metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-1-(2-pyridylmeth­yl)-1H-benzo­triazole]disilver(I) bis­­(perchlorate)

aZhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Henan, Zhengzhou 450002, People's Republic of China, and bCollege of Mechanical Engineering, Zhengzhou University, Henan, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: chunsenliu@zzuli.edu.cn

(Received 14 October 2009; accepted 22 October 2009; online 28 October 2009)

In the title centrosymmetric binuclear AgI complex, [Ag2(C12H10N4)2](ClO4)2, each AgI center is two-coordinated by one pyridine and one benzotriazole N-donor atom of two inversion-related 1-(2-pyridylmeth­yl)-1H-benzotriazole (L) ligands. This forms a unique box-like cyclic dimer with an intra­molecular Ag⋯Ag separation of 4.479 (2) Å. Inter­molecular C—H⋯O hydrogen-bonding inter­actions, involving uncoordinated ClO4 ions, link the binuclear units, forming a two-dimensional network parallel to (10[\overline{2}]).

Related literature

Bis-heterocyclic chelating or bridging ligands have been used extensively to construct functional coordination complexes that contain different hetero-aromatic ring systems, see: Constable (1989[Constable, E. C. (1989). Adv. Inorg. Chem. 34, 1-33.]); Constable & Steel (1989[Constable, E. C. & Steel, P. J. (1989). Coord. Chem. Rev. 93, 205-233.]); Steel (2005[Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.]). For related structures, see: Hu et al. (2008[Hu, M., Ma, S.-T., Guo, L.-Q., Sun, G.-H. & Fang, S.-M. (2008). Acta Cryst. E64, m1473-m1474.]); Huang et al. (2008[Huang, M.-H., Wang, J. & Liu, P. (2008). Chin. J. Struct. Chem. 27, 659-662.]); Liu et al. (2006[Liu, C.-S., Chen, P.-Q., Yang, E.-C., Tian, J.-L., Bu, X.-H., Li, Z.-M., Sun, H.-W. & Lin, Z. (2006). Inorg. Chem. 45, 5812-5821.], 2007[Liu, C.-S., Li, J.-R., Zou, R.-Q., Zhou, J.-N., Shi, X.-S., Wang, J.-J. & Bu, X.-H. (2007). J. Mol. Struct. 843, 66-77.]); Liu, Sun et al. (2008[Liu, C.-S., Sun, G.-H., Li, M., Guo, L.-Q., Zhou, L.-M. & Fang, S.-M. (2008). Open Crystallogr. J. 1, 24-30.]); Liu, Zhou et al. (2008[Liu, C.-S., Zhou, L.-M., Guo, L.-Q., Ma, S.-T. & Fang, S.-M. (2008). Acta Cryst. C64, m394-m397.]); Richardson & Steel (2003[Richardson, C. & Steel, P. J. (2003). Dalton Trans. pp. 992-1000.]). For the synthesis of ligand L, see: Liu, Sun et al. (2008[Liu, C.-S., Sun, G.-H., Li, M., Guo, L.-Q., Zhou, L.-M. & Fang, S.-M. (2008). Open Crystallogr. J. 1, 24-30.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C12H10N4)2](ClO4)2

  • Mr = 835.12

  • Monoclinic, P 21 /c

  • a = 9.4273 (4) Å

  • b = 16.0863 (7) Å

  • c = 11.9152 (7) Å

  • β = 128.448 (3)°

  • V = 1415.15 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 293 K

  • 0.24 × 0.23 × 0.03 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.695, Tmax = 0.960

  • 9388 measured reflections

  • 2484 independent reflections

  • 1658 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.137

  • S = 1.08

  • 2484 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N2i 2.159 (5)
Ag1—N1 2.201 (5)
N2i—Ag1—N1 155.9 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H11⋯O3i 0.97 2.31 3.264 (15) 168
C1—H12⋯O2ii 0.97 2.58 3.415 (11) 144
C3—H3⋯O1ii 0.93 2.60 3.512 (10) 168
C11—H1⋯O1ii 0.93 2.56 3.481 (11) 170
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Numerous related bis-heterocyclic chelating or bridging ligands have been synthesized and used extensively to construct functional coordination complexes that contain different hetero-aromatic ring systems, for example, pyridine, pyrazine, quinoline, quinoxaline, pyrazole, imidazole, thiazoles and their benzo analogues (Constable, 1989; Constable & Steel, 1989; Steel, 2005). The structures of five N-containing bis-heterocyclic ligands bearing 1-substituted benzotriazole subunits, such as 1-(2-pyridylmethyl)-1H-benzotriazole and its RuII, CuII, PdII, AgI, ZnII and HgII complexes, have been well documented previously (Huang et al. 2008; Liu, Zhou et al. 2008; Richardson & Steel, 2003). In our previous work, to further investigate the influences of the N-donor spatial position of pendant pyridyl group in structurally related benzotriazol-1-yl-based pyridyl ligands on the structures of their coordination complexes, two new N-containing heterocyclic ligands 1-(4-pyridylmethyl)-1H-benzotriazole (4-pbt) and 2-(3-pyridylmethyl)-2H-benzotriazole (3-pbt) were designed and prepared. Their reaction with AgNO3 offered an one-dimensional double helical coordination polymer {[Ag(4-pbt)](NO3)} and a centrosymmetric binuclear complex [Ag2(3-pbt)2 (NO3)2], respectively (Hu et al. 2008; Liu, Sun et al. 2008). To further investigate the influence of different counter-anions on the self-assembly process of coordination complexes, we chose to use L to construct new functional AgI complexes through its reaction with AgClO4. Here we report the crystal structure of [Ag(L)]2(ClO4)2.

The structure of the title compound (I) consists of a centrosymmetric binuclear [Ag(L)]22+ unit and two uncoordinated ClO4- ions. The binuclear [Ag(L)]22+ cation (Fig. 1) comprises two L ligands and two AgI centers. The intramolecular non-bonding Ag···Ag separation is 4.479 (2) Å. There is only one crystallographic independent AgI center, which is two coordinated by two N-atom donors, one N donor being from benzotriazole ring of one L ligand and the other being from pyridyl ring of another L ligand. In this case the 14-membered dimetallocyclic ring is far from planar as a result of the presence of the tetrahedral methylene group of the L ligand. All the Ag—N bond distances are in the normal range found for similar complexes (Liu et al., 2006; Liu et al., 2007).

In the crystal structure adjacent discrete binuclear [Ag(L)]22+ units are assembled into one-dimensional chains by intermolecular C—H···O hydrogen-bonding interactions between the L ligands and the uncoordinated ClO4- (Table 2). The net result is a two-dimensional network running parallel to the (102) plane (Fig. 2). In addition, the crystal structure of (I) also contains intermolecular face-to-face π···π stacking interactions between the pyridyl ring involving N1/C2/C3/C4/C5/C6 (centroid Cg1) and N1A/C2A/C3A/C4A/C5A/C6A (centroid Cg2) of distinct L ligands [the centroid–centroid separation being 3.685 (1) Å, symmetry code A: -x, -y + 1, -z + 1], that interlink the two-dimensional sheets to form a three-dimensional framework.

Related literature top

Bis-heterocyclic chelating or bridging ligands have been used extensively to construct functional coordination complexes that contain different hetero-aromatic ring systems, see: Constable (1989); Constable & Steel (1989); Steel (2005). For related structures, see: Hu et al. (2008); Huang et al. (2008); Liu et al. (2006, 2007); Liu, Sun et al. (2008); Liu, Zhou et al. (2008); Richardson & Steel (2003). For the synthesis of ligand L, see: Liu, Sun et al. (2008).

Experimental top

1-(2-Pyridylmethyl)-1H-benzotriazole (L) was synthesized according to the literature procedure of Liu, Sun et al. (2008). Complex (I) was prepared by adding a solution of L (0.05 mmol) in CH3OH (10 ml) on top of an aqueous solution (15 ml) of AgClO4 (0.1 mmol) in a test tube. Yellow single crystals suitable for X-ray structural analysis appeared at the tube wall after ca one month at room temperature (yield ~30% based on L). Elemental analysis calculated for (C24H20Ag2Cl2N8O8): H 2.41, C 34.52, N 13.42%; found: H 2.30, C 34.67, N 13.36%.

Refinement top

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 (aromatic) or 0.97 Å (methylene), with Uiso(H) = 1.2 Ueq(C).

Structure description top

Numerous related bis-heterocyclic chelating or bridging ligands have been synthesized and used extensively to construct functional coordination complexes that contain different hetero-aromatic ring systems, for example, pyridine, pyrazine, quinoline, quinoxaline, pyrazole, imidazole, thiazoles and their benzo analogues (Constable, 1989; Constable & Steel, 1989; Steel, 2005). The structures of five N-containing bis-heterocyclic ligands bearing 1-substituted benzotriazole subunits, such as 1-(2-pyridylmethyl)-1H-benzotriazole and its RuII, CuII, PdII, AgI, ZnII and HgII complexes, have been well documented previously (Huang et al. 2008; Liu, Zhou et al. 2008; Richardson & Steel, 2003). In our previous work, to further investigate the influences of the N-donor spatial position of pendant pyridyl group in structurally related benzotriazol-1-yl-based pyridyl ligands on the structures of their coordination complexes, two new N-containing heterocyclic ligands 1-(4-pyridylmethyl)-1H-benzotriazole (4-pbt) and 2-(3-pyridylmethyl)-2H-benzotriazole (3-pbt) were designed and prepared. Their reaction with AgNO3 offered an one-dimensional double helical coordination polymer {[Ag(4-pbt)](NO3)} and a centrosymmetric binuclear complex [Ag2(3-pbt)2 (NO3)2], respectively (Hu et al. 2008; Liu, Sun et al. 2008). To further investigate the influence of different counter-anions on the self-assembly process of coordination complexes, we chose to use L to construct new functional AgI complexes through its reaction with AgClO4. Here we report the crystal structure of [Ag(L)]2(ClO4)2.

The structure of the title compound (I) consists of a centrosymmetric binuclear [Ag(L)]22+ unit and two uncoordinated ClO4- ions. The binuclear [Ag(L)]22+ cation (Fig. 1) comprises two L ligands and two AgI centers. The intramolecular non-bonding Ag···Ag separation is 4.479 (2) Å. There is only one crystallographic independent AgI center, which is two coordinated by two N-atom donors, one N donor being from benzotriazole ring of one L ligand and the other being from pyridyl ring of another L ligand. In this case the 14-membered dimetallocyclic ring is far from planar as a result of the presence of the tetrahedral methylene group of the L ligand. All the Ag—N bond distances are in the normal range found for similar complexes (Liu et al., 2006; Liu et al., 2007).

In the crystal structure adjacent discrete binuclear [Ag(L)]22+ units are assembled into one-dimensional chains by intermolecular C—H···O hydrogen-bonding interactions between the L ligands and the uncoordinated ClO4- (Table 2). The net result is a two-dimensional network running parallel to the (102) plane (Fig. 2). In addition, the crystal structure of (I) also contains intermolecular face-to-face π···π stacking interactions between the pyridyl ring involving N1/C2/C3/C4/C5/C6 (centroid Cg1) and N1A/C2A/C3A/C4A/C5A/C6A (centroid Cg2) of distinct L ligands [the centroid–centroid separation being 3.685 (1) Å, symmetry code A: -x, -y + 1, -z + 1], that interlink the two-dimensional sheets to form a three-dimensional framework.

Bis-heterocyclic chelating or bridging ligands have been used extensively to construct functional coordination complexes that contain different hetero-aromatic ring systems, see: Constable (1989); Constable & Steel (1989); Steel (2005). For related structures, see: Hu et al. (2008); Huang et al. (2008); Liu et al. (2006, 2007); Liu, Sun et al. (2008); Liu, Zhou et al. (2008); Richardson & Steel (2003). For the synthesis of ligand L, see: Liu, Sun et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTLL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex (I). Displacement ellipsoids are drawn at the 30% probability level. Atoms labelled with the suffix A are generated by the symmetry operation (–x + 1, –y + 1, –z + 1).
[Figure 2] Fig. 2. A view of the two-dimensional network of complex (I), running parallel to the (102) plane, formed by the intermolecular C—H···O (fine dashed lines) interactions. For clarity, only H atoms involved in the interactions are shown.
Bis[µ-1-(2-pyridylmethyl)-1H-benzotriazole]disilver(I) bis(perchlorate) top
Crystal data top
[Ag2(C12H10N4)2](ClO4)2F(000) = 824
Mr = 835.12Dx = 1.960 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3182 reflections
a = 9.4273 (4) Åθ = 3.0–26.3°
b = 16.0863 (7) ŵ = 1.64 mm1
c = 11.9152 (7) ÅT = 293 K
β = 128.448 (3)°Block, yellow
V = 1415.15 (13) Å30.24 × 0.23 × 0.03 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2484 independent reflections
Radiation source: fine-focus sealed tube1658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.695, Tmax = 0.960k = 1519
9388 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0614P)2 + 2.0392P]
where P = (Fo2 + 2Fc2)/3
2484 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ag2(C12H10N4)2](ClO4)2V = 1415.15 (13) Å3
Mr = 835.12Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.4273 (4) ŵ = 1.64 mm1
b = 16.0863 (7) ÅT = 293 K
c = 11.9152 (7) Å0.24 × 0.23 × 0.03 mm
β = 128.448 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2484 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1658 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.960Rint = 0.037
9388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.08Δρmax = 0.62 e Å3
2484 reflectionsΔρmin = 0.53 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.42617 (7)0.60201 (4)0.58311 (7)0.0599 (3)
N10.1418 (7)0.6101 (3)0.4978 (6)0.0368 (13)
N20.3065 (6)0.4519 (4)0.2962 (5)0.0385 (14)
N30.2868 (7)0.5274 (4)0.3285 (6)0.0407 (14)
N40.1091 (6)0.5452 (3)0.2391 (5)0.0347 (13)
C10.0453 (9)0.6239 (4)0.2566 (7)0.0403 (17)
H110.13860.66580.29330.048*
H120.06120.64250.16370.048*
C20.0004 (9)0.6159 (4)0.3575 (7)0.0325 (15)
C30.1725 (9)0.6158 (4)0.3083 (8)0.0435 (18)
H30.26650.61900.21020.052*
C40.2110 (10)0.6110 (4)0.4035 (9)0.051 (2)
H40.32970.61050.37110.062*
C50.0673 (11)0.6068 (4)0.5464 (9)0.052 (2)
H50.08690.60500.61380.063*
C60.1070 (10)0.6055 (4)0.5901 (8)0.0472 (18)
H60.20350.60120.68740.057*
C70.1415 (8)0.4210 (4)0.1852 (6)0.0318 (15)
C80.0907 (9)0.3446 (4)0.1149 (7)0.0400 (17)
H80.17570.30390.13900.048*
C90.0903 (10)0.3326 (5)0.0089 (8)0.0500 (19)
H90.12900.28280.04190.060*
C100.2202 (10)0.3928 (5)0.0261 (8)0.052 (2)
H100.34210.38110.09800.062*
C110.1737 (8)0.4676 (5)0.0417 (7)0.0407 (17)
H10.25950.50760.01830.049*
C120.0111 (8)0.4803 (4)0.1486 (6)0.0310 (14)
Cl10.4844 (2)0.21950 (12)0.5792 (2)0.0510 (5)
O10.4745 (9)0.1317 (4)0.5670 (7)0.089 (2)
O20.3143 (9)0.2532 (5)0.4653 (7)0.116 (3)
O30.6166 (13)0.2454 (6)0.5735 (14)0.168 (5)
O40.5263 (10)0.2432 (5)0.7115 (7)0.109 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0348 (3)0.0672 (5)0.0583 (4)0.0086 (3)0.0195 (3)0.0078 (3)
N10.041 (3)0.034 (3)0.038 (3)0.002 (2)0.026 (3)0.003 (3)
N20.033 (3)0.047 (4)0.032 (3)0.007 (3)0.019 (2)0.002 (3)
N30.037 (3)0.045 (4)0.035 (3)0.004 (3)0.019 (3)0.002 (3)
N40.037 (3)0.036 (3)0.034 (3)0.006 (2)0.023 (2)0.000 (3)
C10.059 (4)0.026 (4)0.040 (4)0.006 (3)0.033 (4)0.004 (3)
C20.044 (4)0.017 (3)0.032 (3)0.003 (3)0.021 (3)0.003 (3)
C30.039 (4)0.046 (5)0.038 (4)0.008 (3)0.020 (3)0.004 (3)
C40.050 (4)0.049 (5)0.064 (5)0.010 (3)0.040 (4)0.008 (4)
C50.074 (6)0.046 (5)0.061 (5)0.012 (4)0.054 (5)0.012 (4)
C60.057 (4)0.036 (4)0.043 (4)0.008 (3)0.028 (4)0.001 (3)
C70.036 (3)0.034 (4)0.026 (3)0.004 (3)0.020 (3)0.006 (3)
C80.055 (4)0.032 (4)0.043 (4)0.005 (3)0.036 (4)0.001 (3)
C90.058 (5)0.036 (4)0.052 (5)0.011 (4)0.032 (4)0.009 (4)
C100.043 (4)0.051 (5)0.050 (4)0.011 (4)0.023 (4)0.001 (4)
C110.033 (3)0.050 (5)0.037 (4)0.005 (3)0.021 (3)0.008 (3)
C120.039 (3)0.028 (4)0.032 (4)0.000 (3)0.025 (3)0.002 (3)
Cl10.0455 (9)0.0446 (11)0.0560 (12)0.0073 (8)0.0281 (9)0.0116 (9)
O10.094 (4)0.051 (4)0.090 (5)0.012 (3)0.041 (4)0.011 (3)
O20.098 (5)0.117 (6)0.066 (5)0.042 (5)0.018 (4)0.015 (4)
O30.171 (8)0.115 (7)0.317 (14)0.064 (6)0.201 (10)0.063 (8)
O40.114 (5)0.116 (6)0.060 (4)0.019 (5)0.037 (4)0.028 (4)
Geometric parameters (Å, º) top
Ag1—N2i2.159 (5)C5—C61.381 (11)
Ag1—N12.201 (5)C5—H50.9300
N1—C61.332 (9)C6—H60.9300
N1—C21.347 (8)C7—C121.394 (8)
N2—N31.322 (8)C7—C81.394 (9)
N2—C71.362 (8)C8—C91.365 (9)
N2—Ag1i2.159 (5)C8—H80.9301
N3—N41.344 (7)C9—C101.406 (10)
N4—C121.367 (8)C9—H90.9300
N4—C11.470 (8)C10—C111.361 (10)
C1—C21.514 (10)C10—H100.9300
C1—H110.9698C11—C121.393 (8)
C1—H120.9699C11—H10.9300
C2—C31.339 (9)Cl1—O31.355 (7)
C3—C41.392 (11)Cl1—O21.414 (6)
C3—H30.9300Cl1—O11.417 (6)
C4—C51.367 (11)Cl1—O41.418 (7)
C4—H40.9299
N2i—Ag1—N1155.9 (2)C6—C5—H5120.2
C6—N1—C2117.5 (6)N1—C6—C5122.3 (7)
C6—N1—Ag1118.1 (5)N1—C6—H6118.8
C2—N1—Ag1124.3 (5)C5—C6—H6118.9
N3—N2—C7109.6 (5)N2—C7—C12107.9 (6)
N3—N2—Ag1i119.5 (4)N2—C7—C8131.5 (6)
C7—N2—Ag1i131.0 (4)C12—C7—C8120.6 (6)
N2—N3—N4107.3 (5)C9—C8—C7116.4 (6)
N3—N4—C12111.1 (5)C9—C8—H8121.8
N3—N4—C1119.3 (5)C7—C8—H8121.8
C12—N4—C1129.4 (5)C8—C9—C10122.3 (7)
N4—C1—C2112.5 (5)C8—C9—H9118.9
N4—C1—H11109.0C10—C9—H9118.8
C2—C1—H11109.1C11—C10—C9122.2 (6)
N4—C1—H12109.2C11—C10—H10118.9
C2—C1—H12109.1C9—C10—H10118.9
H11—C1—H12107.8C10—C11—C12115.5 (6)
C3—C2—N1123.0 (6)C10—C11—H1122.3
C3—C2—C1121.2 (6)C12—C11—H1122.2
N1—C2—C1115.9 (6)N4—C12—C11132.9 (6)
C2—C3—C4120.1 (7)N4—C12—C7104.1 (5)
C2—C3—H3119.9C11—C12—C7123.0 (6)
C4—C3—H3119.9O3—Cl1—O2111.3 (7)
C5—C4—C3117.3 (7)O3—Cl1—O1107.7 (5)
C5—C4—H4121.4O2—Cl1—O1108.7 (4)
C3—C4—H4121.2O3—Cl1—O4110.1 (6)
C4—C5—C6119.7 (7)O2—Cl1—O4109.2 (4)
C4—C5—H5120.1O1—Cl1—O4109.7 (5)
N2i—Ag1—N1—C653.0 (7)C4—C5—C6—N11.5 (11)
N2i—Ag1—N1—C2124.0 (6)N3—N2—C7—C121.4 (7)
C7—N2—N3—N40.4 (7)Ag1i—N2—C7—C12178.4 (4)
Ag1i—N2—N3—N4179.4 (4)N3—N2—C7—C8178.6 (7)
N2—N3—N4—C120.8 (7)Ag1i—N2—C7—C81.1 (11)
N2—N3—N4—C1176.1 (5)N2—C7—C8—C9178.0 (7)
N3—N4—C1—C289.7 (7)C12—C7—C8—C91.1 (10)
C12—N4—C1—C284.6 (8)C7—C8—C9—C101.5 (11)
C6—N1—C2—C31.1 (9)C8—C9—C10—C111.2 (12)
Ag1—N1—C2—C3175.9 (5)C9—C10—C11—C120.3 (11)
C6—N1—C2—C1178.0 (5)N3—N4—C12—C11177.9 (7)
Ag1—N1—C2—C14.9 (7)C1—N4—C12—C113.3 (11)
N4—C1—C2—C3106.9 (7)N3—N4—C12—C71.6 (7)
N4—C1—C2—N174.0 (7)C1—N4—C12—C7176.2 (6)
N1—C2—C3—C41.1 (10)C10—C11—C12—N4179.6 (7)
C1—C2—C3—C4178.0 (6)C10—C11—C12—C70.2 (10)
C2—C3—C4—C50.2 (11)N2—C7—C12—N41.8 (7)
C3—C4—C5—C61.4 (11)C8—C7—C12—N4179.4 (6)
C2—N1—C6—C50.2 (10)N2—C7—C12—C11177.8 (6)
Ag1—N1—C6—C5177.4 (5)C8—C7—C12—C110.2 (10)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H11···O3i0.972.313.264 (15)168
C1—H12···O2ii0.972.583.415 (11)144
C3—H3···O1ii0.932.603.512 (10)168
C11—H1···O1ii0.932.563.481 (11)170
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag2(C12H10N4)2](ClO4)2
Mr835.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.4273 (4), 16.0863 (7), 11.9152 (7)
β (°) 128.448 (3)
V3)1415.15 (13)
Z2
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.24 × 0.23 × 0.03
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.695, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
9388, 2484, 1658
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.137, 1.08
No. of reflections2484
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.53

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTLL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Ag1—N2i2.159 (5)N2—Ag1i2.159 (5)
Ag1—N12.201 (5)
N2i—Ag1—N1155.9 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H11···O3i0.972.313.264 (15)168
C1—H12···O2ii0.972.583.415 (11)144
C3—H3···O1ii0.932.603.512 (10)168
C11—H1···O1ii0.932.563.481 (11)170
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the start-up fund for PhDs in Natural Scientific Research of Zhengzhou University of Light Industry (No. 2007BSJJ001 to CSL).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C. (1989). Adv. Inorg. Chem. 34, 1–33.  CrossRef CAS Web of Science Google Scholar
First citationConstable, E. C. & Steel, P. J. (1989). Coord. Chem. Rev. 93, 205–233.  CAS Google Scholar
First citationHu, M., Ma, S.-T., Guo, L.-Q., Sun, G.-H. & Fang, S.-M. (2008). Acta Cryst. E64, m1473–m1474.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, M.-H., Wang, J. & Liu, P. (2008). Chin. J. Struct. Chem. 27, 659-662.  CAS Google Scholar
First citationLiu, C.-S., Chen, P.-Q., Yang, E.-C., Tian, J.-L., Bu, X.-H., Li, Z.-M., Sun, H.-W. & Lin, Z. (2006). Inorg. Chem. 45, 5812–5821.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, C.-S., Li, J.-R., Zou, R.-Q., Zhou, J.-N., Shi, X.-S., Wang, J.-J. & Bu, X.-H. (2007). J. Mol. Struct. 843, 66–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C.-S., Sun, G.-H., Li, M., Guo, L.-Q., Zhou, L.-M. & Fang, S.-M. (2008). Open Crystallogr. J. 1, 24–30.  CSD CrossRef CAS Google Scholar
First citationLiu, C.-S., Zhou, L.-M., Guo, L.-Q., Ma, S.-T. & Fang, S.-M. (2008). Acta Cryst. C64, m394–m397.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRichardson, C. & Steel, P. J. (2003). Dalton Trans. pp. 992–1000.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteel, P. J. (2005). Acc. Chem. Res. 38, 243–250.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds