metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­magnesium(II) bis­­{[N-(4-meth­­oxy-2-oxido­benzyl­­idene)glycyl­glycinato(3−)]cuprate(II)} hexa­hydrate

aCollege of Chemistry and Chemical Engineering, Yangzhou Universitry, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: liuwl@yzu.edu.cn

(Received 27 September 2009; accepted 7 October 2009; online 13 October 2009)

In the title complex, [Mg(H2O)6][Cu(C12H11N2O5)]2·6H2O, the CuII atoms lie at the center of the square plane of triple negatively charged O,N,N′,O′-tetra­dentate Schiff base ligands, which are coordinated by one phenolate O atom, one imine N atom, one deprotonated amide N atom and one carboxyl­ate O atom. The MgII center, which sits on an inversion center, is coordinated by six aqua ligands and exhibits a slightly distorted octa­hedral conformation. The asymmetric unit consists of an [N-(4-meth­oxy-2-oxidobenzyl­idene)glycyl­glycinato]cuprate(II) anion, one half of an [Mg(H2O)6]2+ cation and three free water mol­ecules. The cations and anions form columns by O—H⋯O hydrogen bonds.

Related literature

For structures of Schiff base analogues, see: Gupta et al. (2009[Gupta, K. C., Sutar, A. K. & Lin, C. C. (2009). Coord. Chem. Rev. 253, 1926-1946.]); Vigato et al. (2007[Vigato, P. A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev. 251, 1311-1492.]). For structures of Schiff base heteronuclear complexes, see: Jiang et al. (2009[Jiang, J., Lu, Y., Yuan, L. & Liu, W. (2009). Acta Cryst. E65, m952.]); Sakamoto et al. (2001[Sakamoto, M., Manseki, K. & Okawa, H. (2001). Coord. Chem. Rev. 219, 379-414.]); Vigato & Tamburini (2008[Vigato, P. A. & Tamburini, S. (2008). Coord. Chem. Rev. 252, 1871-1995.]); Zhang et al. (2008[Zhang, G., Ye, L., Zhang, Y. & Liu, W. (2008). Acta Cryst. E64, m94-m95.]).

[Scheme 1]

Experimental

Crystal data
  • [Mg(H2O)6][Cu(C12H11N2O5)]2·6H2O

  • Mr = 894.04

  • Triclinic, [P \overline 1]

  • a = 7.8606 (14) Å

  • b = 10.933 (2) Å

  • c = 11.539 (2) Å

  • α = 76.650 (2)°

  • β = 76.685 (2)°

  • γ = 80.737 (2)°

  • V = 932.8 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.25 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.696, Tmax = 0.736

  • 6808 measured reflections

  • 3262 independent reflections

  • 2836 reflections with I > 2σ(I)

  • Rint = 0.084

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 1.04

  • 3262 reflections

  • 278 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6B⋯O4 0.851 (17) 1.907 (18) 2.755 (3) 175 (3)
O6—H6A⋯O2i 0.840 (17) 2.016 (18) 2.836 (2) 165 (3)
O7—H7A⋯O10ii 0.840 (17) 1.91 (2) 2.734 (3) 165 (3)
O7—H7B⋯O9ii 0.833 (17) 1.959 (18) 2.776 (3) 166 (3)
O8—H8C⋯O11 0.831 (17) 1.978 (18) 2.797 (3) 169 (3)
O8—H8D⋯O3 0.822 (17) 1.957 (17) 2.775 (2) 173 (3)
O9—H9A⋯O10iii 0.848 (18) 1.985 (19) 2.787 (3) 157 (3)
O9—H9B⋯O1 0.810 (18) 2.009 (19) 2.816 (3) 174 (4)
O10—H10C⋯O2iv 0.826 (18) 1.986 (19) 2.805 (3) 171 (4)
O10—H10D⋯O4ii 0.810 (17) 2.049 (18) 2.857 (3) 176 (4)
O11—H11A⋯O9v 0.813 (18) 2.050 (19) 2.857 (3) 172 (4)
O11—H11B⋯O2vi 0.835 (18) 2.101 (19) 2.927 (3) 170 (4)
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+1, -y+2, -z+1; (iii) -x+2, -y+2, -z+1; (iv) x+1, y, z-1; (v) x-1, y, z; (vi) x, y, z-1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff bases are widely employed as ligands in coordination chemistry. These ligands are readily available, versatile, they exhibit various denticities and functionalities (Vigato et al., 2007; Gupta et al., 2009). Moreover, the number, the nature, and the relative position of the donor atoms of a Schiff base ligand allow a good control over the stereochemistry of the metallic centers, as well as over the number of the metal ions within homo- and heteronuclear complexes (Vigato et al., 2008; Sakamoto et al., 2001). Now we report the synthesis and structure of CuII—MgII Schiff base complex derived from glycylglycine and 4-methoxy-salicylaldehyde.

The heteronuclear complex (I) crystallizes in the triclinic space group P1. The asymmetric unit consists of one [CuL]- anion (L is a Schiff base derived from glycylglycine and 4-methoxy-salicylaldehyde), one half of the Mg(H2O)62+ cation [Mg1, O6, O7, O8] and three uncoordinated water molecules [O9, O10, O11] in the complex (I) (Fig. 1). The deprotonated Schiff base is a triple negatively charged tetradentate ONNO ligand, coordinating to the CuII atom by one phenolate O atom [O1] (Cu1—O1 = 1.880 (2) Å), one imine N atom [N1] (Cu1—N1 = 1.920 (2) Å), one deprotonated amide N atom [N2] (Cu1—N2 = 1.892 (2) Å) and one carboxylato O atom [O3] (Cu1—O3 = 1.980 (2) Å). [CuL]- exhibits approximately a square-planar structure. The CuII atom is in a slightly distorted square-planar environment with four donor atoms deviating from their mean plane by -0.0506 (9) Å (N1), +0.0626 (9) Å (N2), +0.0513 (8) Å (O1) and -0.0496 (9) Å (O3) (observed bond angles vary from 83.5 (1)° to 96.9 (1)°). The benzene ring [C1–C6] and the chelate ring [O1, C1, C6, C7, N1, Cu1] are almost coplanar with a dihedral angle of 0.11 (9)°, suggesting a large π-electron delocalization. The MgII atom lies on an inversion center and the coordination by six aqua ligands exhibits a slightly distorted octahedral environment. The six Mg—O bonds in the structure are in the range of 2.059 (2) - 2.063 (2) Å. In the crystal structure, the [CuL]- anions and [Mg(H2O)6]2+ cations each form columns by hydrogen bonds along the a-axis (Fig. 2, Table 1).

Related literature top

For structures of Schiff base analogues, see: Gupta et al.(2009); Vigato et al. (2007). For structures of Schiff base heteronuclear complexes, see: Jiang et al. (2009); Sakamoto et al. (2001); Vigato & Tamburini (2008); Zhang et al. (2008).

Experimental top

Glycylglycine (5 mmol), 4-methoxy-salicylaldehyde (5 mmol) and NaOH (10 mmol) were dissolved in MeOH/H2O (30 ml, v: v = 1: 1) and refluxed for 30 min. Then Cu(ClO4)2.6H2O (5 mmol) was added to the solution and the resulting solution was adjusted to 9–11 by 5 mol/L NaOH solution. After stirring at room temperature for another 1 hr, MgCl2.6H2O (2.5 mmol) was added. A violet precipitate was obtained immediately. After stirring for 30 min and then filtered, the precipitate was recrystallized in water. The violet crystals of complex (I) suitable for an X-ray diffraction analyses were obtained after 1 week.

Refinement top

The water H atoms were located in a difference Fourier map and refined with restraints: O—H = 0.85 Å and Uiso(H) =1.5Ueq(O). All other H atoms were positioned geometrically and constrained as riding atoms, with C—H distances of 0.93–0.97 Å and Uiso(H) set to 1.2 or 1.5Ueq(C) of the parent atom.

Structure description top

The Schiff bases are widely employed as ligands in coordination chemistry. These ligands are readily available, versatile, they exhibit various denticities and functionalities (Vigato et al., 2007; Gupta et al., 2009). Moreover, the number, the nature, and the relative position of the donor atoms of a Schiff base ligand allow a good control over the stereochemistry of the metallic centers, as well as over the number of the metal ions within homo- and heteronuclear complexes (Vigato et al., 2008; Sakamoto et al., 2001). Now we report the synthesis and structure of CuII—MgII Schiff base complex derived from glycylglycine and 4-methoxy-salicylaldehyde.

The heteronuclear complex (I) crystallizes in the triclinic space group P1. The asymmetric unit consists of one [CuL]- anion (L is a Schiff base derived from glycylglycine and 4-methoxy-salicylaldehyde), one half of the Mg(H2O)62+ cation [Mg1, O6, O7, O8] and three uncoordinated water molecules [O9, O10, O11] in the complex (I) (Fig. 1). The deprotonated Schiff base is a triple negatively charged tetradentate ONNO ligand, coordinating to the CuII atom by one phenolate O atom [O1] (Cu1—O1 = 1.880 (2) Å), one imine N atom [N1] (Cu1—N1 = 1.920 (2) Å), one deprotonated amide N atom [N2] (Cu1—N2 = 1.892 (2) Å) and one carboxylato O atom [O3] (Cu1—O3 = 1.980 (2) Å). [CuL]- exhibits approximately a square-planar structure. The CuII atom is in a slightly distorted square-planar environment with four donor atoms deviating from their mean plane by -0.0506 (9) Å (N1), +0.0626 (9) Å (N2), +0.0513 (8) Å (O1) and -0.0496 (9) Å (O3) (observed bond angles vary from 83.5 (1)° to 96.9 (1)°). The benzene ring [C1–C6] and the chelate ring [O1, C1, C6, C7, N1, Cu1] are almost coplanar with a dihedral angle of 0.11 (9)°, suggesting a large π-electron delocalization. The MgII atom lies on an inversion center and the coordination by six aqua ligands exhibits a slightly distorted octahedral environment. The six Mg—O bonds in the structure are in the range of 2.059 (2) - 2.063 (2) Å. In the crystal structure, the [CuL]- anions and [Mg(H2O)6]2+ cations each form columns by hydrogen bonds along the a-axis (Fig. 2, Table 1).

For structures of Schiff base analogues, see: Gupta et al.(2009); Vigato et al. (2007). For structures of Schiff base heteronuclear complexes, see: Jiang et al. (2009); Sakamoto et al. (2001); Vigato & Tamburini (2008); Zhang et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids. Unlabeled atoms are related to labeled atoms by the symmetry code (-x + 1, -y + 2, -z + 1).
[Figure 2] Fig. 2. A packing diagram of (I), viewed down the a-axis, showing a separated column stacking structure connected by O—H···O hydrogen bonds (dashed lines).
Hexaaquamagnesium(II) bis{[N-(4-methoxy-2-oxidobenzylidene)glycylglycinato(3-)]cuprate(II)} hexahydrate top
Crystal data top
[Mg(H2O)6][Cu(C12H11N2O5)]2·6H2OZ = 1
Mr = 894.04F(000) = 464
Triclinic, P1Dx = 1.592 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8606 (14) ÅCell parameters from 7186 reflections
b = 10.933 (2) Åθ = 1.0–28.3°
c = 11.539 (2) ŵ = 1.25 mm1
α = 76.650 (2)°T = 296 K
β = 76.685 (2)°Block, violet
γ = 80.737 (2)°0.30 × 0.28 × 0.25 mm
V = 932.8 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
2836 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 99
Tmin = 0.696, Tmax = 0.736k = 1212
6808 measured reflectionsl = 1313
3262 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0593P)2]
where P = (Fo2 + 2Fc2)/3
3262 reflections(Δ/σ)max = 0.001
278 parametersΔρmax = 0.76 e Å3
18 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Mg(H2O)6][Cu(C12H11N2O5)]2·6H2Oγ = 80.737 (2)°
Mr = 894.04V = 932.8 (3) Å3
Triclinic, P1Z = 1
a = 7.8606 (14) ÅMo Kα radiation
b = 10.933 (2) ŵ = 1.25 mm1
c = 11.539 (2) ÅT = 296 K
α = 76.650 (2)°0.30 × 0.28 × 0.25 mm
β = 76.685 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3262 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2836 reflections with I > 2σ(I)
Tmin = 0.696, Tmax = 0.736Rint = 0.084
6808 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03618 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.76 e Å3
3262 reflectionsΔρmin = 0.57 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.50001.00000.50000.0274 (3)
Cu10.53658 (3)0.70272 (3)0.98705 (2)0.02798 (13)
C10.7984 (3)0.5135 (2)0.8983 (2)0.0278 (5)
C20.9093 (3)0.4662 (2)0.8009 (2)0.0318 (5)
H20.91060.51160.72190.038*
C31.0174 (3)0.3528 (2)0.8201 (3)0.0338 (6)
C41.0200 (3)0.2837 (2)0.9381 (3)0.0378 (6)
H41.09470.20890.95100.045*
C50.9110 (3)0.3276 (2)1.0342 (3)0.0357 (6)
H50.91200.28081.11240.043*
C60.7962 (3)0.4422 (2)1.0192 (2)0.0297 (5)
C70.6919 (3)0.4804 (2)1.1269 (2)0.0311 (5)
H70.70450.42831.20120.037*
C80.4821 (3)0.6142 (3)1.2436 (2)0.0354 (6)
H8A0.56250.62011.29400.043*
H8B0.40770.54881.28750.043*
C90.3683 (3)0.7412 (2)1.2172 (2)0.0289 (5)
C100.2895 (3)0.9088 (2)1.0529 (2)0.0319 (5)
H10A0.32560.97901.07620.038*
H10B0.16420.90651.08440.038*
C110.3290 (3)0.9256 (2)0.9147 (2)0.0308 (5)
C121.1256 (4)0.3610 (3)0.6070 (3)0.0504 (7)
H12A1.00810.36950.59300.076*
H12B1.20290.31080.55400.076*
H12C1.16430.44320.59110.076*
N10.5819 (3)0.58115 (19)1.12892 (18)0.0301 (4)
N20.3860 (3)0.79083 (19)1.10172 (18)0.0315 (5)
O10.6989 (2)0.62339 (15)0.87217 (15)0.0315 (4)
O30.4460 (2)0.84413 (16)0.86727 (15)0.0352 (4)
O40.2500 (2)1.01549 (17)0.85495 (16)0.0434 (5)
O20.2727 (2)0.78645 (17)1.30527 (15)0.0370 (4)
O51.1276 (2)0.30083 (17)0.73004 (18)0.0458 (5)
O60.4664 (2)1.10040 (18)0.63586 (15)0.0376 (4)
H6A0.553 (3)1.120 (3)0.656 (3)0.056*
H6B0.394 (3)1.077 (3)0.702 (2)0.056*
O70.2365 (2)1.0350 (2)0.49409 (17)0.0423 (5)
H7A0.159 (4)1.017 (3)0.557 (2)0.063*
H7B0.194 (4)1.096 (2)0.448 (2)0.063*
O80.4514 (3)0.83655 (18)0.62765 (16)0.0423 (5)
H8C0.393 (4)0.785 (3)0.616 (3)0.063*
H8D0.442 (5)0.836 (3)0.7002 (18)0.063*
O90.8995 (3)0.7896 (2)0.68699 (18)0.0479 (5)
H9A0.908 (5)0.855 (2)0.712 (3)0.072*
H9B0.837 (4)0.742 (3)0.737 (3)0.072*
O101.0000 (3)0.9857 (2)0.28950 (19)0.0462 (5)
H10C1.072 (4)0.922 (2)0.298 (3)0.069*
H10D0.934 (4)0.984 (3)0.246 (3)0.069*
O110.2361 (3)0.6905 (2)0.56744 (19)0.0483 (5)
H11A0.145 (3)0.724 (3)0.602 (3)0.072*
H11B0.249 (4)0.708 (3)0.4918 (16)0.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0289 (6)0.0339 (6)0.0190 (5)0.0054 (4)0.0024 (4)0.0058 (4)
Cu10.03038 (19)0.03127 (19)0.01925 (18)0.00204 (12)0.00343 (12)0.00437 (12)
C10.0263 (11)0.0252 (11)0.0331 (13)0.0035 (9)0.0082 (10)0.0054 (10)
C20.0310 (12)0.0309 (12)0.0332 (14)0.0027 (10)0.0070 (10)0.0061 (10)
C30.0276 (12)0.0311 (12)0.0450 (15)0.0024 (10)0.0071 (11)0.0135 (11)
C40.0351 (13)0.0284 (12)0.0506 (17)0.0032 (10)0.0149 (12)0.0075 (11)
C50.0374 (13)0.0292 (12)0.0409 (15)0.0032 (10)0.0161 (12)0.0003 (11)
C60.0287 (12)0.0280 (12)0.0338 (13)0.0039 (9)0.0105 (10)0.0042 (10)
C70.0321 (12)0.0335 (13)0.0275 (13)0.0082 (10)0.0113 (10)0.0023 (10)
C80.0336 (13)0.0496 (15)0.0211 (12)0.0027 (11)0.0070 (10)0.0031 (11)
C90.0267 (11)0.0408 (13)0.0230 (12)0.0097 (10)0.0048 (9)0.0104 (10)
C100.0386 (13)0.0327 (13)0.0226 (12)0.0009 (10)0.0006 (10)0.0096 (10)
C110.0338 (13)0.0300 (12)0.0263 (13)0.0012 (10)0.0015 (10)0.0070 (10)
C120.0512 (17)0.0503 (17)0.0473 (18)0.0053 (13)0.0041 (14)0.0182 (14)
N10.0284 (10)0.0366 (11)0.0248 (10)0.0029 (8)0.0071 (8)0.0038 (8)
N20.0365 (11)0.0345 (11)0.0217 (10)0.0004 (9)0.0042 (9)0.0062 (8)
O10.0340 (9)0.0305 (8)0.0250 (9)0.0041 (7)0.0038 (7)0.0033 (7)
O30.0448 (10)0.0347 (9)0.0193 (9)0.0084 (7)0.0018 (7)0.0053 (7)
O40.0514 (11)0.0391 (10)0.0290 (10)0.0146 (8)0.0035 (8)0.0040 (8)
O20.0370 (9)0.0524 (11)0.0215 (9)0.0036 (8)0.0024 (7)0.0116 (8)
O50.0446 (11)0.0409 (10)0.0486 (12)0.0102 (8)0.0060 (9)0.0161 (9)
O60.0400 (10)0.0481 (11)0.0269 (9)0.0122 (8)0.0019 (8)0.0154 (8)
O70.0303 (9)0.0610 (12)0.0288 (10)0.0006 (8)0.0027 (8)0.0019 (9)
O80.0591 (12)0.0455 (11)0.0240 (9)0.0185 (9)0.0083 (9)0.0016 (8)
O90.0487 (12)0.0496 (12)0.0385 (12)0.0082 (9)0.0032 (9)0.0015 (9)
O100.0365 (11)0.0617 (13)0.0366 (11)0.0040 (9)0.0026 (8)0.0140 (10)
O110.0530 (12)0.0529 (12)0.0393 (12)0.0108 (10)0.0093 (10)0.0067 (10)
Geometric parameters (Å, º) top
Mg1—O7i2.0591 (18)C8—H8A0.9700
Mg1—O72.0591 (18)C8—H8B0.9700
Mg1—O62.0598 (17)C9—O21.266 (3)
Mg1—O6i2.0599 (17)C9—N21.302 (3)
Mg1—O82.0625 (18)C10—N21.451 (3)
Mg1—O8i2.0626 (18)C10—C111.526 (3)
Cu1—O11.8797 (17)C10—H10A0.9700
Cu1—N21.892 (2)C10—H10B0.9700
Cu1—N11.920 (2)C11—O41.231 (3)
Cu1—O31.9799 (16)C11—O31.292 (3)
C1—O11.336 (3)C12—O51.422 (4)
C1—C21.401 (3)C12—H12A0.9600
C1—C61.430 (3)C12—H12B0.9600
C2—C31.389 (3)C12—H12C0.9600
C2—H20.9300O6—H6A0.840 (17)
C3—O51.361 (3)O6—H6B0.851 (17)
C3—C41.400 (4)O7—H7A0.840 (17)
C4—C51.368 (4)O7—H7B0.833 (17)
C4—H40.9300O8—H8C0.831 (17)
C5—C61.422 (3)O8—H8D0.822 (17)
C5—H50.9300O9—H9A0.848 (18)
C6—C71.432 (4)O9—H9B0.810 (18)
C7—N11.288 (3)O10—H10C0.826 (18)
C7—H70.9300O10—H10D0.810 (17)
C8—N11.466 (3)O11—H11A0.813 (18)
C8—C91.533 (3)O11—H11B0.835 (18)
O7i—Mg1—O7179.999 (1)C9—C8—H8A109.7
O7i—Mg1—O688.05 (8)N1—C8—H8B109.7
O7—Mg1—O691.95 (8)C9—C8—H8B109.7
O7i—Mg1—O6i91.95 (8)H8A—C8—H8B108.2
O7—Mg1—O6i88.05 (8)O2—C9—N2127.6 (2)
O6—Mg1—O6i180.0O2—C9—C8119.1 (2)
O7i—Mg1—O890.55 (8)N2—C9—C8113.2 (2)
O7—Mg1—O889.45 (8)N2—C10—C11107.92 (19)
O6—Mg1—O890.60 (8)N2—C10—H10A110.1
O6i—Mg1—O889.40 (8)C11—C10—H10A110.1
O7i—Mg1—O8i89.45 (8)N2—C10—H10B110.1
O7—Mg1—O8i90.55 (8)C11—C10—H10B110.1
O6—Mg1—O8i89.40 (8)H10A—C10—H10B108.4
O6i—Mg1—O8i90.60 (8)O4—C11—O3123.8 (2)
O8—Mg1—O8i180.000 (1)O4—C11—C10118.8 (2)
O1—Cu1—N2175.66 (8)O3—C11—C10117.4 (2)
O1—Cu1—N196.90 (8)O5—C12—H12A109.5
N2—Cu1—N183.79 (9)O5—C12—H12B109.5
O1—Cu1—O395.95 (7)H12A—C12—H12B109.5
N2—Cu1—O383.51 (8)O5—C12—H12C109.5
N1—Cu1—O3167.03 (8)H12A—C12—H12C109.5
O1—C1—C2117.5 (2)H12B—C12—H12C109.5
O1—C1—C6123.6 (2)C7—N1—C8121.6 (2)
C2—C1—C6118.9 (2)C7—N1—Cu1124.53 (18)
C3—C2—C1121.2 (2)C8—N1—Cu1113.87 (16)
C3—C2—H2119.4C9—N2—C10124.0 (2)
C1—C2—H2119.4C9—N2—Cu1119.48 (17)
O5—C3—C2124.4 (2)C10—N2—Cu1116.46 (15)
O5—C3—C4115.0 (2)C1—O1—Cu1125.02 (15)
C2—C3—C4120.6 (2)C11—O3—Cu1114.46 (15)
C5—C4—C3119.0 (2)C3—O5—C12118.7 (2)
C5—C4—H4120.5Mg1—O6—H6A121 (2)
C3—C4—H4120.5Mg1—O6—H6B118 (2)
C4—C5—C6122.6 (2)H6A—O6—H6B106 (2)
C4—C5—H5118.7Mg1—O7—H7A121 (2)
C6—C5—H5118.7Mg1—O7—H7B124 (2)
C5—C6—C1117.7 (2)H7A—O7—H7B108 (2)
C5—C6—C7117.5 (2)Mg1—O8—H8C121 (2)
C1—C6—C7124.7 (2)Mg1—O8—H8D120 (2)
N1—C7—C6125.1 (2)H8C—O8—H8D112 (3)
N1—C7—H7117.4H9A—O9—H9B113 (3)
C6—C7—H7117.4H10C—O10—H10D114 (3)
N1—C8—C9109.61 (19)H11A—O11—H11B114 (3)
N1—C8—H8A109.7
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O40.85 (2)1.91 (2)2.755 (3)175 (3)
O6—H6A···O2ii0.84 (2)2.02 (2)2.836 (2)165 (3)
O7—H7A···O10i0.84 (2)1.91 (2)2.734 (3)165 (3)
O7—H7B···O9i0.83 (2)1.96 (2)2.776 (3)166 (3)
O8—H8C···O110.83 (2)1.98 (2)2.797 (3)169 (3)
O8—H8D···O30.82 (2)1.96 (2)2.775 (2)173 (3)
O9—H9A···O10iii0.85 (2)1.99 (2)2.787 (3)157 (3)
O9—H9B···O10.81 (2)2.01 (2)2.816 (3)174 (4)
O10—H10C···O2iv0.83 (2)1.99 (2)2.805 (3)171 (4)
O10—H10D···O4i0.81 (2)2.05 (2)2.857 (3)176 (4)
O11—H11A···O9v0.81 (2)2.05 (2)2.857 (3)172 (4)
O11—H11B···O2vi0.84 (2)2.10 (2)2.927 (3)170 (4)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z+2; (iii) x+2, y+2, z+1; (iv) x+1, y, z1; (v) x1, y, z; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Mg(H2O)6][Cu(C12H11N2O5)]2·6H2O
Mr894.04
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.8606 (14), 10.933 (2), 11.539 (2)
α, β, γ (°)76.650 (2), 76.685 (2), 80.737 (2)
V3)932.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.30 × 0.28 × 0.25
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.696, 0.736
No. of measured, independent and
observed [I > 2σ(I)] reflections
6808, 3262, 2836
Rint0.084
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.04
No. of reflections3262
No. of parameters278
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.76, 0.57

Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6B···O40.851 (17)1.907 (18)2.755 (3)175 (3)
O6—H6A···O2i0.840 (17)2.016 (18)2.836 (2)165 (3)
O7—H7A···O10ii0.840 (17)1.91 (2)2.734 (3)165 (3)
O7—H7B···O9ii0.833 (17)1.959 (18)2.776 (3)166 (3)
O8—H8C···O110.831 (17)1.978 (18)2.797 (3)169 (3)
O8—H8D···O30.822 (17)1.957 (17)2.775 (2)173 (3)
O9—H9A···O10iii0.848 (18)1.985 (19)2.787 (3)157 (3)
O9—H9B···O10.810 (18)2.009 (19)2.816 (3)174 (4)
O10—H10C···O2iv0.826 (18)1.986 (19)2.805 (3)171 (4)
O10—H10D···O4ii0.810 (17)2.049 (18)2.857 (3)176 (4)
O11—H11A···O9v0.813 (18)2.050 (19)2.857 (3)172 (4)
O11—H11B···O2vi0.835 (18)2.101 (19)2.927 (3)170 (4)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1, y+2, z+1; (iii) x+2, y+2, z+1; (iv) x+1, y, z1; (v) x1, y, z; (vi) x, y, z1.
 

Acknowledgements

This work was supported by SRF for ROCS, SEM and Yangzhou University.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGupta, K. C., Sutar, A. K. & Lin, C. C. (2009). Coord. Chem. Rev. 253, 1926–1946.  Web of Science CrossRef CAS Google Scholar
First citationJiang, J., Lu, Y., Yuan, L. & Liu, W. (2009). Acta Cryst. E65, m952.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSakamoto, M., Manseki, K. & Okawa, H. (2001). Coord. Chem. Rev. 219, 379–414.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVigato, P. A. & Tamburini, S. (2008). Coord. Chem. Rev. 252, 1871–1995.  Web of Science CrossRef CAS Google Scholar
First citationVigato, P. A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev. 251, 1311–1492.  Web of Science CrossRef CAS Google Scholar
First citationZhang, G., Ye, L., Zhang, Y. & Liu, W. (2008). Acta Cryst. E64, m94–m95.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds