metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-(Propane-1,3-di­yl)dipyridinium tetra­chloridonickelate(II)

aDepartment of Chemistry, Luoyang Normal University, Luoyang, Henan 471022, People's Republic of China, and bDepartment of Chemical Engineering and Environmental Engineering, Jiaozuo University, Jiaozuo, Henan 450042, People's Republic of China
*Correspondence e-mail: dzx6281@126.com

(Received 3 November 2009; accepted 17 November 2009; online 21 November 2009)

The title compound, (C13H16N2)[NiCl4] or (H2bpp)·NiCl4 [bpp is 1,3-bis­(4-pyrid­yl)propane], is isostructural with its already reported Cu, Zn and Hg analogues. The structure consists of a doubly charged (H2bpp)2+ cation and a tetra­hedral [NiCl4]2− dianion. Both pyridyl N atoms are protonated and form a (H2bpp)2+ cation which adopts an antianti conformation with a dihedral angle of 6.287 (7)° between the pyridyl rings. The two pyridyl N atoms are both involved in strong N—H⋯Cl hydrogen bonds, which link both units into a dimer.

Related literature

For the isostructural Cu, Zn and Hg analogues, see: Kao & Chen (2004[Kao, Y.-C. & Chen, J.-D. (2004). Struct. Chem. 15, 269-276.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H16N2)[NiCl4]

  • Mr = 400.79

  • Monoclinic, P 21 /n

  • a = 7.2358 (7) Å

  • b = 20.773 (2) Å

  • c = 11.1246 (11) Å

  • β = 90.627 (1)°

  • V = 1672.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.79 mm−1

  • T = 294 K

  • 0.36 × 0.25 × 0.24 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.565, Tmax = 0.673

  • 12584 measured reflections

  • 3107 independent reflections

  • 2556 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.045

  • S = 1.90

  • 3107 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.43 3.150 (2) 142
N2—H2A⋯Cl3ii 0.86 2.25 3.114 (2) 178
Symmetry codes: (i) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title complex (I) is isostructural with its analogues (H2bpp).CuCl4 and (H2bpp).MCl4.H2O(M = Zn, Hg)(Kao and Chen, 2004), whose structures have been described in detail. The structure consists of a doubly charged (H2bpp)2+ cation and a tetrahedral NiCl42- dianion (Figure 1). Both pyridyl N atoms are protonated and form a (H2bpp)2+ cation, which adopts an anti-anti conformations with a dihedral angle of 6.287° between the two pyridyl rings. The two pyridyl N atoms are both involved in strong N—H···Cl hydrogen bonds (Table 1) and link both units into a dimer (Figure 2).

Related literature top

For the isostructural Cu, Zn and Hg analogues, see: Kao & Chen (2004).

Experimental top

NiCl2.6H2O (1.0 mmol, 0.237 g), bpp (1.0 mmol, 0.198 g) and oxydiacetatic acid (1.0 mmol, 0.134 g) were dissolved in 20 ml of methanol-H2O (v/v, 1:3). Then the mixture was sealed in a 25 mL Teflon reactor and kept under autogeneous pressure at 403 K for 5 days. After cooling to room temperature at a rate of 6°C.h-1, blue block shaped crystals suitable for X-ray diffraction were grown from the filtrate by slow evaporation. Yield: 200 mg (50% based on Ni). Anal. Calcd for C13H16Cl4N2Ni(%): C, 38.92; H, 3.99; N, 6.98. Found: C, 38.85; H, 4.03; N, 6.85. CCDC 752249.

Refinement top

H atoms bonded to C and N atoms were positioned geometrically with C—H distance 0.93–0.97Å and N—H distances of 0.8600 Å, and treated as riding atoms, with Uiso(H)=1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The dimer of (I) formed by N—H···Cl hydrogen bonds showing as dashed lines.
4,4'-(Propane-1,3-diyl)dipyridinium tetrachloridonickelate(II) top
Crystal data top
(C13H16N2)[NiCl4]F(000) = 816
Mr = 400.79Dx = 1.592 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3858 reflections
a = 7.2358 (7) Åθ = 2.7–25.6°
b = 20.773 (2) ŵ = 1.79 mm1
c = 11.1246 (11) ÅT = 294 K
β = 90.627 (1)°Block, blue
V = 1672.1 (3) Å30.36 × 0.25 × 0.24 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3107 independent reflections
Radiation source: fine-focus sealed tube2556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.565, Tmax = 0.673k = 2425
12584 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.90 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
3107 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
(C13H16N2)[NiCl4]V = 1672.1 (3) Å3
Mr = 400.79Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2358 (7) ŵ = 1.79 mm1
b = 20.773 (2) ÅT = 294 K
c = 11.1246 (11) Å0.36 × 0.25 × 0.24 mm
β = 90.627 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3107 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2556 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 0.673Rint = 0.026
12584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.045H-atom parameters constrained
S = 1.90Δρmax = 0.36 e Å3
3107 reflectionsΔρmin = 0.45 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9569 (3)0.39288 (13)0.4993 (2)0.0604 (7)
H10.99400.43310.52720.073*
C20.7956 (3)0.38678 (11)0.4357 (2)0.0534 (7)
H20.72260.42280.42040.064*
C30.7409 (3)0.32701 (11)0.3941 (2)0.0425 (6)
C40.8519 (3)0.27500 (12)0.4223 (2)0.0546 (7)
H40.81660.23400.39760.066*
C51.0119 (4)0.28295 (13)0.4855 (2)0.0611 (7)
H51.08620.24760.50340.073*
C60.5730 (3)0.31581 (10)0.3173 (2)0.0544 (7)
H6A0.50050.28210.35460.065*
H6B0.61350.29950.24030.065*
C70.4473 (3)0.37229 (10)0.2940 (2)0.0462 (6)
H7A0.51570.40640.25480.055*
H7B0.40190.38880.36970.055*
C80.2851 (3)0.35192 (10)0.2146 (2)0.0472 (6)
H8A0.33400.33560.13970.057*
H8B0.22270.31650.25390.057*
C90.1435 (3)0.40250 (11)0.1848 (2)0.0403 (6)
C100.0087 (3)0.38588 (11)0.1149 (2)0.0497 (7)
H100.01940.34420.08530.060*
C110.1429 (3)0.42979 (12)0.0891 (2)0.0551 (7)
H110.24540.41800.04290.066*
C120.0190 (3)0.50868 (12)0.1949 (2)0.0594 (7)
H120.02740.55110.22130.071*
C130.1564 (3)0.46566 (11)0.2227 (2)0.0519 (7)
H130.25890.47910.26730.062*
Cl10.06721 (8)0.21383 (3)0.12980 (6)0.05653 (19)
Cl20.12187 (9)0.05327 (3)0.13195 (6)0.05657 (19)
Cl30.06868 (9)0.09147 (3)0.42665 (6)0.0606 (2)
Cl40.29570 (8)0.16495 (3)0.30041 (6)0.0633 (2)
N11.0614 (3)0.34138 (11)0.52139 (17)0.0574 (6)
H1A1.16410.34620.56010.069*
N20.1267 (3)0.48968 (10)0.13015 (19)0.0558 (6)
H2A0.21300.51700.11430.067*
Ni10.01874 (4)0.129429 (13)0.24398 (3)0.03832 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0602 (19)0.0548 (17)0.066 (2)0.0016 (15)0.0134 (15)0.0003 (15)
C20.0527 (17)0.0443 (15)0.0628 (18)0.0060 (12)0.0155 (14)0.0009 (13)
C30.0421 (15)0.0413 (14)0.0441 (15)0.0019 (11)0.0031 (12)0.0036 (12)
C40.0569 (17)0.0454 (15)0.0613 (18)0.0086 (13)0.0117 (14)0.0033 (14)
C50.0621 (19)0.0602 (19)0.0610 (19)0.0188 (15)0.0051 (15)0.0026 (16)
C60.0508 (17)0.0451 (15)0.0669 (19)0.0019 (12)0.0131 (14)0.0016 (14)
C70.0389 (14)0.0463 (14)0.0533 (16)0.0002 (12)0.0049 (12)0.0005 (13)
C80.0482 (16)0.0417 (14)0.0515 (16)0.0019 (12)0.0069 (12)0.0035 (12)
C90.0373 (14)0.0404 (14)0.0433 (15)0.0034 (11)0.0009 (11)0.0003 (12)
C100.0482 (16)0.0410 (15)0.0597 (18)0.0033 (12)0.0107 (13)0.0013 (13)
C110.0455 (16)0.0567 (17)0.0627 (19)0.0034 (14)0.0103 (13)0.0016 (15)
C120.0577 (18)0.0470 (16)0.073 (2)0.0026 (14)0.0017 (15)0.0097 (15)
C130.0435 (15)0.0476 (15)0.0643 (18)0.0020 (12)0.0090 (13)0.0059 (14)
Cl10.0603 (4)0.0411 (4)0.0678 (5)0.0059 (3)0.0164 (3)0.0108 (3)
Cl20.0692 (5)0.0397 (4)0.0607 (4)0.0071 (3)0.0095 (3)0.0059 (3)
Cl30.0596 (4)0.0696 (5)0.0525 (4)0.0197 (3)0.0093 (3)0.0093 (4)
Cl40.0462 (4)0.0542 (4)0.0892 (5)0.0103 (3)0.0145 (4)0.0059 (4)
N10.0438 (14)0.0767 (16)0.0514 (14)0.0044 (12)0.0110 (11)0.0038 (13)
N20.0462 (14)0.0540 (14)0.0671 (16)0.0139 (11)0.0006 (11)0.0067 (12)
Ni10.03720 (18)0.03082 (16)0.04678 (19)0.00285 (13)0.00648 (13)0.00183 (15)
Geometric parameters (Å, º) top
C1—N11.332 (3)C8—H8A0.9700
C1—C21.364 (3)C8—H8B0.9700
C1—H10.9300C9—C131.381 (3)
C2—C31.381 (3)C9—C101.385 (3)
C2—H20.9300C10—C111.361 (3)
C3—C41.380 (3)C10—H100.9300
C3—C61.496 (3)C11—N21.330 (3)
C4—C51.358 (3)C11—H110.9300
C4—H40.9300C12—N21.330 (3)
C5—N11.326 (3)C12—C131.370 (3)
C5—H50.9300C12—H120.9300
C6—C71.505 (3)C13—H130.9300
C6—H6A0.9700Cl1—Ni12.2487 (6)
C6—H6B0.9700Cl2—Ni12.2503 (6)
C7—C81.521 (3)Cl3—Ni12.2760 (7)
C7—H7A0.9700Cl4—Ni12.2198 (7)
C7—H7B0.9700N1—H1A0.8600
C8—C91.502 (3)N2—H2A0.8600
N1—C1—C2120.2 (2)C9—C8—H8B108.1
N1—C1—H1119.9C7—C8—H8B108.1
C2—C1—H1119.9H8A—C8—H8B107.3
C1—C2—C3119.8 (2)C13—C9—C10117.3 (2)
C1—C2—H2120.1C13—C9—C8123.6 (2)
C3—C2—H2120.1C10—C9—C8119.1 (2)
C4—C3—C2117.6 (2)C11—C10—C9120.9 (2)
C4—C3—C6118.3 (2)C11—C10—H10119.6
C2—C3—C6124.0 (2)C9—C10—H10119.6
C5—C4—C3120.9 (2)N2—C11—C10119.6 (2)
C5—C4—H4119.6N2—C11—H11120.2
C3—C4—H4119.6C10—C11—H11120.2
N1—C5—C4119.6 (2)N2—C12—C13119.8 (2)
N1—C5—H5120.2N2—C12—H12120.1
C4—C5—H5120.2C13—C12—H12120.1
C3—C6—C7117.56 (19)C12—C13—C9120.3 (2)
C3—C6—H6A107.9C12—C13—H13119.9
C7—C6—H6A107.9C9—C13—H13119.9
C3—C6—H6B107.9C5—N1—C1121.9 (2)
C7—C6—H6B107.9C5—N1—H1A119.1
H6A—C6—H6B107.2C1—N1—H1A119.1
C6—C7—C8110.12 (18)C12—N2—C11122.0 (2)
C6—C7—H7A109.6C12—N2—H2A119.0
C8—C7—H7A109.6C11—N2—H2A119.0
C6—C7—H7B109.6Cl4—Ni1—Cl198.27 (2)
C8—C7—H7B109.6Cl4—Ni1—Cl2142.34 (3)
H7A—C7—H7B108.2Cl1—Ni1—Cl296.59 (3)
C9—C8—C7116.96 (19)Cl4—Ni1—Cl396.98 (3)
C9—C8—H8A108.1Cl1—Ni1—Cl3134.16 (3)
C7—C8—H8A108.1Cl2—Ni1—Cl397.04 (3)
N1—C1—C2—C30.1 (4)C7—C8—C9—C10178.6 (2)
C1—C2—C3—C41.8 (4)C13—C9—C10—C112.5 (4)
C1—C2—C3—C6176.1 (2)C8—C9—C10—C11178.0 (2)
C2—C3—C4—C52.0 (4)C9—C10—C11—N20.8 (4)
C6—C3—C4—C5176.0 (2)N2—C12—C13—C90.7 (4)
C3—C4—C5—N10.5 (4)C10—C9—C13—C122.4 (4)
C4—C3—C6—C7176.3 (2)C8—C9—C13—C12178.1 (2)
C2—C3—C6—C75.9 (4)C4—C5—N1—C11.3 (4)
C3—C6—C7—C8179.9 (2)C2—C1—N1—C51.5 (4)
C6—C7—C8—C9178.7 (2)C13—C12—N2—C111.1 (4)
C7—C8—C9—C131.8 (3)C10—C11—N2—C121.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.433.150 (2)142
N2—H2A···Cl3ii0.862.253.114 (2)178
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C13H16N2)[NiCl4]
Mr400.79
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)7.2358 (7), 20.773 (2), 11.1246 (11)
β (°) 90.627 (1)
V3)1672.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.36 × 0.25 × 0.24
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.565, 0.673
No. of measured, independent and
observed [I > 2σ(I)] reflections
12584, 3107, 2556
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.045, 1.90
No. of reflections3107
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.45

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.86002.42963.150 (2)141.67
N2—H2A···Cl3ii0.86002.25403.114 (2)177.85
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 20471026 and 20331010) and the Natural Science Foundation of Henan province (No. 0311021200).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKao, Y.-C. & Chen, J.-D. (2004). Struct. Chem. 15, 269–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds