organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3,5-Di­nitro-1,3,5-triazinan-1-yl)methanone

aSchool of Chemical Engineering and Environment, North University of China, Taiyuan, People's Republic of China
*Correspondence e-mail: wangjianlong@nuc.edu.cn

(Received 2 October 2009; accepted 12 October 2009; online 17 October 2009)

In the title compound, C5H9N5O5, prepared from hexa­mine by acetyl­ation and nitration, the triazine ring adopts a chair conformation with all three substituent groups lying on the same side of the ring.

Related literature

For the Bachmann process, see: Bachmann & Sheehan (1949[Bachmann, W. E. & Sheehan, J. C. (1949). J. Am. Chem. Soc. 71, 1482-1485.]). For the synthesis, see: Warman et al. (1973[Warman, M., Siele, V. I. & Gilbert, E. E. (1973). J. Heterocycl. Chem. 10, 97-98.]). For a related structure, see: Choi et al. (1975[Choi, C. S., Santoro, A. & Marinkas, P. L. (1975). Acta Cryst. B31, 2934-2937.]).

[Scheme 1]

Experimental

Crystal data
  • C5H9N5O5

  • Mr = 219.17

  • Monoclinic, P 21 /n

  • a = 8.8972 (18) Å

  • b = 10.061 (2) Å

  • c = 9.890 (2) Å

  • β = 100.42 (3)°

  • V = 870.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 293 K

  • 0.50 × 0.50 × 0.40 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.929, Tmax = 0.943

  • 3599 measured reflections

  • 1988 independent reflections

  • 1419 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.142

  • S = 1.03

  • 1988 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2000[Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2000[Rigaku/MSC (2000). CrystalStructure. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1-Acetyl-3,5-dinitro-1,3,5-triazinane (1-acetylhexahydro-3,5-dinitro-1,3,5-triazine) (I) is obtained as a by-product in the synthesis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from 1,3,5,7 -tetraazaadamantane (hexamine) by the Bachmann process (Bachmann & Sheehan, 1949). As part of our search for the reaction mechanism involved in the nitrolysis of hexamine, we synthesized the title compound, and describe its structure here.

In (I), the hexahydrotriazine ring adopts a chair conformation with all three substituent groups lying on the same side of the triazine ring.The ring bond distances and angles are almost identical (the maximum deviation from the average C—N bond distance [1.44 (8) Å] is 0.01Å and the maximum deviation from the average bond angle [112 (3)°] is 3°). The three ring N atoms are equally distant from the plane through the C atoms (C1, C2 and C3) (0.40±0.06 (2) Å). This deviation is slightly larger than that found in hexahydro-1,3,5-triacetyl-1,3,5-triazine (TRAT) (Choi et al., 1975), due to the three different substituent groups on the hexahydrotriazine ring in (I), whereas in TRAT, the three groups are the same. In (I) the three substituent groups are essentially planar with maximum deviations from the mean plane of these groups for atoms N1, N2 and N3 of 0.02 (4), 0.09 (6) and 0.10 (3) Å respectively.

Related literature top

For the Bachmann process, see: Bachmann & Sheehan (1949). For the synthesis, see: Warman et al. (1973). For a related structure, see: Choi et al. (1975).

Experimental top

The title compound was prepared from hexamine according to a literature method (Warman et al., 1973). Crystals suitable for X-ray analysis were obtained by slow evaporation of an nitromethane solution at room temperature.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.97 Å (alicyclic CH), 0.96 Å (methyl CH), and withUiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

1-Acetyl-3,5-dinitro-1,3,5-triazinane (1-acetylhexahydro-3,5-dinitro-1,3,5-triazine) (I) is obtained as a by-product in the synthesis of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from 1,3,5,7 -tetraazaadamantane (hexamine) by the Bachmann process (Bachmann & Sheehan, 1949). As part of our search for the reaction mechanism involved in the nitrolysis of hexamine, we synthesized the title compound, and describe its structure here.

In (I), the hexahydrotriazine ring adopts a chair conformation with all three substituent groups lying on the same side of the triazine ring.The ring bond distances and angles are almost identical (the maximum deviation from the average C—N bond distance [1.44 (8) Å] is 0.01Å and the maximum deviation from the average bond angle [112 (3)°] is 3°). The three ring N atoms are equally distant from the plane through the C atoms (C1, C2 and C3) (0.40±0.06 (2) Å). This deviation is slightly larger than that found in hexahydro-1,3,5-triacetyl-1,3,5-triazine (TRAT) (Choi et al., 1975), due to the three different substituent groups on the hexahydrotriazine ring in (I), whereas in TRAT, the three groups are the same. In (I) the three substituent groups are essentially planar with maximum deviations from the mean plane of these groups for atoms N1, N2 and N3 of 0.02 (4), 0.09 (6) and 0.10 (3) Å respectively.

For the Bachmann process, see: Bachmann & Sheehan (1949). For the synthesis, see: Warman et al. (1973). For a related structure, see: Choi et al. (1975).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO (Rigaku, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom numbering scheme for the title compound (I). Non-H atoms are shown as 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the c axis of the unit cell.
(3,5-Dinitro-1,3,5-triazinan-1-yl)methanone top
Crystal data top
C5H9N5O5F(000) = 456
Mr = 219.17Dx = 1.672 Mg m3
Monoclinic, P21/nMelting point: 431(2) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.8972 (18) ÅCell parameters from 3599 reflections
b = 10.061 (2) Åθ = 2.8–27.5°
c = 9.890 (2) ŵ = 0.15 mm1
β = 100.42 (3)°T = 293 K
V = 870.7 (3) Å3Block, colorless
Z = 40.50 × 0.50 × 0.40 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1988 independent reflections
Radiation source: fine-focus sealed tube1419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.929, Tmax = 0.943l = 1212
3599 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.09P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
1988 reflectionsΔρmax = 0.28 e Å3
138 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.242 (16)
Crystal data top
C5H9N5O5V = 870.7 (3) Å3
Mr = 219.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.8972 (18) ŵ = 0.15 mm1
b = 10.061 (2) ÅT = 293 K
c = 9.890 (2) Å0.50 × 0.50 × 0.40 mm
β = 100.42 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1988 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1419 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.943Rint = 0.028
3599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
1988 reflectionsΔρmin = 0.26 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47469 (19)0.41301 (16)0.32195 (16)0.0389 (4)
H1A0.50050.38370.41680.047*
H1B0.40000.48390.31700.047*
C20.72467 (19)0.35894 (19)0.26987 (18)0.0456 (4)
H2A0.80440.39410.22480.055*
H2B0.77130.33290.36240.055*
C30.51659 (19)0.19589 (16)0.23350 (19)0.0429 (4)
H3A0.47080.12920.16800.052*
H3B0.53920.15470.32360.052*
C40.26587 (18)0.29469 (17)0.16314 (15)0.0385 (4)
C50.1604 (2)0.4079 (2)0.1715 (2)0.0531 (5)
H5A0.06270.38920.11580.080*
H5B0.20200.48730.13900.080*
H5C0.14850.42010.26530.080*
N10.41055 (15)0.30361 (13)0.23592 (13)0.0357 (3)
N20.61111 (16)0.46206 (14)0.27642 (13)0.0405 (4)
N30.65682 (16)0.24375 (17)0.19558 (16)0.0491 (4)
N40.5835 (2)0.54679 (16)0.16262 (16)0.0550 (5)
N50.69287 (18)0.21008 (15)0.07159 (15)0.0468 (4)
O10.6820 (2)0.55437 (17)0.09159 (16)0.0839 (6)
O20.22571 (14)0.19538 (13)0.09572 (13)0.0525 (4)
O30.6163 (2)0.12455 (17)0.00671 (15)0.0723 (5)
O40.80447 (17)0.26203 (18)0.03929 (15)0.0685 (5)
O50.4676 (2)0.61206 (16)0.14783 (19)0.0819 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0417 (9)0.0443 (9)0.0292 (7)0.0021 (7)0.0023 (6)0.0039 (6)
C20.0363 (9)0.0593 (11)0.0390 (9)0.0075 (8)0.0013 (7)0.0027 (8)
C30.0415 (9)0.0399 (9)0.0479 (9)0.0033 (7)0.0094 (7)0.0018 (7)
C40.0371 (8)0.0507 (9)0.0274 (7)0.0073 (7)0.0055 (6)0.0032 (7)
C50.0363 (9)0.0751 (13)0.0465 (10)0.0059 (9)0.0041 (7)0.0011 (9)
N10.0341 (7)0.0390 (7)0.0327 (7)0.0025 (5)0.0024 (5)0.0012 (5)
N20.0441 (8)0.0439 (8)0.0297 (7)0.0106 (6)0.0034 (6)0.0009 (6)
N30.0420 (8)0.0595 (9)0.0480 (9)0.0067 (7)0.0141 (6)0.0122 (7)
N40.0761 (11)0.0453 (9)0.0368 (8)0.0260 (8)0.0076 (8)0.0032 (7)
N50.0487 (9)0.0542 (9)0.0368 (8)0.0130 (7)0.0059 (7)0.0037 (7)
O10.1182 (14)0.0832 (12)0.0533 (9)0.0413 (11)0.0236 (10)0.0118 (8)
O20.0479 (7)0.0615 (8)0.0450 (7)0.0159 (6)0.0006 (6)0.0099 (6)
O30.1003 (13)0.0668 (9)0.0496 (8)0.0102 (9)0.0129 (8)0.0185 (7)
O40.0577 (9)0.0945 (11)0.0598 (9)0.0010 (9)0.0281 (7)0.0005 (8)
O50.0946 (13)0.0625 (10)0.0768 (12)0.0044 (9)0.0163 (9)0.0260 (9)
Geometric parameters (Å, º) top
C1—N11.4440 (19)C4—O21.2184 (19)
C1—N21.455 (2)C4—N11.359 (2)
C1—H1A0.9700C4—C51.487 (2)
C1—H1B0.9700C5—H5A0.9600
C2—N31.445 (2)C5—H5B0.9600
C2—N21.458 (2)C5—H5C0.9600
C2—H2A0.9700N2—N41.398 (2)
C2—H2B0.9700N3—N51.365 (2)
C3—N11.440 (2)N4—O51.209 (2)
C3—N31.449 (2)N4—O11.220 (2)
C3—H3A0.9700N5—O31.208 (2)
C3—H3B0.9700N5—O41.215 (2)
N1—C1—N2109.82 (13)C4—C5—H5A109.5
N1—C1—H1A109.7C4—C5—H5B109.5
N2—C1—H1A109.7H5A—C5—H5B109.5
N1—C1—H1B109.7C4—C5—H5C109.5
N2—C1—H1B109.7H5A—C5—H5C109.5
H1A—C1—H1B108.2H5B—C5—H5C109.5
N3—C2—N2111.37 (13)C4—N1—C3120.14 (13)
N3—C2—H2A109.4C4—N1—C1126.71 (14)
N2—C2—H2A109.4C3—N1—C1113.15 (13)
N3—C2—H2B109.4N4—N2—C1114.91 (14)
N2—C2—H2B109.4N4—N2—C2114.86 (15)
H2A—C2—H2B108.0C1—N2—C2113.33 (13)
N1—C3—N3110.59 (14)N5—N3—C2120.76 (15)
N1—C3—H3A109.5N5—N3—C3120.23 (15)
N3—C3—H3A109.5C2—N3—C3115.80 (14)
N1—C3—H3B109.5O5—N4—O1125.60 (18)
N3—C3—H3B109.5O5—N4—N2116.75 (17)
H3A—C3—H3B108.1O1—N4—N2117.51 (19)
O2—C4—N1119.99 (16)O3—N5—O4125.20 (17)
O2—C4—C5122.20 (16)O3—N5—N3116.89 (16)
N1—C4—C5117.81 (15)O4—N5—N3117.74 (16)
O2—C4—N1—C30.0 (2)N2—C2—N3—N5112.60 (17)
C5—C4—N1—C3178.88 (14)N2—C2—N3—C347.2 (2)
O2—C4—N1—C1179.01 (15)N1—C3—N3—N5110.68 (18)
C5—C4—N1—C10.2 (2)N1—C3—N3—C249.2 (2)
N3—C3—N1—C4126.86 (15)C1—N2—N4—O528.9 (2)
N3—C3—N1—C153.98 (18)C2—N2—N4—O5163.00 (15)
N2—C1—N1—C4123.74 (16)C1—N2—N4—O1155.26 (16)
N2—C1—N1—C357.17 (17)C2—N2—N4—O121.1 (2)
N1—C1—N2—N480.18 (16)C2—N3—N5—O3169.79 (16)
N1—C1—N2—C254.65 (17)C3—N3—N5—O310.9 (2)
N3—C2—N2—N485.27 (16)C2—N3—N5—O414.7 (2)
N3—C2—N2—C149.60 (18)C3—N3—N5—O4173.59 (16)

Experimental details

Crystal data
Chemical formulaC5H9N5O5
Mr219.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.8972 (18), 10.061 (2), 9.890 (2)
β (°) 100.42 (3)
V3)870.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.50 × 0.50 × 0.40
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.929, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
3599, 1988, 1419
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.142, 1.03
No. of reflections1988
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: RAPID-AUTO (Rigaku, 2000), CrystalStructure (Rigaku/MSC, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank China North Industries Group Corporation for financial support.

References

First citationBachmann, W. E. & Sheehan, J. C. (1949). J. Am. Chem. Soc. 71, 1482–1485.  Google Scholar
First citationChoi, C. S., Santoro, A. & Marinkas, P. L. (1975). Acta Cryst. B31, 2934–2937.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2000). CrystalStructure. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarman, M., Siele, V. I. & Gilbert, E. E. (1973). J. Heterocycl. Chem. 10, 97–98.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds