metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua[N-(2,5-di­hydroxybenzyl)imino­di­acetato]copper(II)

aKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Chemical Engineering of Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: gxnuchem312@yahoo.com.cn

(Received 5 October 2009; accepted 14 October 2009; online 17 October 2009)

The title complex, [Cu(C11H11NO6)(H2O)], contains a CuII atom in a distorted square-pyramidal geometry. The metal centre is coordinated in the basal sites by one water mol­ecule and two carboxyl­ate O atoms and one N atom of the tetra­dentate ligand [Cu—O range, 1.9376 (11)–1.9541 (12), Cu—N, 1.9929 (12) Å] while the apical site is occupied by a hydro­quinone O donor atom [Cu—O, 2.3746 (12) Å]. Inter­molecular hydrogen bonding inter­actions involving both hydro­quinone hydr­oxy groups and the coordinated water as donors give a three-dimensional framework structure.

Related literature

For general background to p-hydro­quinones and their oxidation products p-semiquinones and p-quinones, see: Dooley et al. (1998[Dooley, D. M., Scott, R. A., Knowles, P. F., Colanglo, C. M., McGuirl, M. A. & Brown, D. E. (1998). J. Am. Chem. Soc. 120, 2599-2605.]); Wang et al. (1996[Wang, S. X., Mure, M., Medzihradsky, K. F., Burlingame, A. L., Brown, D. E., Dooley, D. M., Smith, A. J., Kagan, H. M. & Klinman, J. P. (1996). Science, 273, 1078-1084.]); Calvo et al. (2000[Calvo, R., Abresch, E. C., Bittl, R., Feher, G., Hofbauer, W., Isaacson, R. A., Lubitz, W., Okamura, M. Y. & Paddock, M. L. (2000). J. Am. Chem. Soc. 122, 7327-7341.]); Iwata et al. (1998[Iwata, S., Lee, L. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link, T. A., Ramaswamy, S. & Jap, B. K. (1998). Science, 281, 64-71.]); Drouza et al. (2002[Drouza, C., Tolis, V., Gramlich, V., Raptopoulou, C., Terzis, A., Sigalas, M. P., Kabanos, T. A. & Keramidas, A. D. (2002). Chem. Commun., pp. 2786-2787.]); Huang et al. (2008[Huang, F.-P., Wang, Y.-X., Zhao, J., Bian, H.-D., Yu, Q. & Liang, H. (2008). Chin. J. Inorg. Chem. 24, 1523-1526.]); Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For the synthesis, see: Fan (1992[Fan, N.-T. (1992). Handbook of Organic Synthesis. Beijing Institute of Technology Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H11NO6)(H2O)]

  • Mr = 334.76

  • Orthorhombic, P b c a

  • a = 13.0461 (16) Å

  • b = 9.7919 (12) Å

  • c = 19.374 (2) Å

  • V = 2474.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 294 K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.693, Tmax = 0.813

  • 17710 measured reflections

  • 2929 independent reflections

  • 2662 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.070

  • S = 1.04

  • 2929 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.76 (3) 1.93 (3) 2.6859 (16) 172 (3)
O6—H4⋯O3ii 0.86 (3) 2.00 (3) 2.8442 (18) 168 (2)
O7—H7A⋯O2iii 0.80 (2) 1.97 (2) 2.7261 (16) 157 (2)
O7—H7B⋯O4iv 0.87 (3) 1.83 (3) 2.6794 (18) 163 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

p-Hydroquinones, along with their oxidation products p-semiquinones and p-quinones, are very important in the oxidative maintenance of biological amine levels (Dooley et al., 1998), tissue formation (Wang et al., 1996), photosynthesis (Calvo et al., 2000) and aerobic respiration (Iwata et al., 1998). These compounds are involved in interesting organic electron- and hydrogen-transfer systems, e.g. electron-transfer reactions between transition metal centers and p-quinone cofactors are vital for all life (Drouza et al., 2002), occurring in key biological processes. As part of a series of the studies (Huang et al., 2008), we report here the synthesis and structure of the title compound, a new CuII complex with the related ligand 2-[N,N-bis(carboxylatomethyl)aminomethyl]hydroquinone. The molecular structure of the title compound [Cu(C11H11NO6)(H2O)] (I) is shown in Fig. 1. The CuII atom has a distorted square-pyramidal geometry with a τ parameter of 0.09 (Addison et al., 1984). The basal sites are occupied by one water molecule, as well as two carboxylate O atoms and one N atom of the ligand. In the apical position, the O atom of the hydroxybenzene coordinates to the CuII atom. All bond distances and bond angles have normal values. The crystal packing of (I) (Fig. 2) involves intermolecular O—H···O hydrogen bonds (Table 1). The non-coordinated carboxylate O2 atom accepts intermolecular hydrogen bonds from the coordinated hydroxy O (O5) of the hydroquinone ligand and from the coordinated water (O7). The non-coordinated carboxylate O4 atom is also an acceptor for a water H donor in an intermolecular hydrogen bond. The coordinated atom O3 accepts a hydrogen bond from the non-coordinated hydroquinone O (O6). These interactions result in a three-dimensional hydrogen-bonded framework structure.

Related literature top

For general background to p-hydroquinones and their oxidation products p-semiquinones and p-quinones, see: Dooley et al. (1998); Wang et al. (1996); Calvo et al. (2000); Iwata et al. (1998); Drouza et al. (2002); Huang et al. (2008); Addison et al. (1984). For the synthesis, see Fan (1992).

Experimental top

The ligand 2-[N,N-bis(carboxylatomethyl)aminomethyl]hydroquinone was prepared according to a literature procedure (Fan et al., 1992). The title complex was synthesized by the addition of CuCl2.2H2O (0.0850 g, 0.5 mmol) to 20 ml of a methanol solution containing the ligand (0.1275 g, 0.5 mmol). The resulting solution was stirred for 3 h at 60°C, and then cooled and filtered. Blue single crystal blocks were isolated from the solution at room temperature over six days.

Refinement top

H atoms on C atoms were positoned geometrically with C—Haromatic = 0.93 Å and C—Haliphatic = 0.97 Å and treated as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

p-Hydroquinones, along with their oxidation products p-semiquinones and p-quinones, are very important in the oxidative maintenance of biological amine levels (Dooley et al., 1998), tissue formation (Wang et al., 1996), photosynthesis (Calvo et al., 2000) and aerobic respiration (Iwata et al., 1998). These compounds are involved in interesting organic electron- and hydrogen-transfer systems, e.g. electron-transfer reactions between transition metal centers and p-quinone cofactors are vital for all life (Drouza et al., 2002), occurring in key biological processes. As part of a series of the studies (Huang et al., 2008), we report here the synthesis and structure of the title compound, a new CuII complex with the related ligand 2-[N,N-bis(carboxylatomethyl)aminomethyl]hydroquinone. The molecular structure of the title compound [Cu(C11H11NO6)(H2O)] (I) is shown in Fig. 1. The CuII atom has a distorted square-pyramidal geometry with a τ parameter of 0.09 (Addison et al., 1984). The basal sites are occupied by one water molecule, as well as two carboxylate O atoms and one N atom of the ligand. In the apical position, the O atom of the hydroxybenzene coordinates to the CuII atom. All bond distances and bond angles have normal values. The crystal packing of (I) (Fig. 2) involves intermolecular O—H···O hydrogen bonds (Table 1). The non-coordinated carboxylate O2 atom accepts intermolecular hydrogen bonds from the coordinated hydroxy O (O5) of the hydroquinone ligand and from the coordinated water (O7). The non-coordinated carboxylate O4 atom is also an acceptor for a water H donor in an intermolecular hydrogen bond. The coordinated atom O3 accepts a hydrogen bond from the non-coordinated hydroquinone O (O6). These interactions result in a three-dimensional hydrogen-bonded framework structure.

For general background to p-hydroquinones and their oxidation products p-semiquinones and p-quinones, see: Dooley et al. (1998); Wang et al. (1996); Calvo et al. (2000); Iwata et al. (1998); Drouza et al. (2002); Huang et al. (2008); Addison et al. (1984). For the synthesis, see Fan (1992).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids.
[Figure 2] Fig. 2. The packing for (I), showing hydrogen bonds as dashed lines.
Aqua[N-(2,5-dihydroxybenzyl)iminodiacetato]copper(II) top
Crystal data top
[Cu(C11H11NO6)(H2O)]F(000) = 1368
Mr = 334.76Dx = 1.797 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2abCell parameters from 6907 reflections
a = 13.0461 (16) Åθ = 1.6–27.9°
b = 9.7919 (12) ŵ = 1.80 mm1
c = 19.374 (2) ÅT = 294 K
V = 2474.9 (5) Å3Block, blue
Z = 80.22 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn
diffractometer
2929 independent reflections
Radiation source: rotating anode2662 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.026
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω scansh = 1717
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1211
Tmin = 0.693, Tmax = 0.813l = 2522
17710 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.7209P]
where P = (Fo2 + 2Fc2)/3
2929 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Cu(C11H11NO6)(H2O)]V = 2474.9 (5) Å3
Mr = 334.76Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.0461 (16) ŵ = 1.80 mm1
b = 9.7919 (12) ÅT = 294 K
c = 19.374 (2) Å0.22 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn
diffractometer
2929 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2662 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.813Rint = 0.026
17710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
2929 reflectionsΔρmin = 0.56 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.566322 (13)0.226573 (19)0.381922 (9)0.01771 (8)
O10.68631 (9)0.23223 (12)0.44079 (6)0.0273 (3)
O20.83131 (8)0.34779 (12)0.45719 (6)0.0275 (3)
O30.47226 (9)0.23658 (11)0.30369 (5)0.0214 (2)
O40.43813 (9)0.36157 (13)0.21087 (6)0.0300 (3)
O50.43629 (9)0.31326 (14)0.45565 (6)0.0259 (3)
H50.402 (2)0.269 (3)0.4779 (13)0.049 (7)*
O60.24306 (11)0.69678 (15)0.29249 (7)0.0402 (3)
H40.179 (2)0.700 (3)0.3008 (12)0.046 (6)*
O70.54070 (9)0.03204 (12)0.39637 (7)0.0242 (2)
H7A0.5782 (16)0.006 (2)0.4227 (12)0.039 (6)*
H7B0.5424 (18)0.010 (3)0.3566 (13)0.046 (7)*
N10.60886 (9)0.41382 (12)0.35356 (6)0.0164 (2)
C10.74866 (11)0.32885 (16)0.42719 (7)0.0205 (3)
C20.72035 (11)0.42214 (16)0.36733 (8)0.0225 (3)
H2A0.73890.51550.37840.027*
H2B0.75810.39520.32640.027*
C30.48912 (11)0.33842 (16)0.26298 (7)0.0200 (3)
C40.58171 (11)0.42657 (17)0.27948 (7)0.0209 (3)
H4A0.63940.39830.25130.025*
H4B0.56650.52120.26880.025*
C50.55454 (11)0.51871 (16)0.39631 (8)0.0212 (3)
H5A0.57880.60870.38320.025*
H5B0.57180.50460.44450.025*
C60.44000 (11)0.51419 (17)0.38847 (7)0.0203 (3)
C70.38238 (12)0.41397 (16)0.42132 (7)0.0214 (3)
C80.27640 (12)0.41627 (18)0.41733 (8)0.0268 (3)
H80.23790.35300.44200.032*
C90.22764 (13)0.51300 (19)0.37651 (8)0.0288 (4)
H90.15650.51490.37420.035*
C100.28474 (13)0.60661 (17)0.33916 (9)0.0275 (3)
C110.39017 (12)0.60955 (16)0.34741 (9)0.0268 (3)
H110.42820.67660.32510.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01778 (12)0.01416 (12)0.02119 (11)0.00129 (6)0.00341 (6)0.00288 (6)
O10.0249 (6)0.0251 (6)0.0320 (6)0.0065 (5)0.0100 (5)0.0112 (4)
O20.0206 (5)0.0312 (6)0.0306 (6)0.0049 (5)0.0093 (4)0.0097 (5)
O30.0218 (5)0.0199 (5)0.0226 (5)0.0030 (4)0.0037 (4)0.0019 (4)
O40.0303 (6)0.0343 (7)0.0254 (6)0.0017 (5)0.0107 (4)0.0048 (5)
O50.0266 (6)0.0260 (6)0.0251 (6)0.0021 (5)0.0062 (4)0.0086 (5)
O60.0264 (7)0.0411 (8)0.0532 (8)0.0104 (6)0.0013 (6)0.0175 (6)
O70.0251 (5)0.0158 (5)0.0317 (6)0.0001 (5)0.0054 (5)0.0033 (5)
N10.0135 (5)0.0169 (6)0.0187 (5)0.0001 (4)0.0009 (4)0.0026 (4)
C10.0194 (6)0.0198 (7)0.0223 (6)0.0012 (6)0.0013 (5)0.0025 (5)
C20.0150 (6)0.0240 (7)0.0285 (7)0.0019 (6)0.0034 (5)0.0084 (6)
C30.0190 (7)0.0212 (7)0.0200 (7)0.0024 (5)0.0003 (5)0.0017 (5)
C40.0200 (7)0.0239 (8)0.0188 (7)0.0013 (6)0.0007 (5)0.0054 (5)
C50.0212 (7)0.0156 (7)0.0266 (7)0.0005 (5)0.0002 (6)0.0034 (6)
C60.0199 (7)0.0172 (7)0.0236 (7)0.0014 (5)0.0027 (5)0.0022 (5)
C70.0248 (7)0.0207 (7)0.0186 (6)0.0031 (6)0.0041 (5)0.0009 (5)
C80.0231 (7)0.0309 (9)0.0263 (8)0.0033 (7)0.0063 (6)0.0022 (6)
C90.0190 (7)0.0348 (9)0.0327 (8)0.0027 (7)0.0036 (6)0.0010 (6)
C100.0250 (8)0.0245 (8)0.0329 (8)0.0074 (6)0.0014 (6)0.0016 (6)
C110.0239 (8)0.0201 (8)0.0363 (8)0.0020 (6)0.0049 (6)0.0059 (6)
Geometric parameters (Å, º) top
Cu1—O11.9376 (11)C1—C21.522 (2)
Cu1—O31.9526 (11)C2—H2A0.9700
Cu1—O71.9541 (12)C2—H2B0.9700
Cu1—N11.9929 (12)C3—C41.519 (2)
Cu1—O52.3746 (12)C4—H4A0.9700
O1—C11.2752 (19)C4—H4B0.9700
O2—C11.2390 (18)C5—C61.503 (2)
O3—C31.2903 (18)C5—H5A0.9700
O4—C31.2302 (18)C5—H5B0.9700
O5—C71.3818 (19)C6—C111.388 (2)
O5—H50.76 (3)C6—C71.390 (2)
O6—C101.376 (2)C7—C81.385 (2)
O6—H40.86 (3)C8—C91.388 (2)
O7—H7A0.80 (2)C8—H80.9300
O7—H7B0.87 (3)C9—C101.385 (2)
N1—C21.4810 (18)C9—H90.9300
N1—C41.4834 (17)C10—C111.385 (2)
N1—C51.4976 (19)C11—H110.9300
O1—Cu1—O3164.41 (5)O4—C3—O3123.49 (14)
O1—Cu1—O794.69 (5)O4—C3—C4119.88 (14)
O3—Cu1—O793.01 (5)O3—C3—C4116.50 (12)
O1—Cu1—N184.90 (5)N1—C4—C3110.22 (11)
O3—Cu1—N185.11 (5)N1—C4—H4A109.6
O7—Cu1—N1169.72 (5)C3—C4—H4A109.6
O1—Cu1—O5102.29 (5)N1—C4—H4B109.6
O3—Cu1—O590.00 (5)C3—C4—H4B109.6
O7—Cu1—O598.05 (5)H4A—C4—H4B108.1
N1—Cu1—O592.06 (5)N1—C5—C6113.23 (12)
C1—O1—Cu1114.51 (9)N1—C5—H5A108.9
C3—O3—Cu1113.96 (9)C6—C5—H5A108.9
C7—O5—Cu1109.22 (9)N1—C5—H5B108.9
C7—O5—H5112 (2)C6—C5—H5B108.9
Cu1—O5—H5124 (2)H5A—C5—H5B107.7
C10—O6—H4106.8 (16)C11—C6—C7118.94 (14)
Cu1—O7—H7A116.0 (17)C11—C6—C5120.25 (14)
Cu1—O7—H7B109.1 (17)C7—C6—C5120.81 (14)
H7A—O7—H7B109 (2)O5—C7—C8123.13 (14)
C2—N1—C4113.83 (11)O5—C7—C6116.67 (13)
C2—N1—C5109.11 (11)C8—C7—C6120.18 (14)
C4—N1—C5111.37 (11)C7—C8—C9120.03 (15)
C2—N1—Cu1105.92 (9)C7—C8—H8120.0
C4—N1—Cu1106.12 (9)C9—C8—H8120.0
C5—N1—Cu1110.28 (9)C10—C9—C8120.18 (16)
O2—C1—O1124.70 (14)C10—C9—H9119.9
O2—C1—C2118.61 (13)C8—C9—H9119.9
O1—C1—C2116.62 (13)O6—C10—C11117.07 (15)
N1—C2—C1110.04 (12)O6—C10—C9123.74 (15)
N1—C2—H2A109.7C11—C10—C9119.17 (15)
C1—C2—H2A109.7C10—C11—C6121.15 (15)
N1—C2—H2B109.7C10—C11—H11119.4
C1—C2—H2B109.7C6—C11—H11119.4
H2A—C2—H2B108.2
O3—Cu1—O1—C136.6 (3)O2—C1—C2—N1161.79 (13)
O7—Cu1—O1—C1155.93 (11)O1—C1—C2—N121.11 (19)
N1—Cu1—O1—C113.76 (11)Cu1—O3—C3—O4179.80 (12)
O5—Cu1—O1—C1104.76 (11)Cu1—O3—C3—C43.87 (16)
O1—Cu1—O3—C338.9 (2)C2—N1—C4—C3145.89 (13)
O7—Cu1—O3—C3158.44 (11)C5—N1—C4—C390.25 (14)
N1—Cu1—O3—C311.43 (10)Cu1—N1—C4—C329.79 (13)
O5—Cu1—O3—C3103.49 (11)O4—C3—C4—N1160.38 (13)
O1—Cu1—O5—C7130.89 (10)O3—C3—C4—N123.53 (18)
O3—Cu1—O5—C739.44 (10)C2—N1—C5—C6177.33 (12)
O7—Cu1—O5—C7132.48 (10)C4—N1—C5—C656.17 (16)
N1—Cu1—O5—C745.67 (10)Cu1—N1—C5—C661.38 (14)
O1—Cu1—N1—C223.76 (9)N1—C5—C6—C11102.16 (17)
O3—Cu1—N1—C2144.26 (9)N1—C5—C6—C777.03 (17)
O7—Cu1—N1—C264.4 (3)Cu1—O5—C7—C8129.74 (13)
O5—Cu1—N1—C2125.92 (9)Cu1—O5—C7—C648.69 (15)
O1—Cu1—N1—C4145.08 (9)C11—C6—C7—O5173.46 (14)
O3—Cu1—N1—C422.93 (9)C5—C6—C7—O55.7 (2)
O7—Cu1—N1—C456.9 (3)C11—C6—C7—C85.0 (2)
O5—Cu1—N1—C4112.75 (9)C5—C6—C7—C8175.78 (14)
O1—Cu1—N1—C594.17 (9)O5—C7—C8—C9173.82 (15)
O3—Cu1—N1—C597.81 (9)C6—C7—C8—C94.6 (2)
O7—Cu1—N1—C5177.7 (2)C7—C8—C9—C100.6 (3)
O5—Cu1—N1—C57.99 (9)C8—C9—C10—O6173.45 (16)
Cu1—O1—C1—O2177.60 (12)C8—C9—C10—C115.2 (3)
Cu1—O1—C1—C20.69 (18)O6—C10—C11—C6174.02 (15)
C4—N1—C2—C1145.39 (13)C9—C10—C11—C64.7 (3)
C5—N1—C2—C189.54 (15)C7—C6—C11—C100.4 (2)
Cu1—N1—C2—C129.17 (14)C5—C6—C11—C10179.58 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.76 (3)1.93 (3)2.6859 (16)172 (3)
O6—H4···O3ii0.86 (3)2.00 (3)2.8442 (18)168 (2)
O7—H7A···O2iii0.80 (2)1.97 (2)2.7261 (16)157 (2)
O7—H7B···O4iv0.87 (3)1.83 (3)2.6794 (18)163 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x+3/2, y1/2, z; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C11H11NO6)(H2O)]
Mr334.76
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)13.0461 (16), 9.7919 (12), 19.374 (2)
V3)2474.9 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.693, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
17710, 2929, 2662
Rint0.026
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.070, 1.04
No. of reflections2929
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.56

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.76 (3)1.93 (3)2.6859 (16)172 (3)
O6—H4···O3ii0.86 (3)2.00 (3)2.8442 (18)168 (2)
O7—H7A···O2iii0.80 (2)1.97 (2)2.7261 (16)157 (2)
O7—H7B···O4iv0.87 (3)1.83 (3)2.6794 (18)163 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x+3/2, y1/2, z; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the Science Foundation of Guangxi (No.0832098, 0731052) and the Teaching and Research Award Programme for Outstanding Young Teachers in Higher Education Institutions of MOE, China.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationCalvo, R., Abresch, E. C., Bittl, R., Feher, G., Hofbauer, W., Isaacson, R. A., Lubitz, W., Okamura, M. Y. & Paddock, M. L. (2000). J. Am. Chem. Soc. 122, 7327–7341.  Web of Science CrossRef CAS Google Scholar
First citationDooley, D. M., Scott, R. A., Knowles, P. F., Colanglo, C. M., McGuirl, M. A. & Brown, D. E. (1998). J. Am. Chem. Soc. 120, 2599-2605.  Web of Science CrossRef CAS Google Scholar
First citationDrouza, C., Tolis, V., Gramlich, V., Raptopoulou, C., Terzis, A., Sigalas, M. P., Kabanos, T. A. & Keramidas, A. D. (2002). Chem. Commun., pp. 2786–2787.  Google Scholar
First citationFan, N.-T. (1992). Handbook of Organic Synthesis. Beijing Institute of Technology Press.  Google Scholar
First citationHuang, F.-P., Wang, Y.-X., Zhao, J., Bian, H.-D., Yu, Q. & Liang, H. (2008). Chin. J. Inorg. Chem. 24, 1523–1526.  CAS Google Scholar
First citationIwata, S., Lee, L. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link, T. A., Ramaswamy, S. & Jap, B. K. (1998). Science, 281, 64-71.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S. X., Mure, M., Medzihradsky, K. F., Burlingame, A. L., Brown, D. E., Dooley, D. M., Smith, A. J., Kagan, H. M. & Klinman, J. P. (1996). Science, 273, 1078–1084.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds