metal-organic compounds
Hexaaquamagnesium(II) bis{[N-(4-methoxy-2-oxidobenzylidene)glycylglycinato(3−)]cuprate(II)} hexahydrate
aCollege of Chemistry and Chemical Engineering, Yangzhou Universitry, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: liuwl@yzu.edu.cn
In the title complex, [Mg(H2O)6][Cu(C12H11N2O5)]2·6H2O, the CuII atoms lie at the center of the square plane of triple negatively charged O,N,N′,O′-tetradentate Schiff base ligands, which are coordinated by one phenolate O atom, one imine N atom, one deprotonated amide N atom and one carboxylate O atom. The MgII center, which sits on an inversion center, is coordinated by six aqua ligands and exhibits a slightly distorted octahedral conformation. The consists of an [N-(4-methoxy-2-oxidobenzylidene)glycylglycinato]cuprate(II) anion, one half of an [Mg(H2O)6]2+ cation and three free water molecules. The cations and anions form columns by O—H⋯O hydrogen bonds.
Related literature
For structures of Schiff base analogues, see: Gupta et al. (2009); Vigato et al. (2007). For structures of Schiff base heteronuclear complexes, see: Jiang et al. (2009); Sakamoto et al. (2001); Vigato & Tamburini (2008); Zhang et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536809040872/zq2010sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536809040872/zq2010Isup2.hkl
Glycylglycine (5 mmol), 4-methoxy-salicylaldehyde (5 mmol) and NaOH (10 mmol) were dissolved in MeOH/H2O (30 ml, v: v = 1: 1) and refluxed for 30 min. Then Cu(ClO4)2.6H2O (5 mmol) was added to the solution and the resulting solution was adjusted to 9–11 by 5 mol/L NaOH solution. After stirring at room temperature for another 1 hr, MgCl2.6H2O (2.5 mmol) was added. A violet precipitate was obtained immediately. After stirring for 30 min and then filtered, the precipitate was recrystallized in water. The violet crystals of complex (I) suitable for an X-ray diffraction analyses were obtained after 1 week.
The water H atoms were located in a difference Fourier map and refined with restraints: O—H = 0.85 Å and Uiso(H) =1.5Ueq(O). All other H atoms were positioned geometrically and constrained as riding atoms, with C—H distances of 0.93–0.97 Å and Uiso(H) set to 1.2 or 1.5Ueq(C) of the parent atom.
The
are widely employed as ligands in coordination chemistry. These ligands are readily available, versatile, they exhibit various denticities and functionalities (Vigato et al., 2007; Gupta et al., 2009). Moreover, the number, the nature, and the relative position of the donor atoms of a Schiff base ligand allow a good control over the stereochemistry of the metallic centers, as well as over the number of the metal ions within homo- and heteronuclear complexes (Vigato et al., 2008; Sakamoto et al., 2001). Now we report the synthesis and structure of CuII—MgII Schiff base complex derived from glycylglycine and 4-methoxy-salicylaldehyde.The heteronuclear complex (I) crystallizes in the triclinic 1. The consists of one [CuL]- anion (L is a Schiff base derived from glycylglycine and 4-methoxy-salicylaldehyde), one half of the Mg(H2O)62+ cation [Mg1, O6, O7, O8] and three uncoordinated water molecules [O9, O10, O11] in the complex (I) (Fig. 1). The deprotonated Schiff base is a triple negatively charged tetradentate ONNO ligand, coordinating to the CuII atom by one phenolate O atom [O1] (Cu1—O1 = 1.880 (2) Å), one imine N atom [N1] (Cu1—N1 = 1.920 (2) Å), one deprotonated amide N atom [N2] (Cu1—N2 = 1.892 (2) Å) and one carboxylato O atom [O3] (Cu1—O3 = 1.980 (2) Å). [CuL]- exhibits approximately a square-planar structure. The CuII atom is in a slightly distorted square-planar environment with four donor atoms deviating from their mean plane by -0.0506 (9) Å (N1), +0.0626 (9) Å (N2), +0.0513 (8) Å (O1) and -0.0496 (9) Å (O3) (observed bond angles vary from 83.5 (1)° to 96.9 (1)°). The benzene ring [C1–C6] and the chelate ring [O1, C1, C6, C7, N1, Cu1] are almost coplanar with a dihedral angle of 0.11 (9)°, suggesting a large π-electron delocalization. The MgII atom lies on an inversion center and the coordination by six aqua ligands exhibits a slightly distorted octahedral environment. The six Mg—O bonds in the structure are in the range of 2.059 (2) - 2.063 (2) Å. In the the [CuL]- anions and [Mg(H2O)6]2+ cations each form columns by hydrogen bonds along the a-axis (Fig. 2, Table 1).
PFor structures of Schiff base analogues, see: Gupta et al.(2009); Vigato et al. (2007). For structures of Schiff base heteronuclear complexes, see: Jiang et al. (2009); Sakamoto et al. (2001); Vigato & Tamburini (2008); Zhang et al. (2008).
Data collection: SMART (Bruker, 2002); cell
SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids. Unlabeled atoms are related to labeled atoms by the symmetry code (-x + 1, -y + 2, -z + 1). | |
Fig. 2. A packing diagram of (I), viewed down the a-axis, showing a separated column stacking structure connected by O—H···O hydrogen bonds (dashed lines). |
[Mg(H2O)6][Cu(C12H11N2O5)]2·6H2O | Z = 1 |
Mr = 894.04 | F(000) = 464 |
Triclinic, P1 | Dx = 1.592 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8606 (14) Å | Cell parameters from 7186 reflections |
b = 10.933 (2) Å | θ = 1.0–28.3° |
c = 11.539 (2) Å | µ = 1.25 mm−1 |
α = 76.650 (2)° | T = 296 K |
β = 76.685 (2)° | Block, violet |
γ = 80.737 (2)° | 0.30 × 0.28 × 0.25 mm |
V = 932.8 (3) Å3 |
Bruker SMART APEX CCD diffractometer | 2836 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.084 |
φ and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −9→9 |
Tmin = 0.696, Tmax = 0.736 | k = −12→12 |
6808 measured reflections | l = −13→13 |
3262 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0593P)2] where P = (Fo2 + 2Fc2)/3 |
3262 reflections | (Δ/σ)max = 0.001 |
278 parameters | Δρmax = 0.76 e Å−3 |
18 restraints | Δρmin = −0.57 e Å−3 |
[Mg(H2O)6][Cu(C12H11N2O5)]2·6H2O | γ = 80.737 (2)° |
Mr = 894.04 | V = 932.8 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.8606 (14) Å | Mo Kα radiation |
b = 10.933 (2) Å | µ = 1.25 mm−1 |
c = 11.539 (2) Å | T = 296 K |
α = 76.650 (2)° | 0.30 × 0.28 × 0.25 mm |
β = 76.685 (2)° |
Bruker SMART APEX CCD diffractometer | 3262 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 2836 reflections with I > 2σ(I) |
Tmin = 0.696, Tmax = 0.736 | Rint = 0.084 |
6808 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 18 restraints |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.76 e Å−3 |
3262 reflections | Δρmin = −0.57 e Å−3 |
278 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mg1 | 0.5000 | 1.0000 | 0.5000 | 0.0274 (3) | |
Cu1 | 0.53658 (3) | 0.70272 (3) | 0.98705 (2) | 0.02798 (13) | |
C1 | 0.7984 (3) | 0.5135 (2) | 0.8983 (2) | 0.0278 (5) | |
C2 | 0.9093 (3) | 0.4662 (2) | 0.8009 (2) | 0.0318 (5) | |
H2 | 0.9106 | 0.5116 | 0.7219 | 0.038* | |
C3 | 1.0174 (3) | 0.3528 (2) | 0.8201 (3) | 0.0338 (6) | |
C4 | 1.0200 (3) | 0.2837 (2) | 0.9381 (3) | 0.0378 (6) | |
H4 | 1.0947 | 0.2089 | 0.9510 | 0.045* | |
C5 | 0.9110 (3) | 0.3276 (2) | 1.0342 (3) | 0.0357 (6) | |
H5 | 0.9120 | 0.2808 | 1.1124 | 0.043* | |
C6 | 0.7962 (3) | 0.4422 (2) | 1.0192 (2) | 0.0297 (5) | |
C7 | 0.6919 (3) | 0.4804 (2) | 1.1269 (2) | 0.0311 (5) | |
H7 | 0.7045 | 0.4283 | 1.2012 | 0.037* | |
C8 | 0.4821 (3) | 0.6142 (3) | 1.2436 (2) | 0.0354 (6) | |
H8A | 0.5625 | 0.6201 | 1.2940 | 0.043* | |
H8B | 0.4077 | 0.5488 | 1.2875 | 0.043* | |
C9 | 0.3683 (3) | 0.7412 (2) | 1.2172 (2) | 0.0289 (5) | |
C10 | 0.2895 (3) | 0.9088 (2) | 1.0529 (2) | 0.0319 (5) | |
H10A | 0.3256 | 0.9790 | 1.0762 | 0.038* | |
H10B | 0.1642 | 0.9065 | 1.0844 | 0.038* | |
C11 | 0.3290 (3) | 0.9256 (2) | 0.9147 (2) | 0.0308 (5) | |
C12 | 1.1256 (4) | 0.3610 (3) | 0.6070 (3) | 0.0504 (7) | |
H12A | 1.0081 | 0.3695 | 0.5930 | 0.076* | |
H12B | 1.2029 | 0.3108 | 0.5540 | 0.076* | |
H12C | 1.1643 | 0.4432 | 0.5911 | 0.076* | |
N1 | 0.5819 (3) | 0.58115 (19) | 1.12892 (18) | 0.0301 (4) | |
N2 | 0.3860 (3) | 0.79083 (19) | 1.10172 (18) | 0.0315 (5) | |
O1 | 0.6989 (2) | 0.62339 (15) | 0.87217 (15) | 0.0315 (4) | |
O3 | 0.4460 (2) | 0.84413 (16) | 0.86727 (15) | 0.0352 (4) | |
O4 | 0.2500 (2) | 1.01549 (17) | 0.85495 (16) | 0.0434 (5) | |
O2 | 0.2727 (2) | 0.78645 (17) | 1.30527 (15) | 0.0370 (4) | |
O5 | 1.1276 (2) | 0.30083 (17) | 0.73004 (18) | 0.0458 (5) | |
O6 | 0.4664 (2) | 1.10040 (18) | 0.63586 (15) | 0.0376 (4) | |
H6A | 0.553 (3) | 1.120 (3) | 0.656 (3) | 0.056* | |
H6B | 0.394 (3) | 1.077 (3) | 0.702 (2) | 0.056* | |
O7 | 0.2365 (2) | 1.0350 (2) | 0.49409 (17) | 0.0423 (5) | |
H7A | 0.159 (4) | 1.017 (3) | 0.557 (2) | 0.063* | |
H7B | 0.194 (4) | 1.096 (2) | 0.448 (2) | 0.063* | |
O8 | 0.4514 (3) | 0.83655 (18) | 0.62765 (16) | 0.0423 (5) | |
H8C | 0.393 (4) | 0.785 (3) | 0.616 (3) | 0.063* | |
H8D | 0.442 (5) | 0.836 (3) | 0.7002 (18) | 0.063* | |
O9 | 0.8995 (3) | 0.7896 (2) | 0.68699 (18) | 0.0479 (5) | |
H9A | 0.908 (5) | 0.855 (2) | 0.712 (3) | 0.072* | |
H9B | 0.837 (4) | 0.742 (3) | 0.737 (3) | 0.072* | |
O10 | 1.0000 (3) | 0.9857 (2) | 0.28950 (19) | 0.0462 (5) | |
H10C | 1.072 (4) | 0.922 (2) | 0.298 (3) | 0.069* | |
H10D | 0.934 (4) | 0.984 (3) | 0.246 (3) | 0.069* | |
O11 | 0.2361 (3) | 0.6905 (2) | 0.56744 (19) | 0.0483 (5) | |
H11A | 0.145 (3) | 0.724 (3) | 0.602 (3) | 0.072* | |
H11B | 0.249 (4) | 0.708 (3) | 0.4918 (16) | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mg1 | 0.0289 (6) | 0.0339 (6) | 0.0190 (5) | −0.0054 (4) | −0.0024 (4) | −0.0058 (4) |
Cu1 | 0.03038 (19) | 0.03127 (19) | 0.01925 (18) | 0.00204 (12) | −0.00343 (12) | −0.00437 (12) |
C1 | 0.0263 (11) | 0.0252 (11) | 0.0331 (13) | −0.0035 (9) | −0.0082 (10) | −0.0054 (10) |
C2 | 0.0310 (12) | 0.0309 (12) | 0.0332 (14) | −0.0027 (10) | −0.0070 (10) | −0.0061 (10) |
C3 | 0.0276 (12) | 0.0311 (12) | 0.0450 (15) | −0.0024 (10) | −0.0071 (11) | −0.0135 (11) |
C4 | 0.0351 (13) | 0.0284 (12) | 0.0506 (17) | 0.0032 (10) | −0.0149 (12) | −0.0075 (11) |
C5 | 0.0374 (13) | 0.0292 (12) | 0.0409 (15) | −0.0032 (10) | −0.0161 (12) | −0.0003 (11) |
C6 | 0.0287 (12) | 0.0280 (12) | 0.0338 (13) | −0.0039 (9) | −0.0105 (10) | −0.0042 (10) |
C7 | 0.0321 (12) | 0.0335 (13) | 0.0275 (13) | −0.0082 (10) | −0.0113 (10) | 0.0023 (10) |
C8 | 0.0336 (13) | 0.0496 (15) | 0.0211 (12) | −0.0027 (11) | −0.0070 (10) | −0.0031 (11) |
C9 | 0.0267 (11) | 0.0408 (13) | 0.0230 (12) | −0.0097 (10) | −0.0048 (9) | −0.0104 (10) |
C10 | 0.0386 (13) | 0.0327 (13) | 0.0226 (12) | −0.0009 (10) | −0.0006 (10) | −0.0096 (10) |
C11 | 0.0338 (13) | 0.0300 (12) | 0.0263 (13) | −0.0012 (10) | −0.0015 (10) | −0.0070 (10) |
C12 | 0.0512 (17) | 0.0503 (17) | 0.0473 (18) | 0.0053 (13) | −0.0041 (14) | −0.0182 (14) |
N1 | 0.0284 (10) | 0.0366 (11) | 0.0248 (10) | −0.0029 (8) | −0.0071 (8) | −0.0038 (8) |
N2 | 0.0365 (11) | 0.0345 (11) | 0.0217 (10) | −0.0004 (9) | −0.0042 (9) | −0.0062 (8) |
O1 | 0.0340 (9) | 0.0305 (8) | 0.0250 (9) | 0.0041 (7) | −0.0038 (7) | −0.0033 (7) |
O3 | 0.0448 (10) | 0.0347 (9) | 0.0193 (9) | 0.0084 (7) | −0.0018 (7) | −0.0053 (7) |
O4 | 0.0514 (11) | 0.0391 (10) | 0.0290 (10) | 0.0146 (8) | −0.0035 (8) | −0.0040 (8) |
O2 | 0.0370 (9) | 0.0524 (11) | 0.0215 (9) | −0.0036 (8) | −0.0024 (7) | −0.0116 (8) |
O5 | 0.0446 (11) | 0.0409 (10) | 0.0486 (12) | 0.0102 (8) | −0.0060 (9) | −0.0161 (9) |
O6 | 0.0400 (10) | 0.0481 (11) | 0.0269 (9) | −0.0122 (8) | 0.0019 (8) | −0.0154 (8) |
O7 | 0.0303 (9) | 0.0610 (12) | 0.0288 (10) | −0.0006 (8) | −0.0027 (8) | −0.0019 (9) |
O8 | 0.0591 (12) | 0.0455 (11) | 0.0240 (9) | −0.0185 (9) | −0.0083 (9) | −0.0016 (8) |
O9 | 0.0487 (12) | 0.0496 (12) | 0.0385 (12) | −0.0082 (9) | −0.0032 (9) | 0.0015 (9) |
O10 | 0.0365 (11) | 0.0617 (13) | 0.0366 (11) | 0.0040 (9) | −0.0026 (8) | −0.0140 (10) |
O11 | 0.0530 (12) | 0.0529 (12) | 0.0393 (12) | −0.0108 (10) | −0.0093 (10) | −0.0067 (10) |
Mg1—O7i | 2.0591 (18) | C8—H8A | 0.9700 |
Mg1—O7 | 2.0591 (18) | C8—H8B | 0.9700 |
Mg1—O6 | 2.0598 (17) | C9—O2 | 1.266 (3) |
Mg1—O6i | 2.0599 (17) | C9—N2 | 1.302 (3) |
Mg1—O8 | 2.0625 (18) | C10—N2 | 1.451 (3) |
Mg1—O8i | 2.0626 (18) | C10—C11 | 1.526 (3) |
Cu1—O1 | 1.8797 (17) | C10—H10A | 0.9700 |
Cu1—N2 | 1.892 (2) | C10—H10B | 0.9700 |
Cu1—N1 | 1.920 (2) | C11—O4 | 1.231 (3) |
Cu1—O3 | 1.9799 (16) | C11—O3 | 1.292 (3) |
C1—O1 | 1.336 (3) | C12—O5 | 1.422 (4) |
C1—C2 | 1.401 (3) | C12—H12A | 0.9600 |
C1—C6 | 1.430 (3) | C12—H12B | 0.9600 |
C2—C3 | 1.389 (3) | C12—H12C | 0.9600 |
C2—H2 | 0.9300 | O6—H6A | 0.840 (17) |
C3—O5 | 1.361 (3) | O6—H6B | 0.851 (17) |
C3—C4 | 1.400 (4) | O7—H7A | 0.840 (17) |
C4—C5 | 1.368 (4) | O7—H7B | 0.833 (17) |
C4—H4 | 0.9300 | O8—H8C | 0.831 (17) |
C5—C6 | 1.422 (3) | O8—H8D | 0.822 (17) |
C5—H5 | 0.9300 | O9—H9A | 0.848 (18) |
C6—C7 | 1.432 (4) | O9—H9B | 0.810 (18) |
C7—N1 | 1.288 (3) | O10—H10C | 0.826 (18) |
C7—H7 | 0.9300 | O10—H10D | 0.810 (17) |
C8—N1 | 1.466 (3) | O11—H11A | 0.813 (18) |
C8—C9 | 1.533 (3) | O11—H11B | 0.835 (18) |
O7i—Mg1—O7 | 179.999 (1) | C9—C8—H8A | 109.7 |
O7i—Mg1—O6 | 88.05 (8) | N1—C8—H8B | 109.7 |
O7—Mg1—O6 | 91.95 (8) | C9—C8—H8B | 109.7 |
O7i—Mg1—O6i | 91.95 (8) | H8A—C8—H8B | 108.2 |
O7—Mg1—O6i | 88.05 (8) | O2—C9—N2 | 127.6 (2) |
O6—Mg1—O6i | 180.0 | O2—C9—C8 | 119.1 (2) |
O7i—Mg1—O8 | 90.55 (8) | N2—C9—C8 | 113.2 (2) |
O7—Mg1—O8 | 89.45 (8) | N2—C10—C11 | 107.92 (19) |
O6—Mg1—O8 | 90.60 (8) | N2—C10—H10A | 110.1 |
O6i—Mg1—O8 | 89.40 (8) | C11—C10—H10A | 110.1 |
O7i—Mg1—O8i | 89.45 (8) | N2—C10—H10B | 110.1 |
O7—Mg1—O8i | 90.55 (8) | C11—C10—H10B | 110.1 |
O6—Mg1—O8i | 89.40 (8) | H10A—C10—H10B | 108.4 |
O6i—Mg1—O8i | 90.60 (8) | O4—C11—O3 | 123.8 (2) |
O8—Mg1—O8i | 180.000 (1) | O4—C11—C10 | 118.8 (2) |
O1—Cu1—N2 | 175.66 (8) | O3—C11—C10 | 117.4 (2) |
O1—Cu1—N1 | 96.90 (8) | O5—C12—H12A | 109.5 |
N2—Cu1—N1 | 83.79 (9) | O5—C12—H12B | 109.5 |
O1—Cu1—O3 | 95.95 (7) | H12A—C12—H12B | 109.5 |
N2—Cu1—O3 | 83.51 (8) | O5—C12—H12C | 109.5 |
N1—Cu1—O3 | 167.03 (8) | H12A—C12—H12C | 109.5 |
O1—C1—C2 | 117.5 (2) | H12B—C12—H12C | 109.5 |
O1—C1—C6 | 123.6 (2) | C7—N1—C8 | 121.6 (2) |
C2—C1—C6 | 118.9 (2) | C7—N1—Cu1 | 124.53 (18) |
C3—C2—C1 | 121.2 (2) | C8—N1—Cu1 | 113.87 (16) |
C3—C2—H2 | 119.4 | C9—N2—C10 | 124.0 (2) |
C1—C2—H2 | 119.4 | C9—N2—Cu1 | 119.48 (17) |
O5—C3—C2 | 124.4 (2) | C10—N2—Cu1 | 116.46 (15) |
O5—C3—C4 | 115.0 (2) | C1—O1—Cu1 | 125.02 (15) |
C2—C3—C4 | 120.6 (2) | C11—O3—Cu1 | 114.46 (15) |
C5—C4—C3 | 119.0 (2) | C3—O5—C12 | 118.7 (2) |
C5—C4—H4 | 120.5 | Mg1—O6—H6A | 121 (2) |
C3—C4—H4 | 120.5 | Mg1—O6—H6B | 118 (2) |
C4—C5—C6 | 122.6 (2) | H6A—O6—H6B | 106 (2) |
C4—C5—H5 | 118.7 | Mg1—O7—H7A | 121 (2) |
C6—C5—H5 | 118.7 | Mg1—O7—H7B | 124 (2) |
C5—C6—C1 | 117.7 (2) | H7A—O7—H7B | 108 (2) |
C5—C6—C7 | 117.5 (2) | Mg1—O8—H8C | 121 (2) |
C1—C6—C7 | 124.7 (2) | Mg1—O8—H8D | 120 (2) |
N1—C7—C6 | 125.1 (2) | H8C—O8—H8D | 112 (3) |
N1—C7—H7 | 117.4 | H9A—O9—H9B | 113 (3) |
C6—C7—H7 | 117.4 | H10C—O10—H10D | 114 (3) |
N1—C8—C9 | 109.61 (19) | H11A—O11—H11B | 114 (3) |
N1—C8—H8A | 109.7 |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6B···O4 | 0.85 (2) | 1.91 (2) | 2.755 (3) | 175 (3) |
O6—H6A···O2ii | 0.84 (2) | 2.02 (2) | 2.836 (2) | 165 (3) |
O7—H7A···O10i | 0.84 (2) | 1.91 (2) | 2.734 (3) | 165 (3) |
O7—H7B···O9i | 0.83 (2) | 1.96 (2) | 2.776 (3) | 166 (3) |
O8—H8C···O11 | 0.83 (2) | 1.98 (2) | 2.797 (3) | 169 (3) |
O8—H8D···O3 | 0.82 (2) | 1.96 (2) | 2.775 (2) | 173 (3) |
O9—H9A···O10iii | 0.85 (2) | 1.99 (2) | 2.787 (3) | 157 (3) |
O9—H9B···O1 | 0.81 (2) | 2.01 (2) | 2.816 (3) | 174 (4) |
O10—H10C···O2iv | 0.83 (2) | 1.99 (2) | 2.805 (3) | 171 (4) |
O10—H10D···O4i | 0.81 (2) | 2.05 (2) | 2.857 (3) | 176 (4) |
O11—H11A···O9v | 0.81 (2) | 2.05 (2) | 2.857 (3) | 172 (4) |
O11—H11B···O2vi | 0.84 (2) | 2.10 (2) | 2.927 (3) | 170 (4) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+2, −z+2; (iii) −x+2, −y+2, −z+1; (iv) x+1, y, z−1; (v) x−1, y, z; (vi) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Mg(H2O)6][Cu(C12H11N2O5)]2·6H2O |
Mr | 894.04 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 7.8606 (14), 10.933 (2), 11.539 (2) |
α, β, γ (°) | 76.650 (2), 76.685 (2), 80.737 (2) |
V (Å3) | 932.8 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.25 |
Crystal size (mm) | 0.30 × 0.28 × 0.25 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.696, 0.736 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6808, 3262, 2836 |
Rint | 0.084 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.097, 1.04 |
No. of reflections | 3262 |
No. of parameters | 278 |
No. of restraints | 18 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.76, −0.57 |
Computer programs: SMART (Bruker, 2002), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6B···O4 | 0.851 (17) | 1.907 (18) | 2.755 (3) | 175 (3) |
O6—H6A···O2i | 0.840 (17) | 2.016 (18) | 2.836 (2) | 165 (3) |
O7—H7A···O10ii | 0.840 (17) | 1.91 (2) | 2.734 (3) | 165 (3) |
O7—H7B···O9ii | 0.833 (17) | 1.959 (18) | 2.776 (3) | 166 (3) |
O8—H8C···O11 | 0.831 (17) | 1.978 (18) | 2.797 (3) | 169 (3) |
O8—H8D···O3 | 0.822 (17) | 1.957 (17) | 2.775 (2) | 173 (3) |
O9—H9A···O10iii | 0.848 (18) | 1.985 (19) | 2.787 (3) | 157 (3) |
O9—H9B···O1 | 0.810 (18) | 2.009 (19) | 2.816 (3) | 174 (4) |
O10—H10C···O2iv | 0.826 (18) | 1.986 (19) | 2.805 (3) | 171 (4) |
O10—H10D···O4ii | 0.810 (17) | 2.049 (18) | 2.857 (3) | 176 (4) |
O11—H11A···O9v | 0.813 (18) | 2.050 (19) | 2.857 (3) | 172 (4) |
O11—H11B···O2vi | 0.835 (18) | 2.101 (19) | 2.927 (3) | 170 (4) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) −x+1, −y+2, −z+1; (iii) −x+2, −y+2, −z+1; (iv) x+1, y, z−1; (v) x−1, y, z; (vi) x, y, z−1. |
Acknowledgements
This work was supported by SRF for ROCS, SEM and Yangzhou University.
References
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2002). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gupta, K. C., Sutar, A. K. & Lin, C. C. (2009). Coord. Chem. Rev. 253, 1926–1946. Web of Science CrossRef CAS Google Scholar
Jiang, J., Lu, Y., Yuan, L. & Liu, W. (2009). Acta Cryst. E65, m952. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sakamoto, M., Manseki, K. & Okawa, H. (2001). Coord. Chem. Rev. 219, 379–414. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vigato, P. A. & Tamburini, S. (2008). Coord. Chem. Rev. 252, 1871–1995. Web of Science CrossRef CAS Google Scholar
Vigato, P. A., Tamburini, S. & Bertolo, L. (2007). Coord. Chem. Rev. 251, 1311–1492. Web of Science CrossRef CAS Google Scholar
Zhang, G., Ye, L., Zhang, Y. & Liu, W. (2008). Acta Cryst. E64, m94–m95. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The Schiff bases are widely employed as ligands in coordination chemistry. These ligands are readily available, versatile, they exhibit various denticities and functionalities (Vigato et al., 2007; Gupta et al., 2009). Moreover, the number, the nature, and the relative position of the donor atoms of a Schiff base ligand allow a good control over the stereochemistry of the metallic centers, as well as over the number of the metal ions within homo- and heteronuclear complexes (Vigato et al., 2008; Sakamoto et al., 2001). Now we report the synthesis and structure of CuII—MgII Schiff base complex derived from glycylglycine and 4-methoxy-salicylaldehyde.
The heteronuclear complex (I) crystallizes in the triclinic space group P1. The asymmetric unit consists of one [CuL]- anion (L is a Schiff base derived from glycylglycine and 4-methoxy-salicylaldehyde), one half of the Mg(H2O)62+ cation [Mg1, O6, O7, O8] and three uncoordinated water molecules [O9, O10, O11] in the complex (I) (Fig. 1). The deprotonated Schiff base is a triple negatively charged tetradentate ONNO ligand, coordinating to the CuII atom by one phenolate O atom [O1] (Cu1—O1 = 1.880 (2) Å), one imine N atom [N1] (Cu1—N1 = 1.920 (2) Å), one deprotonated amide N atom [N2] (Cu1—N2 = 1.892 (2) Å) and one carboxylato O atom [O3] (Cu1—O3 = 1.980 (2) Å). [CuL]- exhibits approximately a square-planar structure. The CuII atom is in a slightly distorted square-planar environment with four donor atoms deviating from their mean plane by -0.0506 (9) Å (N1), +0.0626 (9) Å (N2), +0.0513 (8) Å (O1) and -0.0496 (9) Å (O3) (observed bond angles vary from 83.5 (1)° to 96.9 (1)°). The benzene ring [C1–C6] and the chelate ring [O1, C1, C6, C7, N1, Cu1] are almost coplanar with a dihedral angle of 0.11 (9)°, suggesting a large π-electron delocalization. The MgII atom lies on an inversion center and the coordination by six aqua ligands exhibits a slightly distorted octahedral environment. The six Mg—O bonds in the structure are in the range of 2.059 (2) - 2.063 (2) Å. In the crystal structure, the [CuL]- anions and [Mg(H2O)6]2+ cations each form columns by hydrogen bonds along the a-axis (Fig. 2, Table 1).