organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3175-o3176

2-(m-Tolyl­imino­meth­yl)phenol

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: alice.brink@gmail.com

(Received 21 October 2009; accepted 18 November 2009; online 21 November 2009)

The title compound, C14H13NO, is non-planar with a dihedral angle of 47.00 (6)° between the planes of the two aromatic rings. Intra­molecular hydrogen bonding is observed between the O—H group and the N atom, resulting in a phenol–imine tautomeric form.

Related literature

For related structures, see: Elmali et al. (1998[Elmali, A., Elerman, Y. & Zeyrek, C. T. (1998). J. Mol. Struct. 443, 123-130.]); Cheng et al. (2005[Cheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137-o1138.]); Arod et al. (2005[Arod, F., Gardon, M., Pattison, P. & Chapuis, G. (2005). Acta Cryst. C61, o317-o320.]); Bingöl et al. (2007[Bingöl, Y., Erşah˙in, F., Ağar, E. & Isık, Ş. (2007). Acta Cryst. E63, o3539.]); Zhang et al. (2007[Zhang, X.-L. & Li, Z.-X. (2007). Acta Cryst. E63, o319-o320.]). For macromolecules containing Schiff base–metal complexes see: Leung et al. (2007[Leung, A. C. W. & MacLachlan, M. J. (2007). J. Inorg. Organomet. Polym. Mater. 17, 57-89.]). For related structures with non-linear optical properties, magnetic, oxygen transport and catalytic properties: see Karakas et al. (2004[Karakas, A., Elmali, A., Ünver, H. & Svoboda, I. (2004). J. Mol. Struct. 702, 103-110.]); Miyasaka et al. (2003[Miyasaka, H., Ieda, H., Matsumoto, N., Sugiura, K. & Yamashita, M. (2003). Inorg. Chem. 42, 3509-3515.]); Bailes et al. (1947[Bailes, R. H. & Calvin, M. (1947). J. Am. Chem. Soc. 69, 1886-1893.]); Zhang et al. (1994[Zhang, W., Lee, N. H. & Jacobsen, E. N. (1994). J. Am. Chem. Soc. 116, 425-426.]). For photo-physical properties such as thermochromism and photochromism, see: Gakias et al. (2005[Gakias, S., Rix, C., Fowless, A., Wills-Johnson, G., Latham, K. & White, J. (2005). J. Mol. Struct. 737, 69-74.]). For N-Salicylideneaniline, which displays reversible photoreactivity and crystallizes as both non-planar and planar polymorphs, see: Arod et al. (2005[Arod, F., Gardon, M., Pattison, P. & Chapuis, G. (2005). Acta Cryst. C61, o317-o320.], 2007[Arod, F., Pattison, P., Schenk, K. J. & Chapuis, G. (2007). Cryst. Growth Des. 7, 1679-1685.])

[Scheme 1]

Experimental

Crystal data
  • C14H13NO

  • Mr = 211.25

  • Orthorhombic, P 21 21 21

  • a = 7.4946 (4) Å

  • b = 11.8669 (6) Å

  • c = 12.2970 (6) Å

  • V = 1093.67 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.35 × 0.22 × 0.08 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.994

  • 11186 measured reflections

  • 1532 independent reflections

  • 1210 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.099

  • S = 1.08

  • 1532 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.84 1.85 2.595 (2) 147

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases readily form stable complexes with many transition metals and therefore play an important role in the developement of coordination chemistry. The choice of the appropriate amine and various substituents on the aromatic ring of the carbonyl compound allows for great versatility and fine tuning of the steric and electronic properties. The ligands have interesting photo-physical properties as thermochromism and photochromism (Gakias et al., 2005), such as N-Salicylideneaniline which displays reversible photoreactivity and crystallizes as both non-planar and planar polymorphs (Arod et al., 2005 and 2007).

The title compound (Figure 1) is non-planar with a dihedral angle between aromatic rings of 47.00 (6)°, and a C1—N1—C21—C22 torsion angle of 42.7 (3)° . The C1—N1 bond distance (1.287 (3) Å) confirms to the value for a double bond. The molecule displays a trans configuration with respect to the C1—N1 double bond. The N1—C21 and C1—C11 bond distances are 1.426 (3) and 1.445 (3)Å respectively and all other bond distances are within normal range. The molecule adopts a phenol-imine tautomeric form, with strong intramolecular hydrogen bonding observed (O—H···N = 2.595 (2) Å).

Related literature top

For related structures, see: Elmali et al. (1998); Cheng et al. (2005); Arod et al. (2005); Bingöl et al. (2007); Zhang et al. (2007). For macromolecules containing Schiff base–metal complexes see: Leung et al. (2007). For related structures withg non-linear optical properties, interesting magnetic, oxygen transport and catalytic properties: see Karakas et al. (2004); Miyasaka et al. (2003); Bailes et al. (1947); Zhang et al. (1994). For photo-physical properties as thermochromism and photochromism, see: ; Gakias et al. (2005). For N-Salicylideneaniline, which displays reversible photoreactivity and crystallizes as both non-planar and planar polymorphs, see: Arod et al. (2005, 2007)

Experimental top

Salicylaldehyde (14.0 mmol, 1.71 g) was dissolved in 30 ml methanol. m-Toluidine (14.0 mmol, 1.50 g) dissolved in methanol (10 ml), was added dropwise to the reaction mixture. Anhydrous MgSO4 was added to the reaction. The mixture was heated to 80° and refluxed for 3 hr. The MgSO4 was filtered and the yellow product was collected. The solvent was removed under reduced pressure. The product was dissolved in acetone and crystals suitable for x-ray diffraction were obtained by slow evaporation of the solvent at 0°C. Yield 94.4%. 1H NMR [CDCl3, 300 MHz, δ(p.p.m.)] 8.6 (1H, s, HCN), 7.4–6.9 (8H, m, Ar), 2.4 (3H, s, CH3).

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95-0.98 Å, O—H: 0.84 Å and Uiso(H) = 1.2-1.5 Ueq(C). The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: WingGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
2-(m-Tolyliminomethyl)phenol top
Crystal data top
C14H13NOF(000) = 448
Mr = 211.25Dx = 1.283 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1942 reflections
a = 7.4946 (4) Åθ = 3.2–22.3°
b = 11.8669 (6) ŵ = 0.08 mm1
c = 12.2970 (6) ÅT = 100 K
V = 1093.67 (10) Å3Cuboid, red
Z = 40.35 × 0.22 × 0.08 mm
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
1532 independent reflections
Radiation source: sealed tube1210 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 512 pixels mm-1θmax = 28.0°, θmin = 2.4°
ω and ϕ scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1512
Tmin = 0.972, Tmax = 0.994l = 1316
11186 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.0939P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.099(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.20 e Å3
1532 reflectionsΔρmin = 0.21 e Å3
146 parameters
Crystal data top
C14H13NOV = 1093.67 (10) Å3
Mr = 211.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4946 (4) ŵ = 0.08 mm1
b = 11.8669 (6) ÅT = 100 K
c = 12.2970 (6) Å0.35 × 0.22 × 0.08 mm
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
1532 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1210 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.994Rint = 0.055
11186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.08Δρmax = 0.20 e Å3
1532 reflectionsΔρmin = 0.21 e Å3
146 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 60 s/frame. A total of 1032 frames were collected with a frame width of 0.5° covering up to θ = 27.99° with 100.0% completeness accomplized.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4954 (3)0.32440 (17)0.70887 (17)0.0219 (5)
H10.45680.25140.68770.026*
C2310.5244 (3)0.15389 (17)0.30941 (18)0.0272 (5)
H2A0.5840.10370.36120.041*
H2B0.60730.17330.25070.041*
H2C0.41980.11580.27890.041*
C110.5390 (3)0.34554 (16)0.82153 (17)0.0209 (5)
C120.6066 (3)0.45064 (17)0.85663 (18)0.0223 (5)
C130.6401 (3)0.46927 (19)0.96612 (18)0.0257 (5)
H130.68820.53930.98930.031*
C140.6037 (3)0.38626 (18)1.0414 (2)0.0281 (5)
H140.62480.40041.11630.034*
C150.5364 (3)0.28196 (18)1.00924 (18)0.0290 (6)
H150.51140.22521.06160.035*
C160.5066 (3)0.26242 (17)0.90006 (17)0.0242 (5)
H160.46310.19090.87760.029*
C210.4611 (3)0.37863 (16)0.52673 (17)0.0207 (5)
C220.5118 (3)0.27911 (17)0.47524 (17)0.0214 (5)
H220.57790.2240.51420.026*
C230.4662 (3)0.25991 (17)0.36708 (18)0.0214 (5)
C240.3690 (3)0.34139 (17)0.31147 (18)0.0237 (5)
H240.33620.3290.23780.028*
C250.3195 (3)0.44076 (17)0.36278 (19)0.0258 (5)
H250.25250.49560.32410.031*
C260.3668 (3)0.46058 (17)0.46985 (18)0.0240 (5)
H260.33510.52950.50420.029*
N10.5078 (2)0.40260 (13)0.63674 (14)0.0213 (4)
O10.6371 (2)0.53517 (12)0.78487 (12)0.0274 (4)
H1A0.60180.51560.72280.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0191 (12)0.0190 (10)0.0276 (12)0.0004 (9)0.0021 (11)0.0022 (9)
C2310.0276 (13)0.0287 (11)0.0253 (11)0.0035 (10)0.0034 (11)0.0028 (10)
C110.0200 (11)0.0176 (10)0.0251 (11)0.0030 (9)0.0013 (10)0.0020 (9)
C120.0176 (11)0.0205 (11)0.0287 (13)0.0023 (9)0.0018 (10)0.0013 (10)
C130.0202 (12)0.0232 (10)0.0338 (13)0.0003 (10)0.0021 (11)0.0064 (10)
C140.0272 (13)0.0303 (12)0.0267 (12)0.0029 (11)0.0032 (11)0.0054 (10)
C150.0341 (14)0.0269 (12)0.0260 (12)0.0025 (11)0.0013 (11)0.0023 (10)
C160.0276 (13)0.0208 (10)0.0242 (12)0.0002 (10)0.0021 (10)0.0015 (8)
C210.0174 (11)0.0218 (10)0.0227 (12)0.0051 (9)0.0036 (10)0.0035 (9)
C220.0191 (11)0.0213 (10)0.0238 (12)0.0013 (9)0.0002 (10)0.0031 (9)
C230.0161 (11)0.0235 (10)0.0247 (11)0.0032 (9)0.0010 (10)0.0018 (9)
C240.0182 (11)0.0325 (12)0.0203 (11)0.0023 (10)0.0003 (10)0.0060 (10)
C250.0222 (12)0.0245 (12)0.0305 (13)0.0001 (9)0.0006 (11)0.0100 (10)
C260.0202 (12)0.0187 (10)0.0331 (13)0.0002 (10)0.0029 (11)0.0032 (10)
N10.0208 (10)0.0213 (9)0.0219 (9)0.0016 (8)0.0019 (9)0.0001 (7)
O10.0315 (9)0.0207 (7)0.0300 (8)0.0036 (7)0.0004 (8)0.0007 (7)
Geometric parameters (Å, º) top
C1—N11.287 (3)C15—C161.381 (3)
C1—C111.445 (3)C15—H150.95
C1—H10.95C16—H160.95
C231—C231.509 (3)C21—C261.391 (3)
C231—H2A0.98C21—C221.393 (3)
C231—H2B0.98C21—N11.426 (3)
C231—H2C0.98C22—C231.392 (3)
C11—C161.402 (3)C22—H220.95
C11—C121.414 (3)C23—C241.390 (3)
C12—O11.355 (2)C24—C251.388 (3)
C12—C131.387 (3)C24—H240.95
C13—C141.379 (3)C25—C261.384 (3)
C13—H130.95C25—H250.95
C14—C151.394 (3)C26—H260.95
C14—H140.95O1—H1A0.84
N1—C1—C11121.27 (18)C15—C16—C11121.6 (2)
N1—C1—H1119.4C15—C16—H16119.2
C11—C1—H1119.4C11—C16—H16119.2
C23—C231—H2A109.5C26—C21—C22120.19 (19)
C23—C231—H2B109.5C26—C21—N1117.55 (18)
H2A—C231—H2B109.5C22—C21—N1122.22 (18)
C23—C231—H2C109.5C23—C22—C21120.40 (19)
H2A—C231—H2C109.5C23—C22—H22119.8
H2B—C231—H2C109.5C21—C22—H22119.8
C16—C11—C12118.21 (19)C24—C23—C22119.0 (2)
C16—C11—C1119.93 (18)C24—C23—C231120.03 (19)
C12—C11—C1121.80 (18)C22—C23—C231121.0 (2)
O1—C12—C13118.91 (19)C25—C24—C23120.5 (2)
O1—C12—C11120.96 (19)C25—C24—H24119.8
C13—C12—C11120.1 (2)C23—C24—H24119.8
C14—C13—C12120.1 (2)C26—C25—C24120.6 (2)
C14—C13—H13119.9C26—C25—H25119.7
C12—C13—H13119.9C24—C25—H25119.7
C13—C14—C15121.0 (2)C25—C26—C21119.3 (2)
C13—C14—H14119.5C25—C26—H26120.3
C15—C14—H14119.5C21—C26—H26120.3
C16—C15—C14118.9 (2)C1—N1—C21119.49 (16)
C16—C15—H15120.5C12—O1—H1A109.5
C14—C15—H15120.5
N1—C1—C11—C16173.3 (2)C26—C21—C22—C231.1 (3)
N1—C1—C11—C123.6 (3)N1—C21—C22—C23178.81 (19)
C16—C11—C12—O1178.59 (19)C21—C22—C23—C240.2 (3)
C1—C11—C12—O11.6 (3)C21—C22—C23—C231178.35 (19)
C16—C11—C12—C130.4 (3)C22—C23—C24—C250.5 (3)
C1—C11—C12—C13177.4 (2)C231—C23—C24—C25178.0 (2)
O1—C12—C13—C14177.47 (19)C23—C24—C25—C260.3 (3)
C11—C12—C13—C141.5 (3)C24—C25—C26—C211.5 (3)
C12—C13—C14—C151.3 (3)C22—C21—C26—C251.9 (3)
C13—C14—C15—C160.1 (4)N1—C21—C26—C25179.75 (19)
C14—C15—C16—C111.3 (4)C11—C1—N1—C21179.12 (19)
C12—C11—C16—C151.0 (3)C26—C21—N1—C1139.4 (2)
C1—C11—C16—C15176.0 (2)C22—C21—N1—C142.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.841.852.595 (2)147

Experimental details

Crystal data
Chemical formulaC14H13NO
Mr211.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.4946 (4), 11.8669 (6), 12.2970 (6)
V3)1093.67 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.22 × 0.08
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.972, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
11186, 1532, 1210
Rint0.055
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.099, 1.08
No. of reflections1532
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), WingGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.841.852.595 (2)147.2
 

Acknowledgements

Financial assistance from the University of the Free State is gratefully acknowledged. Mr Leo Kirsten is thanked for the data collection. Gratitude is expressed to SASOL and the South African National Research Foundation (SA-NRF/THRIP) for financial support of this project. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArod, F., Gardon, M., Pattison, P. & Chapuis, G. (2005). Acta Cryst. C61, o317–o320.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArod, F., Pattison, P., Schenk, K. J. & Chapuis, G. (2007). Cryst. Growth Des. 7, 1679–1685.  Web of Science CSD CrossRef CAS Google Scholar
First citationBailes, R. H. & Calvin, M. (1947). J. Am. Chem. Soc. 69, 1886–1893.  CrossRef CAS Web of Science Google Scholar
First citationBingöl, Y., Erşah˙in, F., Ağar, E. & Isık, Ş. (2007). Acta Cryst. E63, o3539.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137–o1138.  Web of Science CrossRef IUCr Journals Google Scholar
First citationElmali, A., Elerman, Y. & Zeyrek, C. T. (1998). J. Mol. Struct. 443, 123–130.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGakias, S., Rix, C., Fowless, A., Wills–Johnson, G., Latham, K. & White, J. (2005). J. Mol. Struct. 737, 69–74.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarakas, A., Elmali, A., Ünver, H. & Svoboda, I. (2004). J. Mol. Struct. 702, 103–110.  Web of Science CSD CrossRef CAS Google Scholar
First citationLeung, A. C. W. & MacLachlan, M. J. (2007). J. Inorg. Organomet. Polym. Mater. 17, 57–89.  Web of Science CrossRef CAS Google Scholar
First citationMiyasaka, H., Ieda, H., Matsumoto, N., Sugiura, K. & Yamashita, M. (2003). Inorg. Chem. 42, 3509–3515.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W., Lee, N. H. & Jacobsen, E. N. (1994). J. Am. Chem. Soc. 116, 425–426.  CrossRef CAS Web of Science Google Scholar
First citationZhang, X.-L. & Li, Z.-X. (2007). Acta Cryst. E63, o319–o320.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3175-o3176
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds