metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1568-m1569

catena-Poly[di­ammonium [di­aqua­bis­(pyridine-2,4-di­carboxyl­ato-κ2N,O2)cuprate(II)] [[di­aqua­copper(II)]-μ-pyridine-2,4-di­carboxyl­ato-κ3N,O2:O2′-[tetra­aqua­cadmium(II)]-μ-pyridine-2,4-di­carboxyl­ato-κ3O2:N,O2′] hexa­hydrate]

aThe State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, and bGraduate School, Chinese Academy of Sciences, Beijing 100039, People's Republic of China
*Correspondence e-mail: hunh@ciac.jl.cn

(Received 21 October 2009; accepted 6 November 2009; online 14 November 2009)

The title mixed-metal complex, {(NH4)2[Cu(C7H3NO4)2(H2O)2][CdCu(C7H3NO4)2(H2O)6]·6H2O}n, contains one octa­hedrally coordinated CdII center and two octa­hedrally coordinated CuII centers, each lying on an inversion center. The two CuII atoms are each coordinated by two O atoms and two N atoms from two 2,4-pydc (2,4-H2pydc = pyridine-2,4-dicarboxylic acid) ligands in the equatorial plane and two water mol­ecules at the axial sites, thus producing two crystallographically independent [Cu(2,4-pydc)2(H2O)2]2− metalloligands. One metalloligand exists as a discrete anion and the other connects the Cd(H2O)4 units, forming a neutral chain. O—H⋯O and N—H⋯O hydrogen bonds connects the polymeric chains, complex anions, ammonium cations and uncoordinated water mol­ecules into a three-dimensional supra­molecular network.

Related literature

For general background to coordination polymers, see: Caneschi et al. (2001[Caneschi, A., Gatteschi, D., Lalioti, N., Sangregorio, C., Sessoli, R., Venturi, G., Vindigni, A., Rettori, A., Pini, M. G. & Novak, M. A. (2001). Angew. Chem. Int. Ed. 40, 1760-1763.]); Dong et al. (2000[Dong, Y.-B., Smith, M. D. & zur Loye, H.-C. (2000). Angew. Chem. Int. Ed. 39, 4271-4273.]); Evans & Lin (2002[Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511-522.]); Kitagawa et al. (1999[Kitagawa, H., Onodera, N., Sonoyama, T., Yamamoto, M., Fukawa, T., Mitani, T., Seto, M. & Maeda, Y. (1999). J. Am. Chem. Soc. 121, 10068-10080.], 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.], 2006[Kitagawa, S., Noro, S. & Nakamura, T. (2006). Chem. Commun. pp. 701-707.]). For related structures, see: Li et al. (2008[Li, Z.-G., Wang, G.-H., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2008). CrystEngComm, 10, 173-176.]); Noro et al. (2002a[Noro, S., Kitagawa, S., Yamashita, M. & Wada, T. (2002a). Chem. Commun. pp. 222-223.],b[Noro, S., Kitagawa, S., Yamashita, M. & Wada, T. (2002b). CrystEngComm, 4, 162-164.]); Wang et al. (2009[Wang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. C65, m333-m336.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4)2[Cu(C7H3NO4)2(H2O)2][CdCu(C7H3NO4)2(H2O)6]·6H2O

  • Mr = 1188.20

  • Triclinic, [P \overline 1]

  • a = 10.4520 (19) Å

  • b = 10.5252 (19) Å

  • c = 10.6733 (19) Å

  • α = 102.869 (2)°

  • β = 103.536 (2)°

  • γ = 94.834 (2)°

  • V = 1101.3 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.720, Tmax = 0.785

  • 6205 measured reflections

  • 4212 independent reflections

  • 3869 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.073

  • S = 1.05

  • 4212 reflections

  • 361 parameters

  • 31 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O7i 0.94 (2) 1.80 (1) 2.739 (2) 171 (2)
O1W—H1B⋯O4ii 0.95 (2) 1.82 (1) 2.769 (2) 177 (3)
O2W—H2A⋯O3ii 0.95 (1) 1.72 (1) 2.657 (3) 168 (2)
O2W—H2B⋯O8iii 0.95 (1) 1.77 (1) 2.722 (2) 177 (2)
O3W—H3A⋯O6Wiv 0.94 (1) 1.84 (1) 2.781 (3) 172 (3)
O3W—H3B⋯O7iv 0.94 (1) 1.84 (1) 2.776 (3) 172 (3)
O4W—H4A⋯O3Wv 0.95 (1) 1.89 (1) 2.827 (3) 169 (2)
O4W—H4B⋯O4i 0.95 (1) 1.80 (1) 2.752 (3) 176 (2)
O5W—H5A⋯O4Wvi 0.95 (1) 2.10 (1) 3.048 (3) 170 (3)
O5W—H5B⋯O3 0.96 (1) 1.93 (1) 2.882 (3) 171 (3)
O6W—H6A⋯O6 0.95 (1) 1.79 (1) 2.742 (3) 173 (3)
O6W—H6B⋯O2Wvii 0.96 (3) 2.14 (2) 2.991 (3) 147 (2)
O7W—H7A⋯O2 0.95 (3) 2.09 (3) 3.009 (3) 163 (3)
O7W—H7B⋯O5W 0.95 (3) 1.93 (3) 2.861 (3) 165 (4)
N3—H31⋯O7Wviii 0.98 (2) 1.90 (2) 2.867 (3) 174 (2)
N3—H32⋯O8 0.99 (2) 1.92 (1) 2.886 (3) 164 (2)
N3—H33⋯O5Wix 0.99 (1) 2.53 (2) 3.208 (4) 126 (2)
N3—H33⋯O5x 0.99 (1) 2.30 (2) 3.131 (3) 140 (2)
N3—H33⋯O6x 0.99 (1) 2.19 (2) 2.888 (3) 126 (2)
N3—H34⋯O8xi 0.99 (2) 2.34 (1) 3.277 (3) 157 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z+1; (iii) x-1, y-1, z; (iv) x, y-1, z; (v) x, y+1, z+1; (vi) x, y-1, z-1; (vii) x, y+1, z; (viii) -x+1, -y, -z+1; (ix) x+1, y+1, z+1; (x) x+1, y, z; (xi) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Coordination polymers constructed from metal ions and bridging ligands have been of great interest owing to their structural diversities and fascinating properties (Caneschi et al., 2001; Evans & Lin, 2002; Kitagawa et al., 1999, 2004). In recent years, the design and synthesis of mixed-metal coordination polymers have received much attention because such heterometallic materials might exhibit interesting physical properties, resulting from interactions between two neighboring metal centers connected by a suitable linker (Dong et al., 2000; Kitagawa et al., 2006). Noro et al. (2002a, b) have prepared mixed-metal coordination polymers by using the Et3NH salt of a metalloligand, [Cu(2,4-pydc)2]2- (2,4-H2pydc = pyridine-2,4-dicarboxylic acid). We prepared recently a mixed-metal complex with a metalloligand [Cu(2,5-pydc)2]2- by a simplified synthetic method (Wang et al., 2009). As a continuation of our work, we report here the synthesis and structure of the title compound.

The asymmetric unit of the title compound contains one six-coordinated CdII atom and two six-coordinated CuII atoms, each lying on an inversion center, two 2,4-pydc ligands, one ammonium ion, four coordinated water molecules and three uncoordinated water molecules (Fig. 1). Both Cu1 and Cu2 atoms have an axially elongated octahedral coordination geometry, defined by two O atoms and two N atoms from two 2,4-pydc ligands in the equatorial plane and two water molecules at the axial sites, thus producing two crystallographically independent [Cu(2,4-pydc)2(H2O)2]2- metalloligands. In each metalloligand, the equatorial plane consists of trans N donors and trans O donors. The CdII ions coordinated by four water molecules are linked by the Cu1-metalloligands, via the bidentate-bridging 2-carboxylate groups, into a one-dimensional polymeric chain along the [100] direction (Fig. 2). The shortest Cu···Cd distance is 5.226 (1) Å. The 2,4-pydc ligand binds Cu1 and Cd1 atoms in a µ2-(κ3N,O2:O2') mode with the 4-carboxylate group uncoordinated (Li et al., 2008). The Cu2-metalloligand acts as a discrete divalent anion and does not interact with a second metal ion. The 2,4-pydc ligand in the Cu2-metalloligand adopts a (κ2N,O2) chelating mode with the 4-carboxylate group remaining idle. Extensive O—H···O and N—H···O hydrogen bonds (Table 1) assemble the various components into a supramolecular network (Fig. 3).

Related literature top

For general background to coordination polymers, see: Caneschi et al. (2001); Dong et al. (2000); Evans & Lin (2002); Kitagawa et al. (1999, 2004, 2006). For related structures, see: Li et al. (2008); Noro et al. (2002a,b); Wang et al. (2009).

Experimental top

An aqueous solution (20 ml) of Cu(NO3)2.3H2O (0.125 g, 0.3 mmol) and a suspension of 2,4-H2pydc (0.083 g, 0.3 mmol) in ethanol (10 ml) were mixed and refluxed for 24 h until a clear solution was obtained. To this solution, an aqueous solution (5 ml) of CdCl2 (0.055 g, 0.5 mmol) was added. Aqueous NH3 (25%, 0.06 ml) was then slowly added to the reaction mixture. The resulting solution was filtered off. Blue block crystals were obtained by allowing the filtrate to stand at room temperature for several days.

Refinement top

H atoms on C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecules and ammonium ion were located in a difference Fourier map and refined with distance restraints of O—H = 0.96 (1), H···H = 1.56 (1) Å, and N—H = 0.99 (1), H···H = 1.62 (1) Å, and with Uiso(H) = 1.2Ueq(O,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, together with symmetry-related atoms to complete the Cd1, Cu1 and Cu2 coordination. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1 - x, 1 - y, 2 - z; (iii) -x, -y, 1 - z.]
[Figure 2] Fig. 2. The one-dimensional chain in the title compound. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of the title compound. Dashed lines denote hydrogen bonds.
catena-Poly[diammonium [diaquabis(pyridine-2,4-dicarboxylato-κ2N,O2)cuprate(II)] [[diaquacopper(II)]-µ-pyridine-2,4-dicarboxylato- κ3N,O2:O2'-[tetraaquacadmium(II)]- µ-pyridine-2,4-dicarboxylato-κ3O2:N,O2'] hexahydrate] top
Crystal data top
(NH4)2[Cu(C7H3NO4)2(H2O)2][CdCu(C7H3NO4)2(H2O)6]·6H2OZ = 1
Mr = 1188.20F(000) = 604
Triclinic, P1Dx = 1.792 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4520 (19) ÅCell parameters from 4140 reflections
b = 10.5252 (19) Åθ = 2.5–26.1°
c = 10.6733 (19) ŵ = 1.54 mm1
α = 102.869 (2)°T = 293 K
β = 103.536 (2)°Block, blue
γ = 94.834 (2)°0.22 × 0.20 × 0.16 mm
V = 1101.3 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4212 independent reflections
Radiation source: fine-focus sealed tube3869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 26.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 128
Tmin = 0.720, Tmax = 0.785k = 1212
6205 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.7186P]
where P = (Fo2 + 2Fc2)/3
4212 reflections(Δ/σ)max = 0.004
361 parametersΔρmax = 0.67 e Å3
31 restraintsΔρmin = 0.41 e Å3
Crystal data top
(NH4)2[Cu(C7H3NO4)2(H2O)2][CdCu(C7H3NO4)2(H2O)6]·6H2Oγ = 94.834 (2)°
Mr = 1188.20V = 1101.3 (3) Å3
Triclinic, P1Z = 1
a = 10.4520 (19) ÅMo Kα radiation
b = 10.5252 (19) ŵ = 1.54 mm1
c = 10.6733 (19) ÅT = 293 K
α = 102.869 (2)°0.22 × 0.20 × 0.16 mm
β = 103.536 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4212 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3869 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.785Rint = 0.011
6205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02631 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.67 e Å3
4212 reflectionsΔρmin = 0.41 e Å3
361 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.00000.50000.02604 (8)
Cu10.50000.00000.50000.02460 (10)
Cu20.50000.50001.00000.03268 (11)
N10.44406 (17)0.04440 (17)0.32615 (17)0.0221 (4)
N20.60608 (19)0.56353 (19)0.88835 (18)0.0282 (4)
O10.30942 (15)0.02363 (16)0.48585 (15)0.0281 (3)
O20.11497 (15)0.03483 (18)0.34073 (16)0.0342 (4)
O30.1713 (2)0.0467 (2)0.13119 (19)0.0591 (6)
O40.30140 (19)0.1332 (2)0.12763 (17)0.0439 (5)
O50.35050 (16)0.49779 (19)0.84955 (17)0.0369 (4)
O60.30210 (18)0.5639 (2)0.6633 (2)0.0490 (5)
O70.71230 (17)0.72200 (19)0.51106 (18)0.0391 (4)
O80.89977 (16)0.65182 (18)0.59992 (18)0.0366 (4)
C10.2382 (2)0.0169 (2)0.3746 (2)0.0239 (4)
C20.3115 (2)0.0180 (2)0.2780 (2)0.0227 (4)
C30.2475 (2)0.0220 (2)0.1505 (2)0.0269 (5)
H30.15570.00010.11860.032*
C40.3247 (2)0.0598 (2)0.0707 (2)0.0267 (5)
C50.2599 (2)0.0495 (3)0.0752 (2)0.0327 (5)
C60.4603 (2)0.0970 (2)0.1247 (2)0.0262 (5)
H60.51240.13010.07630.031*
C70.5176 (2)0.0845 (2)0.2518 (2)0.0255 (4)
H70.60940.10460.28580.031*
C80.7820 (2)0.6710 (2)0.5938 (2)0.0280 (5)
C90.7192 (2)0.6332 (2)0.6975 (2)0.0270 (5)
C100.7977 (2)0.6251 (3)0.8193 (2)0.0337 (5)
H100.88980.64210.83790.040*
C110.7380 (2)0.5914 (3)0.9128 (2)0.0340 (5)
H110.79130.58820.99480.041*
C120.5292 (2)0.5726 (2)0.7720 (2)0.0261 (5)
C130.5820 (2)0.6079 (2)0.6751 (2)0.0258 (4)
H130.52620.61470.59580.031*
C140.3820 (2)0.5433 (2)0.7580 (2)0.0305 (5)
O1W0.14804 (16)0.17674 (17)0.64065 (16)0.0324 (4)
H1A0.202 (2)0.205 (3)0.590 (2)0.039*
H1B0.201 (2)0.159 (3)0.7184 (16)0.039*
O2W0.08911 (16)0.15033 (17)0.60774 (17)0.0323 (4)
H2A0.121 (2)0.102 (2)0.6985 (13)0.039*
H2B0.023 (2)0.2214 (18)0.603 (2)0.039*
O3W0.46396 (19)0.24026 (19)0.37308 (18)0.0397 (4)
H3A0.3913 (16)0.275 (3)0.399 (3)0.048*
H3B0.5449 (13)0.261 (3)0.419 (3)0.048*
O4W0.4544 (2)0.7280 (2)1.10086 (19)0.0445 (4)
H4A0.447 (3)0.731 (3)1.1887 (15)0.053*
H4B0.5379 (17)0.775 (3)1.106 (3)0.053*
O5W0.1659 (2)0.2927 (2)0.0551 (2)0.0585 (6)
H5A0.2575 (14)0.294 (3)0.016 (3)0.070*
H5B0.158 (3)0.213 (2)0.084 (3)0.070*
O6W0.2430 (2)0.6784 (2)0.4538 (2)0.0459 (5)
H6A0.260 (3)0.632 (2)0.522 (2)0.055*
H6B0.210 (3)0.7573 (18)0.488 (3)0.055*
O7W0.0227 (3)0.2976 (3)0.1422 (3)0.0668 (7)
H7A0.033 (3)0.2138 (19)0.202 (3)0.080*
H7B0.083 (3)0.297 (3)0.088 (3)0.080*
N31.0503 (2)0.4588 (2)0.6944 (3)0.0482 (6)
H311.020 (2)0.406 (2)0.749 (2)0.058*
H320.9847 (18)0.5165 (19)0.666 (2)0.058*
H331.1357 (14)0.5156 (19)0.745 (2)0.058*
H341.065 (2)0.4011 (19)0.6132 (15)0.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02452 (13)0.03503 (14)0.02213 (13)0.00417 (9)0.00922 (9)0.01115 (9)
Cu10.02026 (19)0.0393 (2)0.01908 (19)0.00659 (15)0.00640 (15)0.01509 (16)
Cu20.0253 (2)0.0519 (3)0.0262 (2)0.00001 (18)0.00792 (17)0.02147 (19)
N10.0217 (9)0.0281 (9)0.0180 (8)0.0046 (7)0.0060 (7)0.0077 (7)
N20.0284 (10)0.0354 (10)0.0239 (9)0.0021 (8)0.0081 (8)0.0132 (8)
O10.0248 (8)0.0418 (9)0.0230 (8)0.0056 (7)0.0091 (6)0.0158 (7)
O20.0214 (8)0.0579 (11)0.0241 (8)0.0019 (7)0.0082 (7)0.0113 (8)
O30.0686 (15)0.0667 (14)0.0275 (10)0.0263 (12)0.0090 (10)0.0183 (9)
O40.0468 (11)0.0582 (12)0.0280 (9)0.0027 (9)0.0038 (8)0.0235 (9)
O50.0264 (9)0.0565 (11)0.0323 (9)0.0003 (8)0.0089 (7)0.0214 (8)
O60.0295 (9)0.0816 (15)0.0422 (11)0.0023 (9)0.0037 (8)0.0367 (11)
O70.0360 (9)0.0528 (11)0.0423 (10)0.0131 (8)0.0178 (8)0.0298 (9)
O80.0295 (9)0.0450 (10)0.0460 (10)0.0076 (7)0.0177 (8)0.0241 (8)
C10.0238 (11)0.0291 (11)0.0201 (10)0.0040 (8)0.0076 (8)0.0068 (8)
C20.0219 (10)0.0292 (11)0.0199 (10)0.0055 (8)0.0077 (8)0.0087 (8)
C30.0220 (11)0.0375 (12)0.0216 (11)0.0040 (9)0.0047 (9)0.0096 (9)
C40.0305 (12)0.0319 (12)0.0191 (10)0.0054 (9)0.0063 (9)0.0089 (9)
C50.0345 (13)0.0440 (14)0.0214 (11)0.0053 (11)0.0069 (10)0.0124 (10)
C60.0290 (11)0.0314 (11)0.0213 (10)0.0021 (9)0.0110 (9)0.0092 (9)
C70.0231 (11)0.0322 (12)0.0236 (11)0.0030 (9)0.0088 (9)0.0095 (9)
C80.0308 (12)0.0278 (11)0.0310 (12)0.0035 (9)0.0139 (10)0.0129 (9)
C90.0305 (12)0.0263 (11)0.0285 (11)0.0041 (9)0.0127 (9)0.0104 (9)
C100.0257 (12)0.0453 (14)0.0328 (12)0.0026 (10)0.0090 (10)0.0149 (11)
C110.0263 (12)0.0498 (15)0.0291 (12)0.0031 (10)0.0058 (10)0.0190 (11)
C120.0277 (11)0.0267 (11)0.0263 (11)0.0037 (9)0.0092 (9)0.0091 (9)
C130.0280 (11)0.0299 (11)0.0223 (10)0.0035 (9)0.0085 (9)0.0104 (9)
C140.0280 (12)0.0377 (13)0.0274 (12)0.0017 (10)0.0076 (10)0.0123 (10)
O1W0.0271 (8)0.0448 (10)0.0260 (8)0.0001 (7)0.0065 (7)0.0126 (7)
O2W0.0289 (9)0.0393 (9)0.0310 (9)0.0019 (7)0.0074 (7)0.0150 (7)
O3W0.0398 (10)0.0460 (11)0.0390 (10)0.0101 (8)0.0139 (8)0.0168 (8)
O4W0.0488 (12)0.0475 (11)0.0367 (10)0.0018 (9)0.0118 (9)0.0120 (9)
O5W0.0555 (13)0.0568 (13)0.0681 (15)0.0083 (11)0.0205 (12)0.0208 (11)
O6W0.0532 (12)0.0450 (11)0.0466 (11)0.0098 (9)0.0174 (9)0.0205 (9)
O7W0.0744 (17)0.0650 (15)0.0564 (15)0.0103 (13)0.0218 (13)0.0085 (12)
N30.0302 (12)0.0545 (15)0.0682 (17)0.0102 (10)0.0157 (11)0.0277 (13)
Geometric parameters (Å, º) top
Cd1—O22.2850 (16)C3—H30.9300
Cd1—O2i2.2850 (16)C4—C61.384 (3)
Cd1—O1W2.3004 (17)C4—C51.521 (3)
Cd1—O2Wi2.2915 (17)C6—C71.389 (3)
Cd1—O2W2.2915 (17)C6—H60.9300
Cd1—O1Wi2.3004 (17)C7—H70.9300
Cu1—O1ii1.9523 (15)C8—C91.519 (3)
Cu1—O11.9523 (15)C9—C131.390 (3)
Cu1—N11.9819 (17)C9—C101.389 (3)
Cu1—N1ii1.9819 (17)C10—C111.386 (3)
Cu1—O3Wii2.539 (2)C10—H100.9300
Cu1—O3W2.539 (2)C11—H110.9300
Cu2—O51.9553 (17)C12—C131.385 (3)
Cu2—O5iii1.9553 (17)C12—C141.509 (3)
Cu2—N21.9862 (18)C13—H130.9300
Cu2—N2iii1.9862 (18)O1W—H1A0.94 (2)
Cu2—O4Wiii2.535 (2)O1W—H1B0.95 (2)
Cu2—O4W2.535 (2)O2W—H2A0.95 (1)
N1—C71.334 (3)O2W—H2B0.95 (1)
N1—C21.342 (3)O3W—H3A0.94 (1)
N2—C111.336 (3)O3W—H3B0.94 (1)
N2—C121.340 (3)O4W—H4A0.95 (1)
O1—C11.266 (3)O4W—H4B0.95 (1)
O2—C11.239 (3)O5W—H5A0.95 (1)
O3—C51.246 (3)O5W—H5B0.96 (1)
O4—C51.244 (3)O6W—H6A0.95 (1)
O5—C141.275 (3)O6W—H6B0.96 (3)
O6—C141.224 (3)O7W—H7A0.95 (3)
O7—C81.255 (3)O7W—H7B0.95 (3)
O8—C81.253 (3)N3—H310.98 (2)
C1—C21.509 (3)N3—H320.99 (2)
C2—C31.379 (3)N3—H330.99 (1)
C3—C41.397 (3)N3—H340.99 (2)
O2—Cd1—O2i180.00 (6)N1—C2—C3122.80 (19)
O2—Cd1—O2Wi84.25 (6)N1—C2—C1114.40 (18)
O2i—Cd1—O2Wi95.75 (6)C3—C2—C1122.80 (19)
O2—Cd1—O2W95.75 (6)C2—C3—C4118.1 (2)
O2i—Cd1—O2W84.25 (6)C2—C3—H3121.0
O2Wi—Cd1—O2W180.0C4—C3—H3121.0
O2—Cd1—O1W95.40 (6)C6—C4—C3118.78 (19)
O2i—Cd1—O1W84.60 (6)C6—C4—C5121.7 (2)
O2Wi—Cd1—O1W85.58 (6)C3—C4—C5119.4 (2)
O2W—Cd1—O1W94.42 (6)O4—C5—O3126.5 (2)
O2—Cd1—O1Wi84.60 (6)O4—C5—C4118.3 (2)
O2i—Cd1—O1Wi95.40 (6)O3—C5—C4115.1 (2)
O2Wi—Cd1—O1Wi94.43 (6)C4—C6—C7119.3 (2)
O2W—Cd1—O1Wi85.57 (6)C4—C6—H6120.3
O1W—Cd1—O1Wi179.999 (1)C7—C6—H6120.3
O1ii—Cu1—O1180.0N1—C7—C6121.5 (2)
O1ii—Cu1—N196.26 (7)N1—C7—H7119.2
O1—Cu1—N183.74 (7)C6—C7—H7119.2
O1ii—Cu1—N1ii83.74 (7)O8—C8—O7125.5 (2)
O1—Cu1—N1ii96.26 (7)O8—C8—C9117.5 (2)
N1—Cu1—N1ii180.0O7—C8—C9117.0 (2)
O1ii—Cu1—O3Wii85.99 (6)C13—C9—C10117.8 (2)
O1—Cu1—O3Wii94.01 (6)C13—C9—C8121.3 (2)
N1—Cu1—O3Wii92.15 (7)C10—C9—C8120.8 (2)
N1ii—Cu1—O3Wii87.85 (7)C11—C10—C9119.8 (2)
O1ii—Cu1—O3W94.01 (6)C11—C10—H10120.1
O1—Cu1—O3W85.99 (6)C9—C10—H10120.1
N1—Cu1—O3W87.85 (7)N2—C11—C10121.8 (2)
N1ii—Cu1—O3W92.15 (7)N2—C11—H11119.1
O3Wii—Cu1—O3W180.00 (4)C10—C11—H11119.1
O5—Cu2—O5iii180.0N2—C12—C13122.2 (2)
O5—Cu2—N283.06 (7)N2—C12—C14114.18 (19)
O5iii—Cu2—N296.94 (7)C13—C12—C14123.7 (2)
O5—Cu2—N2iii96.95 (7)C12—C13—C9119.4 (2)
O5iii—Cu2—N2iii83.05 (7)C12—C13—H13120.3
N2—Cu2—N2iii179.998 (1)C9—C13—H13120.3
O5—Cu2—O4Wiii94.09 (7)O6—C14—O5124.6 (2)
O5iii—Cu2—O4Wiii85.91 (7)O6—C14—C12119.9 (2)
N2—Cu2—O4Wiii86.13 (7)O5—C14—C12115.49 (19)
N2iii—Cu2—O4Wiii93.87 (7)Cd1—O1W—H1A106.3 (16)
O5—Cu2—O4W85.91 (7)Cd1—O1W—H1B114.8 (16)
O5iii—Cu2—O4W94.09 (7)H1A—O1W—H1B110 (1)
N2—Cu2—O4W93.87 (7)Cd1—O2W—H2A104.0 (16)
N2iii—Cu2—O4W86.13 (7)Cd1—O2W—H2B112.0 (16)
O4Wiii—Cu2—O4W180.0H2A—O2W—H2B108 (1)
C7—N1—C2119.16 (18)H3A—O3W—H3B112 (1)
C7—N1—Cu1129.85 (15)H4A—O4W—H4B109 (3)
C2—N1—Cu1110.76 (13)H5A—O5W—H5B108 (3)
C11—N2—C12119.09 (19)H6A—O6W—H6B108 (1)
C11—N2—Cu2128.85 (15)H7A—O7W—H7B110 (3)
C12—N2—Cu2112.00 (15)H31—N3—H32112 (1)
C1—O1—Cu1113.79 (13)H31—N3—H33110 (1)
C1—O2—Cd1119.57 (14)H32—N3—H33108 (1)
C14—O5—Cu2114.67 (15)H31—N3—H34111 (1)
O2—C1—O1125.21 (19)H32—N3—H34108 (1)
O2—C1—C2118.48 (18)H33—N3—H34108 (1)
O1—C1—C2116.30 (18)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O7iv0.94 (2)1.80 (1)2.739 (2)171 (2)
O1W—H1B···O4v0.95 (2)1.82 (1)2.769 (2)177 (3)
O2W—H2A···O3v0.95 (1)1.72 (1)2.657 (3)168 (2)
O2W—H2B···O8vi0.95 (1)1.77 (1)2.722 (2)177 (2)
O3W—H3A···O6Wvii0.94 (1)1.84 (1)2.781 (3)172 (3)
O3W—H3B···O7vii0.94 (1)1.84 (1)2.776 (3)172 (3)
O4W—H4A···O3Wviii0.95 (1)1.89 (1)2.827 (3)169 (2)
O4W—H4B···O4iv0.95 (1)1.80 (1)2.752 (3)176 (2)
O5W—H5A···O4Wix0.95 (1)2.10 (1)3.048 (3)170 (3)
O5W—H5B···O30.96 (1)1.93 (1)2.882 (3)171 (3)
O6W—H6A···O60.95 (1)1.79 (1)2.742 (3)173 (3)
O6W—H6B···O2Wx0.96 (3)2.14 (2)2.991 (3)147 (2)
O7W—H7A···O20.95 (3)2.09 (3)3.009 (3)163 (3)
O7W—H7B···O5W0.95 (3)1.93 (3)2.861 (3)165 (4)
N3—H31···O7Wii0.98 (2)1.90 (2)2.867 (3)174 (2)
N3—H32···O80.99 (2)1.92 (1)2.886 (3)164 (2)
N3—H33···O5Wxi0.99 (1)2.53 (2)3.208 (4)126 (2)
N3—H33···O5xii0.99 (1)2.30 (2)3.131 (3)140 (2)
N3—H33···O6xii0.99 (1)2.19 (2)2.888 (3)126 (2)
N3—H34···O8xiii0.99 (2)2.34 (1)3.277 (3)157 (2)
Symmetry codes: (ii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y, z+1; (vi) x1, y1, z; (vii) x, y1, z; (viii) x, y+1, z+1; (ix) x, y1, z1; (x) x, y+1, z; (xi) x+1, y+1, z+1; (xii) x+1, y, z; (xiii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula(NH4)2[Cu(C7H3NO4)2(H2O)2][CdCu(C7H3NO4)2(H2O)6]·6H2O
Mr1188.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.4520 (19), 10.5252 (19), 10.6733 (19)
α, β, γ (°)102.869 (2), 103.536 (2), 94.834 (2)
V3)1101.3 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.720, 0.785
No. of measured, independent and
observed [I > 2σ(I)] reflections
6205, 4212, 3869
Rint0.011
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.073, 1.05
No. of reflections4212
No. of parameters361
No. of restraints31
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.67, 0.41

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O7i0.94 (2)1.80 (1)2.739 (2)171 (2)
O1W—H1B···O4ii0.95 (2)1.82 (1)2.769 (2)177 (3)
O2W—H2A···O3ii0.95 (1)1.72 (1)2.657 (3)168 (2)
O2W—H2B···O8iii0.95 (1)1.77 (1)2.722 (2)177 (2)
O3W—H3A···O6Wiv0.94 (1)1.84 (1)2.781 (3)172 (3)
O3W—H3B···O7iv0.94 (1)1.84 (1)2.776 (3)172 (3)
O4W—H4A···O3Wv0.95 (1)1.89 (1)2.827 (3)169 (2)
O4W—H4B···O4i0.95 (1)1.80 (1)2.752 (3)176 (2)
O5W—H5A···O4Wvi0.95 (1)2.10 (1)3.048 (3)170 (3)
O5W—H5B···O30.96 (1)1.93 (1)2.882 (3)171 (3)
O6W—H6A···O60.95 (1)1.79 (1)2.742 (3)173 (3)
O6W—H6B···O2Wvii0.96 (3)2.14 (2)2.991 (3)147 (2)
O7W—H7A···O20.95 (3)2.09 (3)3.009 (3)163 (3)
O7W—H7B···O5W0.95 (3)1.93 (3)2.861 (3)165 (4)
N3—H31···O7Wviii0.98 (2)1.90 (2)2.867 (3)174 (2)
N3—H32···O80.99 (2)1.92 (1)2.886 (3)164 (2)
N3—H33···O5Wix0.99 (1)2.53 (2)3.208 (4)126 (2)
N3—H33···O5x0.99 (1)2.30 (2)3.131 (3)140 (2)
N3—H33···O6x0.99 (1)2.19 (2)2.888 (3)126 (2)
N3—H34···O8xi0.99 (2)2.34 (1)3.277 (3)157 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x1, y1, z; (iv) x, y1, z; (v) x, y+1, z+1; (vi) x, y1, z1; (vii) x, y+1, z; (viii) x+1, y, z+1; (ix) x+1, y+1, z+1; (x) x+1, y, z; (xi) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the Changchun Institute of Applied Chemistry for supporting this work.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaneschi, A., Gatteschi, D., Lalioti, N., Sangregorio, C., Sessoli, R., Venturi, G., Vindigni, A., Rettori, A., Pini, M. G. & Novak, M. A. (2001). Angew. Chem. Int. Ed. 40, 1760–1763.  Web of Science CrossRef CAS Google Scholar
First citationDong, Y.-B., Smith, M. D. & zur Loye, H.-C. (2000). Angew. Chem. Int. Ed. 39, 4271–4273.  CrossRef CAS Google Scholar
First citationEvans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationKitagawa, S., Noro, S. & Nakamura, T. (2006). Chem. Commun. pp. 701–707.  Web of Science CrossRef Google Scholar
First citationKitagawa, H., Onodera, N., Sonoyama, T., Yamamoto, M., Fukawa, T., Mitani, T., Seto, M. & Maeda, Y. (1999). J. Am. Chem. Soc. 121, 10068–10080.  Web of Science CrossRef CAS Google Scholar
First citationLi, Z.-G., Wang, G.-H., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2008). CrystEngComm, 10, 173–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoro, S., Kitagawa, S., Yamashita, M. & Wada, T. (2002a). Chem. Commun. pp. 222–223.  Web of Science CSD CrossRef Google Scholar
First citationNoro, S., Kitagawa, S., Yamashita, M. & Wada, T. (2002b). CrystEngComm, 4, 162–164.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-H., Li, Z.-G., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2009). Acta Cryst. C65, m333–m336.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1568-m1569
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds