organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-1-(3-Chloro­phen­yl)-3-(4-chloro­phen­yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Manalaganotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 8 September 2009; accepted 18 September 2009; online 3 October 2009)

The title compound, C15H10Cl2O, is a chalcone with 3-chloro­phenyl and 4-chloro­phenyl substituents bonded at the opposite ends of a propenone group, the biologically active region. The dihedral angle between mean planes of these two chloro-substituted benzene rings is 46.7 (7)° compared to 46.0 (1) and 32.4 (1)° in similar published sructures. The angles between the mean plane of the prop-2-en-1-one group and the mean planes of the 3-chloro­phenyl and 4-chloro­phenyl rings are 24.1 (2) and 29.63°, respectively. While no classical hydrogen bonds are present, weak inter­molecular C—H⋯π-ring inter­actions are observed, which contribute to the stability of crystal packing.

Related literature

For the potential use of chalcones or chalcone-rich plant extracts as drugs or food preservatives, see: Dhar (1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]). For the biological and pharmaceutical activity of chalcones, see: Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Troeberg et al. (2000[Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C, McKerrow, J. H, Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660-669.]); Ram et al. (2000[Ram, V. J., Saxena, A. S., Srivastava, S. & Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159-2161.]). For their applications as organic nonlinear optical materials, see: Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.]). For the bis-(4-chloro­phen­yl) analog, see: Wang et al. (2005[Wang, L., Yang, W. & Zhang, D.-C. (2005). Acta Cryst. E61, o2820-o2822.]) and for the (2-chloro­phenyl, 4-chloro­phen­yl) analog, see: Fun et al. (2008b[Fun, H.-K., Kia, R., Patil, P. S., Dharmaprakash, S. M. & Razak, I. A. (2008b). Acta Cryst. E64, o2014-o2015.]). For antitumor and antioxidant activity studies and non-linear optical studies, see: Mukherjee et al. (2001[Mukherjee, S., Kumar, V., Prasad, A. K., Raj, H. G., Bracke, M. E., Olsen, C. E., Jain, S. C. & Parmar, V. S. (2001). Bioorg. Med. Chem. 9, 337-345.]); Poornesh et al. (2009[Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. & Narayana, B. (2009). Opt. Mat. 31, 854-859.]); Shettigar et al. (2006[Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565-3567.], 2008[Shettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. & Narayana, B. (2008). Opt. Mat. 30, 1297-1303.]); Wang et al. (1997[Wang, J. P., Tsao, L. T., Raung, S. L. & Lin, C. N. (1997). Eur. J. Pharmacol. 320, 201-208.]). For related structures, see: Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Lakshmana, K. & Narayana, B. (2007). Acta Cryst. E63, o3661.]); Fischer et al. (2007[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1353-o1354.]); Fun et al. (2008a[Fun, H.-K., Jebas, S. R., Razak, I. A., Patil, P. S., Dharmaprakash, S. M. & Deepak D'Silva, E. (2008a). Acta Cryst. E64, o1177.]); Harrison et al. (2006[Harrison, W. T. A., Yathirajan, H. S., Narayana, B., Mithun, A. & Sarojini, B. K. (2006). Acta Cryst. E62, o5290-o5292.]); Ng et al. (2006[Ng, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3200-o3202.]); Teh et al. (2007[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1783-o1784.]); Yathirajan et al. (2006[Yathirajan, H. S., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o5923-o5924.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10Cl2O

  • Mr = 277.13

  • Triclinic, [P \overline 1]

  • a = 5.8884 (9) Å

  • b = 7.3328 (9) Å

  • c = 14.6752 (16) Å

  • α = 102.821 (10)°

  • β = 95.003 (10)°

  • γ = 92.933 (11)°

  • V = 613.88 (14) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 4.61 mm−1

  • T = 110 K

  • 0.53 × 0.33 × 0.28 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.067, Tmax = 0.275

  • 4041 measured reflections

  • 2402 independent reflections

  • 2147 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 1.04

  • 2402 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2ACg2i 0.95 2.98 3.608 (2) 125
C5—H5ACg2ii 0.95 2.88 3.488 (2) 126
C14—H14ACg1iii 0.95 2.77 3.474 (2) 131
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1. Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C10–C15 ring.

Data collection: CrysAlis Pro (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones or 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family. Chemically, they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenolic groups present in many chalcones have raised interest in using the compounds or chalcone-rich plant extracts as drugs or food preservatives (Dhar, 1981). Among the many useful properties that chalcones have been reported to possess include anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic and anticancer activities (Dimmock et al., 1999). Many chalcones have been assessed for their high antimalarial activity, which is probably a result of Michael addition of nucleophilic species to the double bond of the enone (Troeberg et al., 2000; Ram et al., 2000). Chalcones are also finding applications as organic non-linear optical (NLO) materials due to their good SHG conversion efficiencies (Sarojini et al., 2006). Owing to the importance of these flavanoid analogs, the title chalcone (I), C15H10Cl2O has been synthesized and its crystal structure is reported here.

The title compound is a chalcone with 3-chlorophenyl and 4-chlorophenyl rings bonded at the opposite ends of a propenone group which is the biologically active region. The dihedral angle between mean planes of these two chloro-substituted benzene rings is 46.7 (7)° compared to 46.0 (1)° in the bis-(4-chlorophenyl) analog (Wang et al., 2005) and 32.4 (1)° in the (2-chlorophenyl, 4-chlorophenyl) analog (Fun et al., 2008b). The angles between the mean plane of the prop-2-ene-1-one group and the mean planes of the 3-chlorophenyl and 4-chlorophenyl rings are 24.1 (2)° and 29.63°, respectively. While no classical hydrogen bonds are present, weak intermolecular C–H···π-ring interactions are observed which contribute to the stability of crystal packing (Table 1).

Related literature top

For the potential use of chalcones or chalcone-rich plant extracts as drugs or food preservatives, see: Dhar (1981). For the biological and pharmaceutical activity of chalcones, see: Dimmock et al. (1999); Troeberg et al. (2000); Ram et al. (2000). For their applications as organic non-linear optical materials, see: Sarojini et al. (2006). For the bis-(4-chlorophenyl) analog, see: Wang et al. (2005) and for the (2-chlorophenyl, 4-chlorophenyl) analog, see: Fun et al. (2008b). For related literature [on what subjects?], see: Mukherjee et al. (2001); Poornesh et al. (2009); Shettigar et al. (2006, 2008); Wang et al. (1997). For related structures, see: Butcher et al. (2007); Fischer et al. (2007); Fun et al. (2008a); Harrison et al. (2006); Ng et al. (2006); Teh et al. (2007); Yathirajan et al. (2006). Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C10–C15 ring.

Experimental top

50% KOH was added to a mixture of 3-chloroacetophenone (0.01 mol) and p-chlorobenzaldehyde (0.01 mol) in 25 ml of ethanol. The mixture was stirred for an hour at room temperature and the precipitate was collected by filtration and purified by recrystallization from ethanol: yield 70% . Single crystals (m.p. 406–408 K) were grown from ethyl acetate by the slow evaporation method. Anal. found: C, 64.96; H, 3.61%; calc. for C15H10Cl2O: C 65.01; H, 3.64%.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H = 0.95 Å, and with Uiso(H) = 1.17–1.24Ueq(C).

Structure description top

Chalcones or 1,3-diaryl-2-propen-1-ones, belong to the flavonoid family. Chemically, they consist of open-chain flavonoids in which the two aromatic rings are joined by a three-carbon α, β-unsaturated carbonyl system. A vast number of naturally occurring chalcones are polyhydroxylated in the aryl rings. The radical quenching properties of the phenolic groups present in many chalcones have raised interest in using the compounds or chalcone-rich plant extracts as drugs or food preservatives (Dhar, 1981). Among the many useful properties that chalcones have been reported to possess include anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic and anticancer activities (Dimmock et al., 1999). Many chalcones have been assessed for their high antimalarial activity, which is probably a result of Michael addition of nucleophilic species to the double bond of the enone (Troeberg et al., 2000; Ram et al., 2000). Chalcones are also finding applications as organic non-linear optical (NLO) materials due to their good SHG conversion efficiencies (Sarojini et al., 2006). Owing to the importance of these flavanoid analogs, the title chalcone (I), C15H10Cl2O has been synthesized and its crystal structure is reported here.

The title compound is a chalcone with 3-chlorophenyl and 4-chlorophenyl rings bonded at the opposite ends of a propenone group which is the biologically active region. The dihedral angle between mean planes of these two chloro-substituted benzene rings is 46.7 (7)° compared to 46.0 (1)° in the bis-(4-chlorophenyl) analog (Wang et al., 2005) and 32.4 (1)° in the (2-chlorophenyl, 4-chlorophenyl) analog (Fun et al., 2008b). The angles between the mean plane of the prop-2-ene-1-one group and the mean planes of the 3-chlorophenyl and 4-chlorophenyl rings are 24.1 (2)° and 29.63°, respectively. While no classical hydrogen bonds are present, weak intermolecular C–H···π-ring interactions are observed which contribute to the stability of crystal packing (Table 1).

For the potential use of chalcones or chalcone-rich plant extracts as drugs or food preservatives, see: Dhar (1981). For the biological and pharmaceutical activity of chalcones, see: Dimmock et al. (1999); Troeberg et al. (2000); Ram et al. (2000). For their applications as organic non-linear optical materials, see: Sarojini et al. (2006). For the bis-(4-chlorophenyl) analog, see: Wang et al. (2005) and for the (2-chlorophenyl, 4-chlorophenyl) analog, see: Fun et al. (2008b). For related literature [on what subjects?], see: Mukherjee et al. (2001); Poornesh et al. (2009); Shettigar et al. (2006, 2008); Wang et al. (1997). For related structures, see: Butcher et al. (2007); Fischer et al. (2007); Fun et al. (2008a); Harrison et al. (2006); Ng et al. (2006); Teh et al. (2007); Yathirajan et al. (2006). Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C10–C15 ring.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I) showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis of the unit cell.
(2E)-1-(3-Chlorophenyl)-3-(4-chlorophenyl)prop-2-en-1-one top
Crystal data top
C15H10Cl2OZ = 2
Mr = 277.13F(000) = 284
Triclinic, P1Dx = 1.499 Mg m3
Hall symbol: -P 1Melting point = 406–408 K
a = 5.8884 (9) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.3328 (9) ÅCell parameters from 2900 reflections
c = 14.6752 (16) Åθ = 6.2–73.9°
α = 102.821 (10)°µ = 4.61 mm1
β = 95.003 (10)°T = 110 K
γ = 92.933 (11)°Block, colorless
V = 613.88 (14) Å30.53 × 0.33 × 0.28 mm
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2402 independent reflections
Radiation source: Enhance (Cu) X-ray Source2147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.5081 pixels mm-1θmax = 73.9°, θmin = 6.2°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 49
Tmin = 0.067, Tmax = 0.275l = 1818
4041 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0992P)2 + 0.1931P]
where P = (Fo2 + 2Fc2)/3
2402 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C15H10Cl2Oγ = 92.933 (11)°
Mr = 277.13V = 613.88 (14) Å3
Triclinic, P1Z = 2
a = 5.8884 (9) ÅCu Kα radiation
b = 7.3328 (9) ŵ = 4.61 mm1
c = 14.6752 (16) ÅT = 110 K
α = 102.821 (10)°0.53 × 0.33 × 0.28 mm
β = 95.003 (10)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
2402 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2147 reflections with I > 2σ(I)
Tmin = 0.067, Tmax = 0.275Rint = 0.035
4041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
2402 reflectionsΔρmin = 0.39 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57079 (8)0.05763 (7)0.10784 (3)0.0235 (2)
Cl20.09011 (9)0.72931 (8)0.93921 (3)0.0286 (2)
O10.7088 (2)0.2250 (2)0.47821 (10)0.0233 (4)
C10.3892 (3)0.1004 (3)0.36950 (14)0.0161 (4)
C20.5165 (3)0.0748 (3)0.29158 (14)0.0154 (4)
H2A0.66960.12690.29800.019*
C30.4159 (3)0.0275 (3)0.20525 (14)0.0164 (4)
C40.1936 (4)0.1087 (3)0.19394 (15)0.0203 (4)
H4A0.12760.17900.13430.024*
C50.0704 (3)0.0849 (3)0.27143 (15)0.0198 (4)
H5A0.08100.14090.26490.024*
C60.1652 (3)0.0201 (3)0.35873 (14)0.0179 (4)
H6A0.07770.03710.41100.021*
C70.5008 (3)0.2095 (3)0.46235 (14)0.0177 (4)
C80.3516 (3)0.2980 (3)0.53315 (14)0.0191 (4)
H8A0.19590.31000.51390.023*
C90.4301 (3)0.3613 (3)0.62341 (14)0.0169 (4)
H9A0.58570.34390.64030.020*
C100.3008 (3)0.4551 (3)0.69935 (14)0.0161 (4)
C110.3922 (3)0.4779 (3)0.79294 (14)0.0174 (4)
H11A0.53900.43570.80580.021*
C120.2738 (3)0.5603 (3)0.86707 (14)0.0202 (4)
H12A0.33650.57290.93020.024*
C130.0614 (4)0.6243 (3)0.84698 (14)0.0189 (4)
C140.0325 (3)0.6083 (3)0.75532 (14)0.0177 (4)
H14A0.17650.65550.74300.021*
C150.0860 (3)0.5226 (3)0.68181 (14)0.0167 (4)
H15A0.02130.50940.61890.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0286 (3)0.0275 (3)0.0145 (3)0.0029 (2)0.0075 (2)0.0028 (2)
Cl20.0267 (3)0.0389 (4)0.0174 (3)0.0087 (2)0.0064 (2)0.0026 (2)
O10.0188 (7)0.0308 (9)0.0191 (7)0.0014 (6)0.0024 (6)0.0028 (6)
C10.0191 (9)0.0144 (9)0.0156 (10)0.0038 (7)0.0033 (7)0.0041 (7)
C20.0154 (9)0.0139 (9)0.0177 (10)0.0025 (7)0.0025 (7)0.0045 (7)
C30.0193 (10)0.0154 (9)0.0154 (9)0.0045 (7)0.0053 (7)0.0035 (7)
C40.0231 (10)0.0164 (10)0.0196 (10)0.0005 (8)0.0013 (8)0.0017 (8)
C50.0162 (9)0.0168 (10)0.0264 (11)0.0002 (8)0.0005 (8)0.0063 (8)
C60.0169 (9)0.0189 (10)0.0201 (10)0.0038 (8)0.0066 (7)0.0067 (8)
C70.0205 (10)0.0182 (10)0.0160 (10)0.0031 (8)0.0048 (7)0.0055 (8)
C80.0193 (10)0.0214 (10)0.0167 (10)0.0041 (8)0.0049 (7)0.0029 (8)
C90.0181 (9)0.0142 (9)0.0194 (10)0.0007 (7)0.0053 (7)0.0047 (8)
C100.0182 (10)0.0132 (9)0.0168 (10)0.0016 (7)0.0038 (7)0.0031 (7)
C110.0183 (10)0.0147 (10)0.0183 (10)0.0002 (7)0.0010 (7)0.0026 (7)
C120.0230 (10)0.0213 (10)0.0148 (9)0.0004 (8)0.0007 (7)0.0015 (8)
C130.0216 (10)0.0174 (10)0.0167 (10)0.0002 (8)0.0067 (8)0.0006 (7)
C140.0169 (9)0.0150 (10)0.0211 (10)0.0006 (7)0.0033 (7)0.0036 (8)
C150.0194 (10)0.0162 (10)0.0142 (9)0.0004 (8)0.0014 (7)0.0034 (7)
Geometric parameters (Å, º) top
Cl1—C31.7414 (19)C8—C91.335 (3)
Cl2—C131.743 (2)C8—H8A0.9500
O1—C71.221 (2)C9—C101.469 (3)
C1—C61.398 (3)C9—H9A0.9500
C1—C21.405 (3)C10—C111.401 (3)
C1—C71.495 (3)C10—C151.405 (3)
C2—C31.386 (3)C11—C121.385 (3)
C2—H2A0.9500C11—H11A0.9500
C3—C41.391 (3)C12—C131.389 (3)
C4—C51.385 (3)C12—H12A0.9500
C4—H4A0.9500C13—C141.386 (3)
C5—C61.393 (3)C14—C151.386 (3)
C5—H5A0.9500C14—H14A0.9500
C6—H6A0.9500C15—H15A0.9500
C7—C81.480 (3)
C6—C1—C2119.42 (18)C7—C8—H8A119.1
C6—C1—C7122.00 (17)C8—C9—C10126.68 (19)
C2—C1—C7118.57 (17)C8—C9—H9A116.7
C3—C2—C1119.19 (17)C10—C9—H9A116.7
C3—C2—H2A120.4C11—C10—C15118.27 (19)
C1—C2—H2A120.4C11—C10—C9119.40 (18)
C2—C3—C4121.81 (18)C15—C10—C9122.33 (18)
C2—C3—Cl1119.60 (15)C12—C11—C10121.58 (19)
C4—C3—Cl1118.59 (16)C12—C11—H11A119.2
C5—C4—C3118.61 (19)C10—C11—H11A119.2
C5—C4—H4A120.7C11—C12—C13118.49 (19)
C3—C4—H4A120.7C11—C12—H12A120.8
C4—C5—C6120.93 (18)C13—C12—H12A120.8
C4—C5—H5A119.5C14—C13—C12121.62 (19)
C6—C5—H5A119.5C14—C13—Cl2119.12 (16)
C5—C6—C1120.02 (18)C12—C13—Cl2119.25 (16)
C5—C6—H6A120.0C15—C14—C13119.30 (19)
C1—C6—H6A120.0C15—C14—H14A120.4
O1—C7—C8121.66 (19)C13—C14—H14A120.4
O1—C7—C1120.42 (18)C14—C15—C10120.71 (18)
C8—C7—C1117.93 (17)C14—C15—H15A119.6
C9—C8—C7121.72 (19)C10—C15—H15A119.6
C9—C8—H8A119.1
C6—C1—C2—C31.0 (3)C1—C7—C8—C9164.85 (19)
C7—C1—C2—C3179.45 (17)C7—C8—C9—C10178.46 (18)
C1—C2—C3—C41.3 (3)C8—C9—C10—C11166.7 (2)
C1—C2—C3—Cl1179.19 (14)C8—C9—C10—C1512.9 (3)
C2—C3—C4—C50.4 (3)C15—C10—C11—C121.6 (3)
Cl1—C3—C4—C5179.94 (15)C9—C10—C11—C12178.04 (17)
C3—C4—C5—C60.8 (3)C10—C11—C12—C131.2 (3)
C4—C5—C6—C11.1 (3)C11—C12—C13—C140.4 (3)
C2—C1—C6—C50.2 (3)C11—C12—C13—Cl2179.77 (15)
C7—C1—C6—C5178.20 (18)C12—C13—C14—C151.4 (3)
C6—C1—C7—O1155.76 (19)Cl2—C13—C14—C15179.14 (14)
C2—C1—C7—O122.7 (3)C13—C14—C15—C101.0 (3)
C6—C1—C7—C824.7 (3)C11—C10—C15—C140.4 (3)
C2—C1—C7—C8156.89 (18)C9—C10—C15—C14179.15 (17)
O1—C7—C8—C915.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cg2i0.952.983.608 (2)125
C5—H5A···Cg2ii0.952.883.488 (2)126
C14—H14A···Cg1iii0.952.773.474 (2)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10Cl2O
Mr277.13
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)5.8884 (9), 7.3328 (9), 14.6752 (16)
α, β, γ (°)102.821 (10), 95.003 (10), 92.933 (11)
V3)613.88 (14)
Z2
Radiation typeCu Kα
µ (mm1)4.61
Crystal size (mm)0.53 × 0.33 × 0.28
Data collection
DiffractometerOxford Diffraction Gemini R CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.067, 0.275
No. of measured, independent and
observed [I > 2σ(I)] reflections
4041, 2402, 2147
Rint0.035
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.04
No. of reflections2402
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.39

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Cg2i0.952.983.608 (2)125
C5—H5A···Cg2ii0.952.883.488 (2)126
C14—H14A···Cg1iii0.952.773.474 (2)131
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

KV thanks the UGC for the award of a Junior Research Fellowship and for an SAP Chemical grant. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Lakshmana, K. & Narayana, B. (2007). Acta Cryst. E63, o3661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1353–o1354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Razak, I. A., Patil, P. S., Dharmaprakash, S. M. & Deepak D'Silva, E. (2008a). Acta Cryst. E64, o1177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R., Patil, P. S., Dharmaprakash, S. M. & Razak, I. A. (2008b). Acta Cryst. E64, o2014–o2015.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Narayana, B., Mithun, A. & Sarojini, B. K. (2006). Acta Cryst. E62, o5290–o5292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMukherjee, S., Kumar, V., Prasad, A. K., Raj, H. G., Bracke, M. E., Olsen, C. E., Jain, S. C. & Parmar, V. S. (2001). Bioorg. Med. Chem. 9, 337–345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNg, S.-L., Patil, P. S., Razak, I. A., Fun, H.-K. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o3200–o3202.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPoornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. & Narayana, B. (2009). Opt. Mat. 31, 854–859.  Web of Science CrossRef CAS Google Scholar
First citationRam, V. J., Saxena, A. S., Srivastava, S. & Chandra, S. (2000). Bioorg. Med. Chem. Lett. 10, 2159–2161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.  Web of Science CrossRef CAS Google Scholar
First citationShettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. & Narayana, B. (2008). Opt. Mat. 30, 1297–1303.  Web of Science CrossRef CAS Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1783–o1784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTroeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C, McKerrow, J. H, Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660–669.  Web of Science PubMed CAS Google Scholar
First citationWang, J. P., Tsao, L. T., Raung, S. L. & Lin, C. N. (1997). Eur. J. Pharmacol. 320, 201–208.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWang, L., Yang, W. & Zhang, D.-C. (2005). Acta Cryst. E61, o2820–o2822.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Sreevidya, T. V., Narayana, B., Sarojini, B. K. & Bolte, M. (2006). Acta Cryst. E62, o5923–o5924.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds