organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-(4-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 29 September 2009; accepted 30 September 2009; online 3 October 2009)

In the title compound, C15H10ClFO2S, the O atom and the methyl group of the methyl­sulfinyl substituent are located on opposite sides of the plane through the benzofuran fragment. The 4-fluoro­phenyl ring is rotated out of the benzofuran plane, making a dihedral angle of 25.99 (4)°. The crystal structure is stabilized by a non-classical inter­molecular C—H⋯O hydrogen bond and a Cl⋯O halogen bond [3.244 (1) Å].

Related literature

For the crystal structures of similar 2-(4-halophen­yl)-3-methyl­sulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o2084.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2115.]). For the biological activity of benzofuran compounds, see: Howlett et al. (1999[Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283-289.]); Twyman & Allsop (1999[Twyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383-9384.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClFO2S

  • Mr = 308.74

  • Triclinic, [P \overline 1]

  • a = 7.8484 (2) Å

  • b = 8.3176 (2) Å

  • c = 10.7353 (2) Å

  • α = 95.637 (1)°

  • β = 91.975 (1)°

  • γ = 112.372 (1)°

  • V = 642.95 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 151 K

  • 0.38 × 0.37 × 0.31 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.843, Tmax = 0.868

  • 11361 measured reflections

  • 2949 independent reflections

  • 2799 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.080

  • S = 1.06

  • 2949 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O2i 0.95 2.56 3.4287 (16) 152
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules involving benzofuran moiety have received considerable attention owing to a variety of their biological activities (Howlett et al., 1999; Twyman & Allsop, 1999) and these compounds are ubiquitous in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 2-(4-halophenyl)-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2009a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.008 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran ring and the 4-fluorophenyl ring is 25.99 (4)°. The crystal packing (Fig. 2) is stabilized by a non-classical intermolecular C—H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the SO unit, with a C14—H14···O2i (Table 1), and a Cl···O halogen bond between the chlorine and the oxygen of the SO unit [Cl···O2ii = 3.244 (1) Å; C—Cl···O = 174.59 (5) °] (Politzer et al., 2007).

Related literature top

For the crystal structures of similar 2-(4-halophenyl)-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a,b). For the biological activity of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

77% 3-Chloroperoxybenzoic acid (291 mg, 1.3 mmol) was added in small portions to a stirred solution of 5-chloro-2-(4-fluorophenyl)-3-methylsulfanyl-1-benzofuran (370 mg, 1.2 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 3h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 86%, m.p. 492–493 K; Rf = 0.64 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroforrm at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.

Structure description top

Molecules involving benzofuran moiety have received considerable attention owing to a variety of their biological activities (Howlett et al., 1999; Twyman & Allsop, 1999) and these compounds are ubiquitous in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our continuing studies of the effect of side chain substituents on the solid state structures of 2-(4-halophenyl)-3-methylsulfinyl-1-benzofuran analogues (Choi et al., 2009a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.008 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the plane of the benzofuran ring and the 4-fluorophenyl ring is 25.99 (4)°. The crystal packing (Fig. 2) is stabilized by a non-classical intermolecular C—H···O hydrogen bond between the 4-fluorophenyl H atom and the oxygen of the SO unit, with a C14—H14···O2i (Table 1), and a Cl···O halogen bond between the chlorine and the oxygen of the SO unit [Cl···O2ii = 3.244 (1) Å; C—Cl···O = 174.59 (5) °] (Politzer et al., 2007).

For the crystal structures of similar 2-(4-halophenyl)-3-methylsulfinyl-1-benzofuran derivatives, see: Choi et al. (2009a,b). For the biological activity of benzofuran compounds, see: Howlett et al. (1999); Twyman & Allsop (1999). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···O and C—Cl···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y + 1, - z + 1; (ii) - x + 1, - y + 1, - z + 2.]
5-Chloro-2-(4-fluorophenyl)-3-methylsulfinyl-1-benzofuran top
Crystal data top
C15H10ClFO2SZ = 2
Mr = 308.74F(000) = 316
Triclinic, P1Dx = 1.595 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8484 (2) ÅCell parameters from 8966 reflections
b = 8.3176 (2) Åθ = 2.7–27.6°
c = 10.7353 (2) ŵ = 0.47 mm1
α = 95.637 (1)°T = 151 K
β = 91.975 (1)°Block, colourless
γ = 112.372 (1)°0.38 × 0.37 × 0.31 mm
V = 642.95 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2949 independent reflections
Radiation source: Rotating Anode2799 reflections with I > 2σ(I)
HELIOS monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 1.9°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1010
Tmin = 0.843, Tmax = 0.868l = 1213
11361 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.080H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.043P)2 + 0.2884P]
where P = (Fo2 + 2Fc2)/3
2949 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C15H10ClFO2Sγ = 112.372 (1)°
Mr = 308.74V = 642.95 (3) Å3
Triclinic, P1Z = 2
a = 7.8484 (2) ÅMo Kα radiation
b = 8.3176 (2) ŵ = 0.47 mm1
c = 10.7353 (2) ÅT = 151 K
α = 95.637 (1)°0.38 × 0.37 × 0.31 mm
β = 91.975 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2949 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2799 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.868Rint = 0.023
11361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
2949 reflectionsΔρmin = 0.37 e Å3
182 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.18454 (4)0.20468 (4)0.59366 (3)0.01959 (10)
Cl0.58536 (5)0.78256 (4)1.01739 (3)0.02696 (10)
F0.06796 (13)0.22320 (12)0.01528 (8)0.0373 (2)
O10.33377 (12)0.68122 (11)0.48927 (8)0.01984 (19)
O20.32352 (14)0.18415 (13)0.68194 (10)0.0292 (2)
C10.25897 (17)0.42982 (16)0.57709 (11)0.0182 (2)
C20.36053 (17)0.57316 (16)0.67248 (12)0.0181 (2)
C30.41614 (17)0.58856 (17)0.79952 (11)0.0199 (2)
H30.38800.48880.84330.024*
C40.51439 (18)0.75637 (17)0.85853 (12)0.0210 (3)
C50.55869 (18)0.90590 (17)0.79684 (12)0.0224 (3)
H50.62741.01810.84150.027*
C60.50280 (18)0.89127 (17)0.67078 (12)0.0219 (3)
H60.53050.99100.62700.026*
C70.40473 (17)0.72374 (16)0.61254 (11)0.0184 (2)
C80.24675 (17)0.50143 (16)0.46942 (12)0.0184 (2)
C90.16187 (17)0.42847 (17)0.34289 (11)0.0185 (2)
C100.01060 (18)0.26868 (18)0.32117 (12)0.0221 (3)
H100.04000.20790.39020.026*
C110.06688 (19)0.19735 (18)0.20057 (13)0.0247 (3)
H110.16790.08730.18540.030*
C120.00739 (19)0.29133 (19)0.10332 (12)0.0244 (3)
C130.15404 (19)0.45109 (18)0.12037 (12)0.0242 (3)
H130.20030.51260.05080.029*
C140.23250 (18)0.52006 (17)0.24092 (12)0.0209 (3)
H140.33440.62960.25470.025*
C150.01001 (19)0.18735 (19)0.68205 (14)0.0275 (3)
H15A0.06550.06910.70670.041*
H15B0.10170.21040.63040.041*
H15C0.03070.27310.75740.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.02235 (17)0.01534 (16)0.02005 (16)0.00628 (12)0.00176 (12)0.00143 (11)
Cl0.03404 (19)0.02564 (18)0.01697 (16)0.00867 (14)0.00482 (12)0.00284 (12)
F0.0440 (5)0.0401 (5)0.0167 (4)0.0061 (4)0.0093 (4)0.0020 (4)
O10.0235 (4)0.0174 (4)0.0166 (4)0.0059 (4)0.0014 (3)0.0018 (3)
O20.0262 (5)0.0258 (5)0.0373 (6)0.0108 (4)0.0019 (4)0.0103 (4)
C10.0202 (6)0.0162 (6)0.0170 (5)0.0060 (5)0.0003 (4)0.0007 (4)
C20.0187 (6)0.0161 (6)0.0190 (6)0.0067 (5)0.0007 (4)0.0008 (4)
C30.0230 (6)0.0189 (6)0.0174 (6)0.0081 (5)0.0001 (5)0.0012 (5)
C40.0219 (6)0.0232 (6)0.0174 (6)0.0094 (5)0.0014 (5)0.0012 (5)
C50.0227 (6)0.0184 (6)0.0227 (6)0.0057 (5)0.0009 (5)0.0024 (5)
C60.0235 (6)0.0171 (6)0.0234 (6)0.0060 (5)0.0007 (5)0.0026 (5)
C70.0191 (6)0.0197 (6)0.0160 (5)0.0076 (5)0.0005 (4)0.0013 (4)
C80.0179 (6)0.0169 (6)0.0189 (6)0.0054 (5)0.0011 (4)0.0009 (4)
C90.0194 (6)0.0209 (6)0.0161 (5)0.0093 (5)0.0002 (4)0.0013 (4)
C100.0216 (6)0.0240 (6)0.0187 (6)0.0064 (5)0.0002 (5)0.0041 (5)
C110.0222 (6)0.0243 (6)0.0231 (6)0.0050 (5)0.0029 (5)0.0006 (5)
C120.0272 (7)0.0296 (7)0.0150 (6)0.0111 (5)0.0048 (5)0.0018 (5)
C130.0275 (7)0.0281 (7)0.0175 (6)0.0108 (5)0.0020 (5)0.0051 (5)
C140.0214 (6)0.0207 (6)0.0199 (6)0.0073 (5)0.0010 (5)0.0028 (5)
C150.0248 (7)0.0276 (7)0.0317 (7)0.0100 (5)0.0082 (5)0.0087 (6)
Geometric parameters (Å, º) top
S—O21.490 (1)C6—C71.380 (2)
S—C11.766 (1)C6—H60.9500
S—C151.792 (1)C8—C91.458 (2)
Cl—C41.742 (1)C9—C101.396 (2)
Cl—O2i3.244 (1)C9—C141.404 (2)
F—C121.358 (1)C10—C111.385 (2)
O1—C71.376 (2)C10—H100.9500
O1—C81.378 (2)C11—C121.377 (2)
C1—C81.368 (2)C11—H110.9500
C1—C21.444 (2)C12—C131.377 (2)
C2—C71.395 (2)C13—C141.383 (2)
C2—C31.396 (2)C13—H130.9500
C3—C41.385 (2)C14—H140.9500
C3—H30.9500C15—H15A0.9800
C4—C51.398 (2)C15—H15B0.9800
C5—C61.387 (2)C15—H15C0.9800
C5—H50.9500
O2—S—C1107.25 (6)C1—C8—C9133.83 (12)
O2—S—C15106.04 (7)O1—C8—C9115.54 (11)
C4—Cl—O2i174.59 (5)C10—C9—C14119.21 (11)
C1—S—C1597.55 (6)C10—C9—C8121.09 (11)
C7—O1—C8106.71 (9)C14—C9—C8119.70 (11)
C8—C1—C2106.97 (11)C11—C10—C9121.01 (12)
C8—C1—S126.78 (10)C11—C10—H10119.5
C2—C1—S126.01 (9)C9—C10—H10119.5
C7—C2—C3119.43 (11)C12—C11—C10117.77 (12)
C7—C2—C1105.20 (11)C12—C11—H11121.1
C3—C2—C1135.37 (12)C10—C11—H11121.1
C4—C3—C2116.72 (12)F—C12—C11118.33 (12)
C4—C3—H3121.6F—C12—C13118.37 (12)
C2—C3—H3121.6C11—C12—C13123.30 (12)
C3—C4—C5123.13 (12)C12—C13—C14118.55 (12)
C3—C4—Cl118.45 (10)C12—C13—H13120.7
C5—C4—Cl118.42 (10)C14—C13—H13120.7
C6—C5—C4120.34 (12)C13—C14—C9120.13 (12)
C6—C5—H5119.8C13—C14—H14119.9
C4—C5—H5119.8C9—C14—H14119.9
C7—C6—C5116.26 (12)S—C15—H15A109.5
C7—C6—H6121.9S—C15—H15B109.5
C5—C6—H6121.9H15A—C15—H15B109.5
O1—C7—C6125.40 (11)S—C15—H15C109.5
O1—C7—C2110.47 (11)H15A—C15—H15C109.5
C6—C7—C2124.12 (12)H15B—C15—H15C109.5
C1—C8—O1110.63 (11)
O2—S—C1—C8141.61 (12)C1—C2—C7—C6179.94 (12)
C15—S—C1—C8108.94 (12)C2—C1—C8—O10.03 (14)
O2—S—C1—C231.99 (12)S—C1—C8—O1174.55 (9)
C15—S—C1—C277.46 (12)C2—C1—C8—C9179.35 (13)
C8—C1—C2—C70.78 (13)S—C1—C8—C96.1 (2)
S—C1—C2—C7173.85 (9)C7—O1—C8—C10.75 (13)
C8—C1—C2—C3178.83 (14)C7—O1—C8—C9179.75 (10)
S—C1—C2—C36.5 (2)C1—C8—C9—C1026.5 (2)
C7—C2—C3—C40.26 (18)O1—C8—C9—C10152.84 (12)
C1—C2—C3—C4179.83 (13)C1—C8—C9—C14153.67 (14)
C2—C3—C4—C50.19 (19)O1—C8—C9—C1426.98 (16)
C2—C3—C4—Cl179.52 (9)C14—C9—C10—C111.87 (19)
C3—C4—C5—C60.6 (2)C8—C9—C10—C11178.31 (12)
Cl—C4—C5—C6179.15 (10)C9—C10—C11—C121.6 (2)
C4—C5—C6—C70.44 (19)C10—C11—C12—F179.67 (12)
C8—O1—C7—C6179.96 (12)C10—C11—C12—C130.2 (2)
C8—O1—C7—C21.27 (13)F—C12—C13—C14179.31 (12)
C5—C6—C7—O1178.59 (11)C11—C12—C13—C140.8 (2)
C5—C6—C7—C20.01 (19)C12—C13—C14—C90.49 (19)
C3—C2—C7—O1178.41 (11)C10—C9—C14—C130.81 (19)
C1—C2—C7—O11.27 (13)C8—C9—C14—C13179.37 (12)
C3—C2—C7—C60.37 (19)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2ii0.952.563.4287 (16)152
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10ClFO2S
Mr308.74
Crystal system, space groupTriclinic, P1
Temperature (K)151
a, b, c (Å)7.8484 (2), 8.3176 (2), 10.7353 (2)
α, β, γ (°)95.637 (1), 91.975 (1), 112.372 (1)
V3)642.95 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.38 × 0.37 × 0.31
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.843, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
11361, 2949, 2799
Rint0.023
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.080, 1.06
No. of reflections2949
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O2i0.952.563.4287 (16)151.5
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o2084.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHowlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTwyman, L. J. & Allsop, D. (1999). Tetrahedron Lett. 40, 9383–9384.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds