metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­[3-(3-pyrid­yl)-5-(4-pyrid­yl)-1,2,4-triazolido]nickel(II) dihydrate

aDepartment of Pharmacy, Shaoyang Medical College, Shaoyang, Hunan 422000, People's Republic of China
*Correspondence e-mail: yunliangz2009@163.com

(Received 25 October 2009; accepted 7 November 2009; online 14 November 2009)

In the title compound, [Ni(C12H8N5)2(H2O)4]·2H2O, the NiII atom is coordinated by the two N atoms [Ni—N = 2.094 (3) Å] and four O atoms [Ni—O = 2.063 (3)–2.083 (2) Å] in a distorted octa­hedral geometry. The mol­ecule is centrosymmetric and the NiII atom is located on an inversion center. Inter­molecular O—H⋯N and O—H⋯O hydrogen bonds link the complex into a three-dimensional supra­molecular framework.

Related literature

For hydrogen-bond inter­actions in biological systems, see: Deisenhofer & Michel (1989[Deisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149-2154.]). For supra­molecular assembly through hydrogen bonds, see: Beatty (2003[Beatty, A. M. (2003). Coord. Chem. Rev. 246, 131-143.]); Li et al. (2006[Li, F., Su, T.-H., Gao, W. & Cao, R. (2006). Eur. J. Inorg. Chem. pp. 1582-1587.]); Russell & Ward (1996[Russell, V. A. & Ward, M. D. (1996). Chem. Mater. 8, 1654-1666.]). For related structures, see: Liu et al. (2008[Liu, N., Wang, Y.-Q., Gao, E.-Q., Chen, Z.-X. & Weng, L.-H. (2008). CrystEngComm, 10, 915-922.]); Liu & Zhang (2009[Liu, T.-L. & Zhang, Y.-L. (2009). Acta Cryst. E65, m913.]); Rarig et al. (2001[Rarig, R. S. & Zubieta, J. J. (2001). J. Chem. Soc. Dalton Trans. pp. 3446-3452.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C12H8N5)2(H2O)4]·2H2O

  • Mr = 611.25

  • Triclinic, [P \overline 1]

  • a = 8.2240 (16) Å

  • b = 9.1990 (18) Å

  • c = 9.3850 (19) Å

  • α = 90.70 (3)°

  • β = 104.96 (3)°

  • γ = 96.47 (3)°

  • V = 680.9 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.20 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])' Tmin = 0.866, Tmax = 0.943

  • 4042 measured reflections

  • 2437 independent reflections

  • 2258 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.150

  • S = 0.99

  • 2437 reflections

  • 211 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N5i 0.83 (2) 1.92 (3) 2.751 (4) 179 (3)
O1—H1B⋯N3ii 0.83 (3) 1.95 (3) 2.750 (4) 162 (3)
O2—H2A⋯O3iii 0.83 (3) 1.93 (3) 2.751 (4) 171 (3)
O2—H2B⋯N4iv 0.84 (3) 1.96 (3) 2.791 (4) 169 (3)
O3—H3A⋯N2v 0.82 (5) 2.10 (5) 2.911 (4) 170 (3)
O3—H3B⋯N4vi 0.82 (4) 2.20 (5) 2.944 (4) 151 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) -x, -y, -z+1; (v) x+1, y, z; (vi) -x+1, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The hydrogen bond interaction plays a important role in some biological systems (Deisenhofer & Michel, 1989). Supramolecular assembly through hydrogen bonds has been extensively exploited to generate extended one-, two- and three-dimensional structures (Beatty et al., 2003; Li et al., 2006; Russell & Ward, 1996). As part of this ongoing work (Liu et al., 2009), We present here the synthesis and structural characterization of the title nickel complex, [Ni(C12H8N5)2(H2O)4].2H2O, (I).

The molecule of the title complex, (Fig. 1), is centrosymmetric, so pairs of equivalent ligands lie trans to each other in a slightly distorted octahedral coordination geometry, cis angles deviating from 90° by less than 2°. with Ni—O bond length in the range 2.063–2.083 Å and Ni—N bond length 2.094 Å. These bond distances compare well with those in the literature (Liu et al., 2008; Rarig et al., 2001). Molecules are linked by O—H···O and O—H···N hydrogen bonds (Fig. 2, Table 1).

Related literature top

For hydrogen-bond interactions in biological systems, see: Deisenhofer & Michel (1989). For supramolecular assembly through hydrogen bonds, see: Beatty et al. (2003); Li et al. (2006); Russell & Ward (1996). For related structures, see: Liu et al. (2008); Liu & Zhang (2009); Rarig et al. (2001).

Experimental top

Ni(NO3)2.4H2O (0.5 mmol, 0.145 g), 1H-3-(3-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (0.5 mmol, 0.112 g), and water (12 ml) were placed in a 23-ml Teflon-lined Parr bomb. The bomb was heated at 453 K for 3 d. The green block-shapped crystals were filtered off and washed with water and acetone (yield 33%, based on Ni).

Refinement top

Hydrogen atoms of water molecules were located in a difference Fourier map and refined with distance restraints of O—H = 0.82 (2) Å and H···H = 1.35 (2) Å. H atoms on C atom were positoned geometrically and refined using a riding model, with C—H = 0.93 Å, in all cases with U(H)= 1.2/1.5× Ueqiv(Host)

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) with the atom-numbering scheme and 50% displacement ellipsoids (arbitrary spheres for the H atoms). Atoms with the suffix A are generated by the symmetry operation (-x, -y + 1, -z + 1).
[Figure 2] Fig. 2. The 3-D network of (I).
Tetraaquabis[3-(3-pyridyl)-5-(4-pyridyl)-1,2,4-triazolido]nickel(II) dihydrate top
Crystal data top
[Ni(C12H8N5)2(H2O)4]·2H2OZ = 1
Mr = 611.25F(000) = 318
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2240 (16) ÅCell parameters from 2567 reflections
b = 9.1990 (18) Åθ = 1.5–25.3°
c = 9.3850 (19) ŵ = 0.77 mm1
α = 90.70 (3)°T = 293 K
β = 104.96 (3)°Block, green
γ = 96.47 (3)°0.20 × 0.12 × 0.08 mm
V = 680.9 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2437 independent reflections
Radiation source: fine-focus sealed tube2258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)'
h = 99
Tmin = 0.866, Tmax = 0.943k = 911
4042 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0912P)2 + 0.8P]
where P = (Fo2 + 2Fc2)/3
2437 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.55 e Å3
9 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Ni(C12H8N5)2(H2O)4]·2H2Oγ = 96.47 (3)°
Mr = 611.25V = 680.9 (2) Å3
Triclinic, P1Z = 1
a = 8.2240 (16) ÅMo Kα radiation
b = 9.1990 (18) ŵ = 0.77 mm1
c = 9.3850 (19) ÅT = 293 K
α = 90.70 (3)°0.20 × 0.12 × 0.08 mm
β = 104.96 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2437 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)'
2258 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.943Rint = 0.040
4042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0529 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.55 e Å3
2437 reflectionsΔρmin = 0.85 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.50000.0217 (2)
C10.2767 (4)0.3042 (4)0.6004 (4)0.0291 (7)
H10.32560.38140.66830.035*
C20.3637 (5)0.1847 (4)0.5989 (4)0.0347 (8)
H20.46790.18060.66630.042*
C30.2938 (4)0.0712 (4)0.4959 (4)0.0299 (8)
H30.35080.01000.49280.036*
C40.1385 (4)0.0799 (3)0.3976 (3)0.0211 (6)
C50.0578 (4)0.2022 (3)0.4086 (3)0.0235 (7)
H5A0.04800.20780.34400.028*
C60.0580 (4)0.0361 (3)0.2837 (3)0.0214 (6)
C70.1047 (4)0.1550 (3)0.1011 (3)0.0231 (7)
C80.2408 (4)0.2007 (4)0.0305 (4)0.0270 (7)
C90.2480 (5)0.3324 (4)0.1091 (4)0.0382 (9)
H9A0.16430.39380.07850.046*
C100.3798 (6)0.3703 (5)0.2319 (5)0.0480 (11)
H10A0.38040.45700.28410.058*
C110.4989 (5)0.1649 (5)0.2061 (4)0.0428 (10)
H11A0.58630.10740.23790.051*
C120.3699 (5)0.1149 (4)0.0848 (4)0.0363 (8)
H12A0.36890.02420.03950.044*
N10.1255 (4)0.3132 (3)0.5083 (3)0.0253 (6)
N20.0797 (3)0.0233 (3)0.1726 (3)0.0243 (6)
N30.1159 (4)0.1651 (3)0.2840 (3)0.0263 (6)
N40.0088 (4)0.2439 (3)0.1640 (3)0.0276 (6)
N50.5067 (4)0.2906 (4)0.2810 (4)0.0442 (9)
O10.2181 (3)0.6258 (3)0.4839 (3)0.0321 (6)
O20.0796 (4)0.5155 (3)0.7297 (3)0.0353 (6)
O30.8076 (4)0.2539 (3)0.0662 (3)0.0405 (7)
H1A0.302 (4)0.650 (5)0.555 (3)0.059 (15)*
H2A0.122 (5)0.580 (3)0.796 (4)0.043 (12)*
H3A0.850 (8)0.182 (5)0.103 (6)0.12 (3)*
H1B0.210 (5)0.695 (3)0.427 (4)0.043 (12)*
H2B0.051 (6)0.440 (3)0.771 (4)0.049 (13)*
H3B0.836 (7)0.274 (5)0.009 (4)0.069 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0260 (4)0.0160 (3)0.0190 (3)0.0037 (2)0.0020 (2)0.0023 (2)
C10.0293 (18)0.0210 (17)0.0308 (18)0.0002 (13)0.0018 (15)0.0049 (13)
C20.0247 (18)0.031 (2)0.040 (2)0.0061 (14)0.0065 (15)0.0046 (15)
C30.0285 (18)0.0260 (18)0.0344 (19)0.0079 (14)0.0048 (15)0.0010 (14)
C40.0249 (16)0.0183 (16)0.0203 (15)0.0011 (12)0.0068 (13)0.0007 (12)
C50.0241 (17)0.0199 (16)0.0223 (16)0.0026 (12)0.0016 (13)0.0007 (12)
C60.0260 (16)0.0171 (15)0.0211 (15)0.0023 (12)0.0062 (13)0.0001 (12)
C70.0277 (17)0.0209 (16)0.0197 (16)0.0004 (12)0.0054 (13)0.0008 (12)
C80.0285 (18)0.0289 (18)0.0218 (16)0.0021 (14)0.0057 (14)0.0005 (13)
C90.038 (2)0.032 (2)0.036 (2)0.0010 (16)0.0030 (17)0.0087 (16)
C100.049 (3)0.051 (3)0.035 (2)0.005 (2)0.0004 (19)0.0144 (18)
C110.031 (2)0.052 (3)0.039 (2)0.0002 (17)0.0001 (17)0.0073 (18)
C120.033 (2)0.038 (2)0.034 (2)0.0034 (16)0.0022 (16)0.0022 (16)
N10.0311 (15)0.0184 (14)0.0242 (14)0.0033 (11)0.0031 (12)0.0016 (11)
N20.0275 (15)0.0193 (14)0.0239 (14)0.0022 (11)0.0030 (12)0.0017 (11)
N30.0363 (16)0.0175 (14)0.0217 (14)0.0035 (11)0.0015 (12)0.0013 (10)
N40.0356 (16)0.0224 (15)0.0203 (14)0.0040 (12)0.0009 (12)0.0031 (11)
N50.0390 (19)0.054 (2)0.0289 (17)0.0109 (16)0.0033 (14)0.0008 (15)
O10.0298 (13)0.0263 (13)0.0320 (14)0.0000 (10)0.0057 (11)0.0068 (11)
O20.0554 (17)0.0220 (14)0.0216 (12)0.0001 (12)0.0001 (12)0.0005 (10)
O30.0514 (18)0.0363 (16)0.0345 (15)0.0052 (13)0.0128 (14)0.0034 (12)
Geometric parameters (Å, º) top
Ni1—O1i2.063 (3)C7—N21.347 (4)
Ni1—O12.063 (3)C7—C81.456 (5)
Ni1—O22.083 (2)C8—C121.389 (5)
Ni1—O2i2.083 (2)C8—C91.398 (5)
Ni1—N12.094 (3)C9—C101.373 (6)
Ni1—N1i2.094 (3)C9—H9A0.9300
C1—N11.330 (4)C10—N51.331 (6)
C1—C21.379 (5)C10—H10A0.9300
C1—H10.9300C11—N51.333 (5)
C2—C31.381 (5)C11—C121.373 (5)
C2—H20.9300C11—H11A0.9300
C3—C41.380 (5)C12—H12A0.9300
C3—H30.9300N3—N41.376 (4)
C4—C51.385 (4)O1—H1A0.836 (19)
C4—C61.472 (4)O1—H1B0.830 (18)
C5—N11.345 (4)O2—H2A0.828 (18)
C5—H5A0.9300O2—H2B0.836 (19)
C6—N31.327 (4)O3—H3A0.82 (5)
C6—N21.344 (4)O3—H3B0.81 (4)
C7—N41.337 (4)
O1i—Ni1—O1180.00 (15)N4—C7—N2113.1 (3)
O1i—Ni1—O288.62 (11)N4—C7—C8121.9 (3)
O1—Ni1—O291.38 (11)N2—C7—C8125.0 (3)
O1i—Ni1—O2i91.38 (11)C12—C8—C9116.5 (3)
O1—Ni1—O2i88.62 (11)C12—C8—C7121.6 (3)
O2—Ni1—O2i180.0C9—C8—C7121.9 (3)
O1i—Ni1—N190.86 (11)C10—C9—C8119.4 (4)
O1—Ni1—N189.14 (11)C10—C9—H9A120.3
O2—Ni1—N187.82 (11)C8—C9—H9A120.3
O2i—Ni1—N192.18 (11)N5—C10—C9124.1 (4)
O1i—Ni1—N1i89.14 (11)N5—C10—H10A118.0
O1—Ni1—N1i90.86 (11)C9—C10—H10A118.0
O2—Ni1—N1i92.18 (11)N5—C11—C12124.1 (4)
O2i—Ni1—N1i87.82 (11)N5—C11—H11A117.9
N1—Ni1—N1i180.000 (1)C12—C11—H11A117.9
N1—C1—C2122.5 (3)C11—C12—C8119.5 (4)
N1—C1—H1118.7C11—C12—H12A120.2
C2—C1—H1118.7C8—C12—H12A120.2
C1—C2—C3119.1 (3)C1—N1—C5118.1 (3)
C1—C2—H2120.5C1—N1—Ni1122.7 (2)
C3—C2—H2120.5C5—N1—Ni1118.9 (2)
C4—C3—C2119.2 (3)C6—N2—C7101.9 (3)
C4—C3—H3120.4C6—N3—N4105.3 (3)
C2—C3—H3120.4C7—N4—N3105.8 (3)
C3—C4—C5118.1 (3)C10—N5—C11116.3 (3)
C3—C4—C6122.0 (3)Ni1—O1—H1A125 (3)
C5—C4—C6119.9 (3)Ni1—O1—H1B119 (3)
N1—C5—C4122.9 (3)H1A—O1—H1B107 (3)
N1—C5—H5A118.5Ni1—O2—H2A138 (3)
C4—C5—H5A118.5Ni1—O2—H2B114 (3)
N3—C6—N2114.0 (3)H2A—O2—H2B107 (3)
N3—C6—C4121.9 (3)H3A—O3—H3B111 (3)
N2—C6—C4124.1 (3)
N1—C1—C2—C31.6 (6)C4—C5—N1—C10.1 (5)
C1—C2—C3—C40.3 (5)C4—C5—N1—Ni1174.5 (2)
C2—C3—C4—C51.0 (5)O1i—Ni1—N1—C1129.6 (3)
C2—C3—C4—C6179.1 (3)O1—Ni1—N1—C150.4 (3)
C3—C4—C5—N11.3 (5)O2—Ni1—N1—C141.0 (3)
C6—C4—C5—N1178.8 (3)O2i—Ni1—N1—C1139.0 (3)
C3—C4—C6—N311.2 (5)O1i—Ni1—N1—C556.0 (2)
C5—C4—C6—N3168.7 (3)O1—Ni1—N1—C5124.0 (2)
C3—C4—C6—N2169.8 (3)O2—Ni1—N1—C5144.6 (2)
C5—C4—C6—N210.3 (5)O2i—Ni1—N1—C535.4 (2)
N4—C7—C8—C12172.1 (3)N3—C6—N2—C70.4 (4)
N2—C7—C8—C127.2 (5)C4—C6—N2—C7179.4 (3)
N4—C7—C8—C98.3 (5)N4—C7—N2—C60.5 (4)
N2—C7—C8—C9172.4 (3)C8—C7—N2—C6179.8 (3)
C12—C8—C9—C100.7 (6)N2—C6—N3—N40.1 (4)
C7—C8—C9—C10179.7 (4)C4—C6—N3—N4179.2 (3)
C8—C9—C10—N51.7 (7)N2—C7—N4—N30.5 (4)
N5—C11—C12—C82.7 (6)C8—C7—N4—N3179.8 (3)
C9—C8—C12—C112.8 (5)C6—N3—N4—C70.2 (3)
C7—C8—C12—C11177.6 (3)C9—C10—N5—C112.0 (6)
C2—C1—N1—C51.3 (5)C12—C11—N5—C100.2 (6)
C2—C1—N1—Ni1175.7 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N5ii0.83 (2)1.92 (3)2.751 (4)179 (3)
O1—H1B···N3iii0.83 (3)1.95 (3)2.750 (4)162 (3)
O2—H2A···O3iv0.83 (3)1.93 (3)2.751 (4)171 (3)
O2—H2B···N4v0.84 (3)1.96 (3)2.791 (4)169 (3)
O3—H3A···N2vi0.82 (5)2.10 (5)2.911 (4)170 (3)
O3—H3B···N4vii0.82 (4)2.20 (5)2.944 (4)151 (3)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y, z+1; (vi) x+1, y, z; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C12H8N5)2(H2O)4]·2H2O
Mr611.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2240 (16), 9.1990 (18), 9.3850 (19)
α, β, γ (°)90.70 (3), 104.96 (3), 96.47 (3)
V3)680.9 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.20 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)'
Tmin, Tmax0.866, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
4042, 2437, 2258
Rint0.040
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.150, 0.99
No. of reflections2437
No. of parameters211
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.85

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N5i0.83 (2)1.92 (3)2.751 (4)179 (3)
O1—H1B···N3ii0.83 (3)1.95 (3)2.750 (4)162 (3)
O2—H2A···O3iii0.83 (3)1.93 (3)2.751 (4)171 (3)
O2—H2B···N4iv0.84 (3)1.96 (3)2.791 (4)169 (3)
O3—H3A···N2v0.82 (5)2.10 (5)2.911 (4)170 (3)
O3—H3B···N4vi0.82 (4)2.20 (5)2.944 (4)151 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x+1, y, z; (vi) x+1, y, z.
 

Acknowledgements

We acknowledge financial support from the Foundation of Shaoyang Medical College (grant No. XK200804) and the Science & Technology Foundation of Shaoyang (grant Nos. 56 J08 & J0966)

References

First citationBeatty, A. M. (2003). Coord. Chem. Rev. 246, 131–143.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeisenhofer, J. & Michel, H. (1989). EMBO J. 8, 2149–2154.  CAS PubMed Web of Science Google Scholar
First citationLi, F., Su, T.-H., Gao, W. & Cao, R. (2006). Eur. J. Inorg. Chem. pp. 1582–1587.  Web of Science CSD CrossRef Google Scholar
First citationLiu, N., Wang, Y.-Q., Gao, E.-Q., Chen, Z.-X. & Weng, L.-H. (2008). CrystEngComm, 10, 915–922.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, T.-L. & Zhang, Y.-L. (2009). Acta Cryst. E65, m913.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRarig, R. S. & Zubieta, J. J. (2001). J. Chem. Soc. Dalton Trans. pp. 3446–3452.  Google Scholar
First citationRussell, V. A. & Ward, M. D. (1996). Chem. Mater. 8, 1654–1666.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds