organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Meth­oxy­phen­yl)-tert-butane­sulfinamide

aDepartment of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea, and bChemistry Department, Loughborough University, Loughborough LE11 3TU, England
*Correspondence e-mail: ajbuglass@kaist.ac.kr

(Received 14 October 2009; accepted 16 October 2009; online 23 October 2009)

In the title compound, C11H17NO2S, the mol­ecules inter­act head-to-tail through N—H⋯OS hydrogen bonds, giving discrete centrosymmetric cyclic dimers. The N—Car­yl bond length [1.4225 (14) Å] is inter­mediate between that in N-phenyl-tert-butane­sulfinamide [1.4083 (12) Å] and the N—Calk­yl bond lengths in N-alkyl­alkanesulfinamides (1.470–1.530 Å), suggesting weaker delocalization of electrons over the N atom and the aromatic ring due to the presence of the 4-meth­oxy group.

Related literature

For N-aryl­alkanesulfinamides, see: Datta et al. (2008[Datta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393.], 2009[Datta, M., Buglass, A. J. & Elsegood, M. R. J. (2009). Acta Cryst. E65, o2034.]). For N-alkyl­alkanesulfinamides, see: Sato et al. (1975[Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385-1392.]); Schuckmann et al. (1978[Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516-1520.]); Ferreira et al. (2005[Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269-5278.]). For the synthesis, see: Stretter et al. (1969[Stretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357-3363.]).

[Scheme 1]

Experimental

Crystal data
  • C11H17NO2S

  • Mr = 227.32

  • Orthorhombic, P b c n

  • a = 19.6157 (11) Å

  • b = 9.1034 (5) Å

  • c = 13.3808 (7) Å

  • V = 2389.4 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 150 K

  • 0.70 × 0.37 × 0.33 mm

Data collection
  • Bruker APEXII CCD-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.843, Tmax = 0.921

  • 26681 measured reflections

  • 3659 independent reflections

  • 3027 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.05

  • 3659 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.867 (16) 2.062 (17) 2.9201 (14) 170.1 (14)
Symmetry code: (i) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

The molecular structure of (I) (Fig. 1) indicates a short N—Caryl bond (1.4225 (14) Å), in contrast with N—Calkyl bonds in N-alkylalkenesulfinamides (1.470–1.530 Å) (Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005). However, the N–Caryl bond in (I) is longer than its equivalent in N-phenyladamantane-1-sulfinamide (1.409 (2) Å) (Datta et al., 2008) and N-phenyl-tert-butanesulfinamide (1.4083 (12) Å) (Datta et al., 2009), suggesting weaker delocalization of electrons over N and the aromatic ring due to the presence of the para-methoxy group. The crystal packing shows an intermolecular head-to-tail cyclic interaction through N—H···OS hydrogen bonds, forming discrete centrosymmetric dimers (Fig. 2 and Table 1). There is no evidence of any formal hydrogen bonding involving the methoxy group, nor of weak intermolecular C—H···OS hydrogen bonding, as observed in the packing of N-phenyladamantane-1-sulfinamide (Datta et al., 2008).

Related literature top

For N-arylalkanesulfinamides, see: Datta et al. (2008, 2009). For N-alkylalkanesulfinamides, see: Sato et al. (1975); Schuckmann et al. (1978); Ferreira et al. (2005). For the synthesis, see: Stretter et al. (1969).

Experimental top

Compound (I) was prepared by the method of Stretter et al. (1969), using tert-butanesulfinyl chloride (281 mg, 2 mmol) and 4-methoxyaniline (492 mg, 4 mmol) in dry diethyl ether (30 ml). After 5 h reaction time (with TLC monitoring), the white solid amine salt was filtered off and the solvent was removed under reduced pressure. Column chromatography (silica gel, 1% methanol-dichloromethane) yielded (I) as colourless crystals (420 mg (92%), m.p. 384 K. Single crystals suitable for X-ray analysis were obtained by evaporation of a solution of (I) in diethyl ether at room temperature. Spectroscopic analysis: FTIR (KBr) (cm-1) 3017, 1509, 1459, 1367, 1273, 1244, 1212, 1204, 1037, 866. 1H NMR (400 MHz, CDCl3, p.p.m. with respect to TMS) δ 6.96 (d, J = 8.8 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 5.20 (bs, 1H), 3.75 (s, 3H), 1.30 (s, 9H). 13C NMR (100 MHz, CDCl3, p.p.m. with respect to TMS) δ 156.2, 134.8, 121.5, 114.6, 56.2. 55.5, 22.4. EIMS m/z (%) 228 (MH+, 42), 227 (M+, 55), 122 (M+ - tBuSO, 100). These are the first recorded data for (I).

Refinement top

H atoms were located in a difference Fourier map and refined geometrically using a riding model except for NH for which the coordinates were freely refined. Bond lengths and displacement parameters were constrained as follows: C—H = 0.95–0.98 Å and with Uiso (H) = 1.2 (1.5 for CH3) times Ueq(C, N).

Structure description top

The molecular structure of (I) (Fig. 1) indicates a short N—Caryl bond (1.4225 (14) Å), in contrast with N—Calkyl bonds in N-alkylalkenesulfinamides (1.470–1.530 Å) (Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005). However, the N–Caryl bond in (I) is longer than its equivalent in N-phenyladamantane-1-sulfinamide (1.409 (2) Å) (Datta et al., 2008) and N-phenyl-tert-butanesulfinamide (1.4083 (12) Å) (Datta et al., 2009), suggesting weaker delocalization of electrons over N and the aromatic ring due to the presence of the para-methoxy group. The crystal packing shows an intermolecular head-to-tail cyclic interaction through N—H···OS hydrogen bonds, forming discrete centrosymmetric dimers (Fig. 2 and Table 1). There is no evidence of any formal hydrogen bonding involving the methoxy group, nor of weak intermolecular C—H···OS hydrogen bonding, as observed in the packing of N-phenyladamantane-1-sulfinamide (Datta et al., 2008).

For N-arylalkanesulfinamides, see: Datta et al. (2008, 2009). For N-alkylalkanesulfinamides, see: Sato et al. (1975); Schuckmann et al. (1978); Ferreira et al. (2005). For the synthesis, see: Stretter et al. (1969).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The centrosymmetric cyclic dimer of (I) in the crystal packing, showing intermolecular hydrogen bonding as dashed lines. Symmetry code: (i) -x + 1, -y + 2, -z.
N-(4-Methoxyphenyl)-tert-butanesulfinamide top
Crystal data top
C11H17NO2SDx = 1.264 Mg m3
Mr = 227.32Melting point: 384 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6992 reflections
a = 19.6157 (11) Åθ = 2.5–30.4°
b = 9.1034 (5) ŵ = 0.25 mm1
c = 13.3808 (7) ÅT = 150 K
V = 2389.4 (2) Å3Block, colourless
Z = 80.70 × 0.37 × 0.33 mm
F(000) = 976
Data collection top
Bruker APEXII CCD-detector
diffractometer
3659 independent reflections
Radiation source: fine-focus sealed tube3027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω rotation with narrow frames scansθmax = 30.6°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 2727
Tmin = 0.843, Tmax = 0.921k = 1312
26681 measured reflectionsl = 1819
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0614P)2 + 0.5032P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.37 e Å3
3659 reflectionsΔρmin = 0.38 e Å3
144 parametersExtinction correction: SHELXL97>/i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0049 (8)
Primary atom site location: structure-invariant direct methods
Crystal data top
C11H17NO2SV = 2389.4 (2) Å3
Mr = 227.32Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 19.6157 (11) ŵ = 0.25 mm1
b = 9.1034 (5) ÅT = 150 K
c = 13.3808 (7) Å0.70 × 0.37 × 0.33 mm
Data collection top
Bruker APEXII CCD-detector
diffractometer
3659 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3027 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.921Rint = 0.033
26681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.37 e Å3
3659 reflectionsΔρmin = 0.38 e Å3
144 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55068 (4)1.13801 (9)0.06229 (6)0.02755 (19)
S10.613894 (14)1.06197 (3)0.02673 (2)0.02307 (10)
N10.59358 (6)0.89272 (11)0.01268 (8)0.0256 (2)
H10.5522 (8)0.8854 (16)0.0349 (11)0.031*
C10.61179 (5)0.77090 (13)0.04831 (8)0.0229 (2)
C20.56489 (6)0.65860 (12)0.06430 (9)0.0258 (2)
H20.52080.66520.03530.031*
C30.58165 (6)0.53688 (13)0.12200 (9)0.0281 (2)
H30.54910.46130.13280.034*
C40.64632 (6)0.52643 (13)0.16383 (9)0.0283 (2)
C50.69388 (6)0.63664 (14)0.14644 (9)0.0302 (3)
H50.73830.62880.17430.036*
C60.67709 (6)0.75779 (13)0.08881 (9)0.0275 (2)
H60.71010.83210.07680.033*
O20.66770 (5)0.41138 (10)0.22206 (8)0.0405 (2)
C110.61629 (8)0.32282 (15)0.26749 (11)0.0421 (3)
H11A0.58320.38620.30140.063*
H11B0.63740.25650.31620.063*
H11C0.59300.26500.21600.063*
C70.63507 (6)1.14369 (12)0.09505 (8)0.0251 (2)
C80.57849 (6)1.11814 (14)0.17123 (9)0.0296 (2)
H8A0.58771.17610.23140.044*
H8B0.53471.14820.14250.044*
H8C0.57671.01370.18870.044*
C90.70236 (7)1.07343 (15)0.12670 (11)0.0351 (3)
H9A0.69630.96700.13300.053*
H9B0.73731.09410.07630.053*
H9C0.71671.11420.19120.053*
C100.64515 (7)1.30746 (13)0.07418 (10)0.0321 (3)
H10A0.66451.35510.13340.048*
H10B0.67631.31980.01750.048*
H10C0.60111.35250.05820.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0260 (4)0.0291 (4)0.0275 (4)0.0000 (3)0.0027 (3)0.0045 (3)
S10.02289 (15)0.02413 (15)0.02218 (15)0.00033 (9)0.00198 (9)0.00084 (9)
N10.0277 (5)0.0220 (4)0.0272 (5)0.0001 (4)0.0057 (4)0.0009 (4)
C10.0246 (5)0.0237 (5)0.0205 (5)0.0034 (4)0.0007 (4)0.0007 (4)
C20.0238 (5)0.0256 (5)0.0279 (5)0.0019 (4)0.0032 (4)0.0012 (4)
C30.0282 (6)0.0250 (5)0.0310 (6)0.0009 (4)0.0030 (4)0.0013 (4)
C40.0305 (6)0.0272 (5)0.0272 (5)0.0059 (5)0.0021 (4)0.0017 (4)
C50.0229 (5)0.0366 (6)0.0310 (6)0.0059 (5)0.0022 (4)0.0030 (5)
C60.0220 (5)0.0309 (6)0.0295 (6)0.0003 (4)0.0022 (4)0.0028 (4)
O20.0408 (5)0.0357 (5)0.0451 (6)0.0047 (4)0.0105 (4)0.0147 (4)
C110.0590 (9)0.0309 (6)0.0363 (7)0.0034 (6)0.0074 (6)0.0087 (5)
C70.0251 (5)0.0245 (5)0.0256 (5)0.0002 (4)0.0021 (4)0.0009 (4)
C80.0336 (6)0.0314 (6)0.0238 (5)0.0004 (5)0.0017 (4)0.0017 (4)
C90.0274 (6)0.0388 (7)0.0392 (7)0.0021 (5)0.0070 (5)0.0028 (5)
C100.0339 (6)0.0266 (5)0.0358 (6)0.0045 (5)0.0021 (5)0.0007 (5)
Geometric parameters (Å, º) top
O1—S11.4977 (9)O2—C111.4271 (18)
S1—N11.6765 (10)C11—H11A0.9800
S1—C71.8388 (11)C11—H11B0.9800
N1—C11.4225 (14)C11—H11C0.9800
N1—H10.867 (16)C7—C81.5246 (16)
C1—C21.3919 (16)C7—C91.5267 (17)
C1—C61.3960 (16)C7—C101.5296 (16)
C2—C31.3900 (16)C8—H8A0.9800
C2—H20.9500C8—H8B0.9800
C3—C41.3897 (17)C8—H8C0.9800
C3—H30.9500C9—H9A0.9800
C4—O21.3711 (14)C9—H9B0.9800
C4—C51.3896 (18)C9—H9C0.9800
C5—C61.3854 (16)C10—H10A0.9800
C5—H50.9500C10—H10B0.9800
C6—H60.9500C10—H10C0.9800
O1—S1—N1109.15 (5)O2—C11—H11C109.5
O1—S1—C7106.35 (5)H11A—C11—H11C109.5
N1—S1—C798.44 (5)H11B—C11—H11C109.5
C1—N1—S1118.44 (8)C8—C7—C9112.33 (10)
C1—N1—H1111.8 (10)C8—C7—C10111.40 (10)
S1—N1—H1113.7 (10)C9—C7—C10110.31 (10)
C2—C1—C6118.95 (11)C8—C7—S1111.49 (8)
C2—C1—N1119.66 (10)C9—C7—S1105.76 (8)
C6—C1—N1121.32 (11)C10—C7—S1105.17 (8)
C3—C2—C1120.96 (11)C7—C8—H8A109.5
C3—C2—H2119.5C7—C8—H8B109.5
C1—C2—H2119.5H8A—C8—H8B109.5
C4—C3—C2119.62 (11)C7—C8—H8C109.5
C4—C3—H3120.2H8A—C8—H8C109.5
C2—C3—H3120.2H8B—C8—H8C109.5
O2—C4—C5116.18 (11)C7—C9—H9A109.5
O2—C4—C3124.09 (11)C7—C9—H9B109.5
C5—C4—C3119.73 (11)H9A—C9—H9B109.5
C6—C5—C4120.56 (11)C7—C9—H9C109.5
C6—C5—H5119.7H9A—C9—H9C109.5
C4—C5—H5119.7H9B—C9—H9C109.5
C5—C6—C1120.14 (11)C7—C10—H10A109.5
C5—C6—H6119.9C7—C10—H10B109.5
C1—C6—H6119.9H10A—C10—H10B109.5
C4—O2—C11117.22 (11)C7—C10—H10C109.5
O2—C11—H11A109.5H10A—C10—H10C109.5
O2—C11—H11B109.5H10B—C10—H10C109.5
H11A—C11—H11B109.5
O1—S1—N1—C1106.05 (9)C4—C5—C6—C10.60 (19)
C7—S1—N1—C1143.29 (9)C2—C1—C6—C51.93 (17)
S1—N1—C1—C2135.83 (10)N1—C1—C6—C5178.79 (11)
S1—N1—C1—C647.33 (14)C5—C4—O2—C11160.40 (12)
C6—C1—C2—C31.88 (17)C3—C4—O2—C1120.22 (18)
N1—C1—C2—C3178.79 (11)O1—S1—C7—C861.74 (9)
C1—C2—C3—C40.47 (18)N1—S1—C7—C851.16 (9)
C2—C3—C4—O2179.75 (12)O1—S1—C7—C9175.89 (8)
C2—C3—C4—C50.89 (18)N1—S1—C7—C971.21 (9)
O2—C4—C5—C6179.76 (11)O1—S1—C7—C1059.13 (9)
C3—C4—C5—C60.83 (19)N1—S1—C7—C10172.03 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.867 (16)2.062 (17)2.9201 (14)170.1 (14)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC11H17NO2S
Mr227.32
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)150
a, b, c (Å)19.6157 (11), 9.1034 (5), 13.3808 (7)
V3)2389.4 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.70 × 0.37 × 0.33
Data collection
DiffractometerBruker APEXII CCD-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.843, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
26681, 3659, 3027
Rint0.033
(sin θ/λ)max1)0.716
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.05
No. of reflections3659
No. of parameters144
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.38

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.867 (16)2.062 (17)2.9201 (14)170.1 (14)
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

MD and AJB thank KAIST for financial support.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDatta, M., Buglass, A. J. & Elsegood, M. R. J. (2009). Acta Cryst. E65, o2034.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDatta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J. 11, 5269–5278.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385–1392.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516–1520.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber. 102, 3357–3363.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds