—O5—C8 | 66.6 (2) | Gd1—N1—C5—C8 | 1.3 (3) |
O8—Gd1—O5—C8 | 134.8 (3) | C3—C4—C5—N1 | 4.6 (5) |
N1—Gd1—O5—C8 | 1.8 (2) | C3—C4—C5—C8 | −171.3 (3) |
O4ii—Gd1—O5—C8 | −69.8 (2) | Gd1iii—O2—C6—O1 | 62.9 (4) |
O3ii—Gd1—O5—C8 | −98.3 (2) | Gd1iii—O2—C6—C1 | −115.0 (3) |
C7ii—Gd1—O5—C8 | −82.7 (2) | Gd1—O1—C6—O2 | 171.1 (2) |
O2i—Gd1—N1—C5 | −151.4 (2) | Gd1—O1—C6—C1 | −11.0 (3) |
O5—Gd1—N1—C5 | −1.5 (2) | N1—C1—C6—O2 | −172.4 (3) |
O9—Gd1—N1—C5 | 36.4 (3) | C2—C1—C6—O2 | 12.4 (4) |
O1—Gd1—N1—C5 | 173.1 (2) | N1—C1—C6—O1 | 9.6 (4) |
O7—Gd1—N1—C5 | −107.4 (2) | C2—C1—C6—O1 | −165.6 (3) |
O8—Gd1—N1—C5 | −53.6 (2) | Gd1iv—O4—C7—O3 | 0.5 (3) |
O4ii—Gd1—N1—C5 | 88.6 (2) | Gd1iv—O4—C7—C3 | −176.1 (3) |
O3ii—Gd1—N1—C5 | 119.2 (2) | Gd1iv—O3—C7—O4 | −0.5 (3) |
C7ii—Gd1—N1—C5 | 103.6 (2) | Gd1iv—O3—C7—C3 | 176.1 (3) |
O2i—Gd1—N1—C1 | 34.9 (3) | C4—C3—C7—O4 | 45.8 (4) |
O5—Gd1—N1—C1 | −175.3 (2) | C2—C3—C7—O4 | −139.6 (3) |
O9—Gd1—N1—C1 | −137.4 (2) | C4—C3—C7—O3 | −131.0 (3) |
O1—Gd1—N1—C1 | −0.6 (2) | C2—C3—C7—O3 | 43.6 (4) |
O7—Gd1—N1—C1 | 78.9 (2) | Gd1—O5—C8—O6 | 177.7 (2) |
O8—Gd1—N1—C1 | 132.6 (2) | Gd1—O5—C8—C5 | −1.8 (4) |
O4ii—Gd1—N1—C1 | −85.1 (2) | N1—C5—C8—O6 | −179.3 (3) |
O3ii—Gd1—N1—C1 | −54.5 (2) | C4—C5—C8—O6 | −3.1 (4) |
C7ii—Gd1—N1—C1 | −70.1 (2) | N1—C5—C8—O5 | 0.2 (4) |
C5—N1—C1—C2 | −2.6 (4) | C4—C5—C8—O5 | 176.4 (3) |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y+1/2, −z+3/2; (iv) x, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O1i | 0.82 (2) | 2.02 (3) | 2.794 (3) | 157 (4) |
O7—H7B···O3v | 0.83 (2) | 1.97 (2) | 2.795 (3) | 175 (4) |
O8—H8A···O6vi | 0.82 (3) | 1.80 (3) | 2.621 (3) | 171 (4) |
O8—H8B···O4vii | 0.75 (2) | 2.22 (3) | 2.933 (3) | 158 (4) |
O9—H9A···O6vi | 0.82 (2) | 2.01 (3) | 2.800 (3) | 161 (4) |
O9—H9B···O10 | 0.83 (2) | 1.91 (3) | 2.723 (3) | 166 (4) |
O10—H10A···O8vii | 0.81 (2) | 2.24 (3) | 3.051 (4) | 173 (4) |
O10—H10B···O9viii | 0.82 (3) | 2.45 (3) | 3.169 (4) | 148 (4) |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (v) x, y−1, z; (vi) −x, y−1/2, −z+3/2; (vii) x, −y+1/2, z−1/2; (viii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Gd(C8H2NO6)(H2O)3]·H2O |
Mr | 437.42 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 113 |
a, b, c (Å) | 11.896 (3), 7.2696 (14), 13.505 (3) |
β (°) | 96.259 (3) |
V (Å3) | 1160.9 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.77 |
Crystal size (mm) | 0.12 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Rigaku Saturn |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.544, 0.655 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10599, 2776, 2366 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.049, 1.04 |
No. of reflections | 2776 |
No. of parameters | 206 |
No. of restraints | 8 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.64, −1.29 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H7A···O1i | 0.82 (2) | 2.02 (3) | 2.794 (3) | 157 (4) |
O7—H7B···O3ii | 0.83 (2) | 1.97 (2) | 2.795 (3) | 175 (4) |
O8—H8A···O6iii | 0.82 (3) | 1.80 (3) | 2.621 (3) | 171 (4) |
O8—H8B···O4iv | 0.75 (2) | 2.22 (3) | 2.933 (3) | 158 (4) |
O9—H9A···O6iii | 0.82 (2) | 2.01 (3) | 2.800 (3) | 161 (4) |
O9—H9B···O10 | 0.83 (2) | 1.91 (3) | 2.723 (3) | 166 (4) |
O10—H10A···O8iv | 0.81 (2) | 2.24 (3) | 3.051 (4) | 173 (4) |
O10—H10B···O9v | 0.82 (3) | 2.45 (3) | 3.169 (4) | 148 (4) |
Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x, y−1, z; (iii) −x, y−1/2, −z+3/2; (iv) x, −y+1/2, z−1/2; (v) −x, −y+1, −z+1. |
Acknowledgements
This work was supported by the Education Department of Henan Province (2009B150026).
References
Fu, D.-W. & Xu, H.-J. (2008). Acta Cryst. E64, m35. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gao, H. L., Yi, L., Ding, B., Wang, H. S., Cheng, P., Liao, D. Z. & Yan, S. P. (2006). Inorg. Chem. 45, 481–483. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ghosh, S. K. & Bharadwaj, P. K. (2005). Eur. J. Inorg. Chem. 24, 4886–4889. Web of Science CSD CrossRef Google Scholar
Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, C. J., Peng, M. X., Leng, J. D., Yang, M. M., Lin, Z. J. & Tong, M. L. (2008). CrystEngComm, 10, 1645–1652. Web of Science CSD CrossRef CAS Google Scholar
Pan, L., Adams, K. M., Hernandez, H. E., Wang, X., Zheng, C., Hattori, Y. & Kaneko, K. (2003). J. Am. Chem. Soc. 125, 3062–3063. Web of Science CSD CrossRef PubMed CAS Google Scholar
Parker, D. (2000). Coord. Chem. Rev. 205, 109–115. Web of Science CrossRef CAS Google Scholar
Rigaku/MSC (2005). CrystalStructure and CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tobisch, S. (2005). J. Am. Chem. Soc. 127, 11979–11980. Web of Science CrossRef PubMed CAS Google Scholar
Wang, H. S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Cryst. Growth Des. 7, 1851–1857. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The preparation and property researching of metal-organic frameworks have attracted widespread interest in recent years due to their potential application in the areas of magnetism, luminescence, adsorption, catalysis and so on (Parker, 2000; Tobisch, 2005; Pan et al., 2003). Multicarboxylic acids containing pyridyl rings were widely used and many 1-D, 2-D and 3-D coordination polymers with novel structures have been reported. Especially, complexes with pyridine-2,4,6-tricarboxylato (H3pta = pyridine-2,4,6-tricarboxylic acid) ligands have been recently reported (Li et al., 2008; Wang et al., 2007; Fu et al., 2008.). The title compound is a new GdIII complex built with pta ligands and prepared under hydrothermal conditions.
As shown in Fig. 1, the local geometry of GdIII ion is a distorted monocapped antitetragonal prism. Each pta ligand connects three GdIII ions with oxgen atoms of the carboxyl groups and the nitrogen atom. There are three coordination water molecules on each GdIII ion. A two-dimentional layer is constructed by the bonding among oxygen atoms and GdIII ions (see Fig. 2). In addition, a lattice water molecule per asymmetric unit is in the crystal structure. Many O—H···O hydrogen bonds are formed between the oxygen atoms of water molecules and the oxygen atoms of caboxyl groups. As a result, the three-dimensional network formed by hydrogen bonds is shown in Fig. 3.