organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3E,5E)-3,5-Bis(4-allyl­oxybenzyl­­idene)-1-benzyl­piperidin-4-one

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632014, India, bPhysics Division, School of Science and Humanities, VIT University, Vellore 632014, India, and cBioinformatics Infrastructure Facility, Department of Biotechnology, School of Life Science, University of Hyderabad, Hyderabad 500 046, India
*Correspondence e-mail: ravindranath_rathore@yahoo.com

(Received 23 October 2009; accepted 5 November 2009; online 11 November 2009)

In the title compound C32H31NO3, the all­yloxy groups on either side of the piperidin-4-one ring are conformationally disordered. The contribution of major and minor components of the allyloxy group at the 3rd position of the ring are 0.576 (4) and 0.424 (4), respectively, and those at the 5th position are 0.885 (3) and 0.115 (3), respectively. The six-membered piperidin-4-one ring adopts a sofa conformation with the benzyl group occupying an equatorial position and the olefinic double bonds possessing an E configuration. Flanking phenyl substituents are stretched out on either side of the six-membered ring. ππ inter­actions with a centroid–centroid distance of 3.885 (1) Å give rise to mol­ecular dimers and short C—H⋯π contacts lead to chains along the c axis.

Related literature

For related structures, see: Suresh et al. (2007[Suresh, J., Suresh Kumar, R., Perumal, S. & Natarajan, S. (2007). Acta Cryst. C63, o315-o318.]); Rathore et al. (2009[Rathore, R. S., Karthikeyan, N. S., Sathiyanarayanan, K. & Aravindan, P. G. (2009). Acta Cryst. E65, o2667.]); Karthikeyan et al. (2009[Karthikeyan, N. S., Sathiyanarayanan, K., Aravindan, P. G. & Rathore, R. S. (2009). Acta Cryst. E65, o2775.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C32H31NO3

  • Mr = 477.58

  • Monoclinic, P 21 /c

  • a = 15.6161 (4) Å

  • b = 9.2654 (2) Å

  • c = 18.9696 (5) Å

  • β = 111.031 (1)°

  • V = 2561.87 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.33 × 0.29 × 0.27 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.896, Tmax = 0.964

  • 26042 measured reflections

  • 5029 independent reflections

  • 3882 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.01

  • 5029 reflections

  • 342 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg4i 0.93 2.97 3.8089 (19) 151
C33—H33BCg2ii 0.93 2.86 3.771 (4) 165
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z. Cg2 is the centroid of the C8–C13 ring and Cg4 is the centroid of the C22–C27 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Derivatives of 3,5-diarylidene-4-piperidones (D4P) are pharmaceutically important compounds. We have synthesized a series of such compounds and investigated structures (Rathore et al., 2009; Karthikeyan et al., 2009). In continuation of this work, the title compound (3E,5E)-1-benzyl-3,5-bis(4-allyloxybenzylidene)piperidin-4-one, (I), has been synthesized and discussed here.

The structure of (I) with adopted atom-numbering scheme is shown in Fig 1. Phenyl substituents at the 3rd and 5t h positions of the piperidinone ring (also called piperidone; atoms N1/C2—C6) are stretched out on either side. The characteristic extended structure of flanking phenyl substituents is a common observation among previously reported analogous compounds: (R)-3,5-bis[(E)-benzylidene]-1-(1-phenylethyl)piperidin-4-one, 3,5-bis[(E)-4-chlorobenzylidene]-1-[(R)-1-phenylethyl]piperidin-4-one, and 3,5-bis[(E)-2-chlorobenzylidene]-1-[(R)-1-phenylethyl]piperidin-4-one (Suresh et al., 2007), (3E,5E)-1-benzyl-3,5-bis(2-fluorobenzylidene)piperidin-4-one (Rathore et al., 2009) and (3E,5E)-1-benzyl-3,5-dibenzylidenepiperidin-4-one (Karthikeyan et al., 2009). The related torsion angles corresponding to phenyl substituents in (I) are as follows: C4—C3—C14—C15 = 173.76 (13)°, C3—C14—C15—C16 = 156.02 (15)°, C4—C5—C21—C22 = -179.52 (14)° and C5—C21—C22—C23 = -163.22 (16)°. C3, C5 olefinic double bonds have E configuration. The aromatic rings (C15—C20; C22—C27) of the phenyl substituents are significantly non-coplanar having an interplanar angle of 21.8 (1)°. The corresponding values are 3.29 (7)° and 41.2 (1)° in 3E,5E)-1-benzyl-3,5-bis(2-fluorobenzylidene)piperidin-4-one and (3E,5E)-1-benzyl-3,5-dibenzylidenepiperidin-4-one), respectively (Rathore et al., 2009; Karthikeyan et al., 2009).

In the piperidinone ring, the sp2 hybridized C3/C4/C5 leads to a low-energy sofa conformation of the six-membered ring, as also observed in the structures of related compounds (Suresh et al., 2007; Rathore et al., 2009; Karthikeyan et al., 2009). In the sofa conformation, the N1 atom is -0.779 (1)Å shifted out of the base plane (C2/C3/C4/C5/C6). Ring puckering parameters (Cremer & Pople, 1975) for the atomic sequence (N1/C2/C3/C4/C5/C6) are as follows: q2 = 0.5544 (15) Å, q3 = 0.2301 (15) Å, ϕ = 5.60 (16)°, θ = 67.46 (14)°, and the total puckering amplitude Q = 0.6002 (15) Å. The benzyl group (C7—C13) at the 1st position is disposed towards C3-substituent and occupies an equatorial position of the piperidinone ring. The related torsion angles, describing its conformation are as follows: C2—N1—C7—C8 = -72.97 (16)°, N1—C7—C8—C9 = 156.00 (14)°.

The geometric parameters for observed short contacts are listed in Table 1. The characteristic intra-molecular interaction scheme, involving carbonyl and amino groups of piperidinone (Rathore et al., 2009; Karthikeyan et al., 2009) is also observed in (I). H14 and H21 participate in a contiguous intra-molecular C14—H14···O1···H21—C21 interaction scheme and proton H13 of C1-benzyl substituent participate in C13—H13···N1 (Fig. 1). Significant π-π interactions were observed. Cg2 (the centroid of C8—C13 ring) makes a parallel π-π interaction with Cg2ii of inversion-related molecule [symmetry code(ii): 1 - x, -y, 1 - z] with a centroid-centroid distance of 3.885 (1) Å, a perpendicular distance of 3.5241 (8) Å, and a slippage of 1.635 Å. The π-π interaction between molecules gives rise to a molecular dimer (Fig 2). Packing is also characterized by short intermolecular C—H···O and C—H···π contacts (Table 1). Notably among them is C9—H9···Cg4i that generate a linear chain parallel to c axis as shown in Fig. 3. Cg4 is the centroid of (C22—C27) ring.

Related literature top

For related structures, see: Suresh et al. (2007); Rathore et al. (2009); Karthikeyan et al. (2009). For ring puckering parameters, see: Cremer & Pople (1975). Cg2 is the centroid of the C8–C13 ring and Cg4 is the centroid of the C22–C27 ring.

Experimental top

A mixture of 1-benzyl-4-piperidone (0.01 mol) and 4-allyloxybenzaldehyde (0.02 mol) was added to a warm solution of ammonium acetate (0.01 mol) in absolute ethanol (15 ml). The mixture was gradually warmed on a water bath until the yellow color changed to orange. The mixture was kept aside overnight at room temperature. Reactions were monitored with TLC for completeness. The solid obtained was separated and the crude compound was purified using silica gel column chromatography with hexane and ethyl acetate as eluant. Final yields: 90.80%; m.p. 388 (1)°K. Suitable single crystals for data collection were grown from ethanol and tetrahydrofuran mixture.

Refinement top

The p-allyloxy groups (O2/C28—C30) and (O3/C31—C33) exhibit conformational disorder. The contribution of major and minor components are as follows: allyloxy group in the phenyl substituent at the 3rd position - (C28/C29/C30), 0.576 (4), (C28/C29'/C30'), 0.424 (4); those at 5t h position - (C31/C32/C33), 0.885 (3), (C31'/C32'/C33'), 0.115 (3). The corresponding atoms in the disordered groups were assigned the same equivalent isotropic displacement parameter. The reflection (1,0,0) was omitted as it was affected by extinction or absorption. Hydrogen atoms were placed in their stereochemically expected positions and refined with the riding options. The distances with hydrogen atoms are: C(aromatic/sp2)—H = 0.93 Å, C(methylene)—H = 0.97 Å, and Uiso = 1.2 Ueq(parent).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with non-H atoms shown as probability ellipsoids at 30% levels (Farrugia, 1997). H atoms radii are on an arbitrary scale and those connected to disordered components are omitted for clarity. The minor components of disordered group are shown in gray color. Dashed lines indicate intra-molecular interactions or bonds associated with disordered minor component.
[Figure 2] Fig. 2. Molecular dimers via π-π interactions. Cg2 is the centroid of (C8—C13) ring. Symmetry code (i): 1 - x, -y, 1 - z.
[Figure 3] Fig. 3. A one-dimensional chain via C—H···π short contact. (see Table 1 for symmetry code). Cg4 is the centroid of (C22—C27) ring.
(3E,5E)-3,5-Bis(4-allyloxybenzylidene)-1-benzylpiperidin-4-one top
Crystal data top
C32H31NO3F(000) = 1016
Mr = 477.58Dx = 1.238 Mg m3
Monoclinic, P21/cMelting point: 388(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.6161 (4) ÅCell parameters from 9748 reflections
b = 9.2654 (2) Åθ = 2.2–28.2°
c = 18.9696 (5) ŵ = 0.08 mm1
β = 111.031 (1)°T = 295 K
V = 2561.87 (11) Å3Block, yellow
Z = 40.33 × 0.29 × 0.27 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5029 independent reflections
Radiation source: fine-focus sealed tube3882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1919
Tmin = 0.896, Tmax = 0.964k = 1111
26042 measured reflectionsl = 2123
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.7272P]
where P = (Fo2 + 2Fc2)/3
5029 reflections(Δ/σ)max = 0.001
342 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C32H31NO3V = 2561.87 (11) Å3
Mr = 477.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.6161 (4) ŵ = 0.08 mm1
b = 9.2654 (2) ÅT = 295 K
c = 18.9696 (5) Å0.33 × 0.29 × 0.27 mm
β = 111.031 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5029 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3882 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.964Rint = 0.027
26042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.17 e Å3
5029 reflectionsΔρmin = 0.19 e Å3
342 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for

============================================================================

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = 0.63145(0.00057) m2 = 0.53630(0.00051) m3 = -0.56005(0.00052) D = 2.64782(0.00814) Atom d s d/s (d/s)**2 C15 * 0.0025 0.0014 1.710 2.924 C16 * 0.0037 0.0016 2.339 5.471 C17 * -0.0099 0.0017 - 5.814 33.804 C18 * 0.0074 0.0016 4.481 20.083 C19 * -0.0002 0.0016 - 0.120 0.014 C20 * -0.0048 0.0016 - 3.021 9.124 O2 0.0675 0.0013 52.104 2714.813 C14 0.1183 0.0014 81.779 6687.801 C28 0.2295 0.0022 106.646 11373.305 ============ Sum((d/s)**2) for starred atoms 71.420 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 2 m1 = 0.56481(0.00057) m2 = 0.77772(0.00043) m3 = -0.27594(0.00064) D = 3.26621(0.00176) Atom d s d/s (d/s)**2 C22 * -0.0163 0.0015 - 10.629 112.976 C23 * 0.0112 0.0016 6.834 46.705 C24 * 0.0078 0.0018 4.420 19.537 C25 * -0.0177 0.0017 - 10.604 112.437 C26 * 0.0113 0.0018 6.209 38.547 C27 * 0.0095 0.0017 5.532 30.601 O3 - 0.0627 0.0014 - 46.013 2117.186 C21 - 0.0323 0.0015 - 21.820 476.128 C31' -0.5200 0.0188 - 27.643 764.147 ============ Sum((d/s)**2) for starred atoms 360.801 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 3 m1 = 0.32339(0.00075) m2 = 0.92133(0.00036) m3 = -0.21581(0.00070) D = 1.73547(0.00401) Atom d s d/s (d/s)**2 C2 * 0.0298 0.0015 20.137 405.483 C3 * -0.0224 0.0013 - 16.855 284.080 C5 * 0.0224 0.0013 16.863 284.370 C6 * -0.0338 0.0016 - 21.430 459.250 N1 - 0.7279 0.0012 - 601.376 361653.344 C4 - 0.1964 0.0014 - 139.920 19577.652 O1 - 0.4421 0.0012 - 370.110 136981.719 ============ Sum((d/s)**2) for starred atoms 1433.183 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity

Plane 4 m1 = 0.36687(0.00061) m2 = 0.89674(0.00032) m3 = -0.24754(0.00062) D = 1.84491(0.00391) Atom d s d/s (d/s)**2 C2 * 0.0029 0.0015 1.982 3.929 C3 * 0.0394 0.0013 29.495 869.956 C4 * -0.0904 0.0014 - 64.198 4121.393 C5 * 0.0833 0.0013 62.434 3897.966 C6 * -0.0612 0.0016 - 38.795 1505.066 N1 - 0.7792 0.0012 - 642.939 413370.656 O1 - 0.2648 0.0012 - 222.229 49385.770 ============ Sum((d/s)**2) for starred atoms 10398.310 Chi-squared at 95% for 2 degrees of freedom: 5.99 The group of atoms deviates significantly from planarity

Plane 5 m1 = -0.85377(0.00041) m2 = -0.38211(0.00073) m3 = -0.35365(0.00075) D = -5.12945(0.00494) Atom d s d/s (d/s)**2 C8 * 0.0012 0.0015 0.816 0.665 C9 * -0.0076 0.0019 - 4.009 16.075 C10 * 0.0086 0.0022 3.946 15.574 C11 * 0.0003 0.0021 0.154 0.024 C12 * -0.0068 0.0020 - 3.356 11.260 C13 * 0.0041 0.0018 2.346 5.506 C7 0.0968 0.0016 59.458 3535.268 N1 - 0.4392 0.0013 - 345.718 119520.734 ============ Sum((d/s)**2) for starred atoms 49.105 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 21.83 (0.05) 158.17 (0.05) 1 3 35.00 (0.05) 145.00 (0.05) 1 4 31.66 (0.04) 148.34 (0.04) 1 5 56.91 (0.05) 123.09 (0.05) 2 3 16.52 (0.05) 163.48 (0.05) 2 4 13.36 (0.04) 166.64 (0.04) 2 5 47.02 (0.05) 132.98 (0.05) 3 4 3.39 (0.05) 176.61 (0.05) 3 5 56.51 (0.06) 123.49 (0.06) 4 5 55.37 (0.06) 124.63 (0.06)

Ring puckering coordinates following Cremer D. & Pople J.A., JACS (1975).97,1354

Ring 1 Atom Internal Cartesian coordinates X Y Z N1 0.0000(0.0000) 1.2939(0.0013) 0.4125(0.0009) C2 1.1736(0.0015) 0.7782(0.0017) -0.2803(0.0009) C3 1.2761(0.0013) -0.6993(0.0017) -0.0383(0.0009) C4 0.0068(0.0016) -1.4276(0.0014) 0.2246(0.0009) C5 - 1.2588(0.0015) -0.7183(0.0019) -0.0924(0.0010) C6 - 1.1977(0.0016) 0.7731(0.0016) -0.2262(0.0010) q2 = 0.5544(0.0013) q3 = 0.2301(0.0014) phi2 = 5.60 (0.14) Total puckering amplitude: QT = 0.6002(0.0013) Spherical polar angles: Theta2 = 67.46 (0.13)

Asymmetry parameters Following Nardelli M., Acta Cryst.(1983). C39, 1141

N1 C2 C3 C4 C5 C6

DS(N1) =0.0379(0.0007) DS(N1 –C6) =0.2957(0.0006) D2(N1) =0.2492(0.0004) D2(N1 –C6) =0.1873(0.0006)

DS(C2) =0.3212(0.0007) DS(C2 –N1) =0.3235(0.0006) D2(C2) =0.1726(0.0004) D2(C2 –N1) =0.1338(0.0006)

DS(C3) =0.3591(0.0007) DS(C3 –C2) =0.1405(0.0006) D2(C3) =0.1453(0.0005) D2(C3 –C2) =0.3206(0.0006)

============================================================================

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.39705 (8)0.04800 (13)0.23368 (6)0.0381 (3)
O10.53263 (7)0.08595 (13)0.11005 (6)0.0554 (3)
O20.92659 (8)0.17546 (14)0.51308 (7)0.0697 (4)
O30.02843 (8)0.17577 (15)0.19313 (7)0.0667 (4)
C20.49054 (9)0.10326 (16)0.26458 (8)0.0386 (3)
H2A0.51740.08080.31800.046*
H2B0.49020.20730.25880.046*
C30.54621 (9)0.03515 (14)0.22339 (8)0.0345 (3)
C40.49587 (9)0.01131 (15)0.14423 (8)0.0374 (3)
C50.40104 (9)0.04415 (14)0.10699 (8)0.0361 (3)
C60.35317 (10)0.10116 (17)0.15698 (8)0.0420 (3)
H6A0.35480.20580.15710.050*
H6B0.28940.07110.13750.050*
C70.34420 (10)0.08969 (18)0.28031 (8)0.0450 (4)
H7A0.27970.07320.25180.054*
H7B0.35240.19230.29070.054*
C80.37001 (9)0.01014 (15)0.35407 (8)0.0376 (3)
C90.35206 (12)0.07273 (18)0.41302 (9)0.0533 (4)
H90.32870.16610.40790.064*
C100.36824 (14)0.0012 (2)0.47958 (10)0.0635 (5)
H100.35430.04150.51850.076*
C110.40457 (13)0.1368 (2)0.48862 (10)0.0592 (5)
H110.41620.18630.53380.071*
C120.42362 (13)0.19922 (18)0.43080 (10)0.0572 (4)
H120.44880.29140.43680.069*
C130.40589 (11)0.12702 (17)0.36363 (9)0.0488 (4)
H130.41830.17140.32440.059*
C140.63643 (9)0.01206 (15)0.25111 (8)0.0375 (3)
H140.65870.04040.21960.045*
C150.70605 (9)0.05548 (15)0.32273 (8)0.0375 (3)
C160.78690 (10)0.02438 (16)0.35081 (9)0.0461 (4)
H160.79290.10720.32530.055*
C170.85777 (11)0.01583 (18)0.41499 (9)0.0513 (4)
H170.91040.04060.43330.062*
C180.85064 (10)0.14063 (18)0.45245 (9)0.0484 (4)
C190.77130 (10)0.22157 (18)0.42624 (9)0.0498 (4)
H190.76590.30480.45170.060*
C200.70011 (10)0.17874 (16)0.36221 (9)0.0439 (4)
H200.64680.23380.34510.053*
C210.36595 (10)0.03912 (15)0.03158 (8)0.0398 (3)
H210.40530.00020.00980.048*
C220.27741 (10)0.08384 (16)0.02279 (8)0.0395 (3)
C230.25263 (10)0.02939 (18)0.09592 (8)0.0467 (4)
H230.29310.03130.10750.056*
C240.17044 (11)0.06261 (19)0.15114 (9)0.0520 (4)
H240.15580.02420.19930.062*
C250.10945 (10)0.15270 (18)0.13548 (9)0.0492 (4)
C260.13345 (12)0.21327 (19)0.06456 (9)0.0552 (4)
H260.09380.27740.05410.066*
C270.21633 (11)0.17866 (18)0.00919 (9)0.0490 (4)
H270.23160.21990.03840.059*
C280.92820 (13)0.3094 (2)0.54962 (12)0.0745 (6)
H28A0.89440.30260.58360.089*0.576 (4)
H28B0.90070.38440.51280.089*0.576 (4)
H28C0.87290.32070.56120.089*0.424 (4)
H28D0.93140.38830.51710.089*0.424 (4)
C291.0299 (3)0.3439 (6)0.5941 (3)0.0724 (11)0.576 (4)
H291.06970.35480.56800.087*0.576 (4)
C301.0601 (3)0.3577 (6)0.6636 (3)0.0946 (13)0.576 (4)
H30A1.02110.34720.69050.114*0.576 (4)
H30B1.12180.37860.68890.114*0.576 (4)
C29'1.0091 (5)0.3105 (9)0.6193 (4)0.0724 (11)0.424 (4)
H29'1.01200.25420.66070.087*0.424 (4)
C30'1.0778 (5)0.3948 (9)0.6207 (4)0.0946 (13)0.424 (4)
H30C1.07340.45020.57870.114*0.424 (4)
H30D1.13050.39900.66380.114*0.424 (4)
C310.04398 (14)0.2435 (3)0.17894 (12)0.0689 (6)0.885 (3)
H31A0.03260.34650.17270.083*0.885 (3)
H31B0.04850.20590.13270.083*0.885 (3)
C320.13050 (19)0.2170 (4)0.24256 (17)0.0758 (8)0.885 (3)
H320.18300.25960.23950.091*0.885 (3)
C330.1410 (2)0.1413 (4)0.3016 (2)0.0871 (9)0.885 (3)
H33A0.09080.09630.30740.105*0.885 (3)
H33B0.19900.13140.33860.105*0.885 (3)
C31'0.0131 (11)0.092 (2)0.2515 (10)0.0689 (6)0.115 (3)
H31C0.00070.00660.23460.083*0.115 (3)
H31D0.01560.10980.28840.083*0.115 (3)
C32'0.1163 (18)0.102 (3)0.2929 (19)0.0758 (8)0.115 (3)
H32'0.14810.04180.33300.091*0.115 (3)
C33'0.156 (2)0.202 (4)0.267 (2)0.0871 (9)0.115 (3)
H33C0.12200.26020.22720.105*0.115 (3)
H33D0.21950.21580.28950.105*0.115 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0340 (6)0.0505 (7)0.0313 (6)0.0005 (5)0.0134 (5)0.0023 (5)
O10.0495 (6)0.0671 (7)0.0453 (6)0.0114 (5)0.0118 (5)0.0158 (5)
O20.0484 (7)0.0757 (8)0.0625 (8)0.0094 (6)0.0072 (6)0.0245 (6)
O30.0483 (7)0.0974 (10)0.0458 (7)0.0175 (6)0.0066 (5)0.0048 (6)
C20.0375 (7)0.0442 (8)0.0335 (8)0.0022 (6)0.0121 (6)0.0026 (6)
C30.0366 (7)0.0324 (7)0.0346 (7)0.0029 (5)0.0128 (6)0.0007 (5)
C40.0396 (7)0.0360 (7)0.0370 (8)0.0023 (6)0.0143 (6)0.0011 (6)
C50.0368 (7)0.0364 (7)0.0342 (7)0.0038 (6)0.0118 (6)0.0004 (6)
C60.0385 (7)0.0521 (9)0.0344 (8)0.0038 (6)0.0118 (6)0.0034 (6)
C70.0397 (8)0.0576 (9)0.0411 (8)0.0087 (7)0.0185 (7)0.0065 (7)
C80.0347 (7)0.0433 (8)0.0372 (8)0.0004 (6)0.0156 (6)0.0006 (6)
C90.0715 (11)0.0474 (9)0.0473 (10)0.0133 (8)0.0289 (8)0.0008 (7)
C100.0885 (14)0.0675 (11)0.0449 (10)0.0129 (10)0.0363 (10)0.0003 (8)
C110.0695 (11)0.0650 (11)0.0482 (10)0.0087 (9)0.0273 (9)0.0151 (8)
C120.0716 (11)0.0463 (9)0.0647 (11)0.0128 (8)0.0376 (9)0.0134 (8)
C130.0614 (10)0.0464 (8)0.0486 (9)0.0050 (7)0.0319 (8)0.0013 (7)
C140.0398 (7)0.0359 (7)0.0376 (8)0.0004 (6)0.0151 (6)0.0010 (6)
C150.0332 (7)0.0416 (8)0.0377 (8)0.0012 (6)0.0128 (6)0.0003 (6)
C160.0428 (8)0.0417 (8)0.0509 (9)0.0035 (6)0.0132 (7)0.0063 (7)
C170.0388 (8)0.0505 (9)0.0554 (10)0.0092 (7)0.0057 (7)0.0026 (7)
C180.0382 (8)0.0576 (9)0.0423 (9)0.0017 (7)0.0057 (7)0.0063 (7)
C190.0429 (8)0.0525 (9)0.0495 (9)0.0033 (7)0.0112 (7)0.0142 (7)
C200.0338 (7)0.0480 (8)0.0463 (9)0.0048 (6)0.0102 (6)0.0052 (7)
C210.0392 (7)0.0437 (8)0.0379 (8)0.0025 (6)0.0153 (6)0.0014 (6)
C220.0399 (8)0.0454 (8)0.0337 (8)0.0022 (6)0.0137 (6)0.0034 (6)
C230.0427 (8)0.0614 (10)0.0365 (8)0.0041 (7)0.0147 (7)0.0028 (7)
C240.0485 (9)0.0724 (11)0.0324 (8)0.0028 (8)0.0111 (7)0.0043 (7)
C250.0428 (8)0.0632 (10)0.0384 (9)0.0052 (7)0.0105 (7)0.0082 (7)
C260.0563 (10)0.0654 (10)0.0438 (9)0.0179 (8)0.0177 (8)0.0025 (8)
C270.0546 (9)0.0551 (9)0.0354 (8)0.0067 (7)0.0139 (7)0.0002 (7)
C280.0606 (11)0.0779 (13)0.0653 (12)0.0055 (10)0.0014 (9)0.0281 (10)
C290.055 (2)0.092 (3)0.065 (3)0.0181 (19)0.0150 (16)0.025 (2)
C300.064 (2)0.115 (3)0.089 (4)0.017 (2)0.007 (2)0.022 (3)
C29'0.055 (2)0.092 (3)0.065 (3)0.0181 (19)0.0150 (16)0.025 (2)
C30'0.064 (2)0.115 (3)0.089 (4)0.017 (2)0.007 (2)0.022 (3)
C310.0528 (12)0.0854 (15)0.0657 (14)0.0211 (11)0.0180 (10)0.0095 (11)
C320.0505 (16)0.0910 (18)0.081 (2)0.0139 (14)0.0171 (13)0.0238 (16)
C330.0545 (19)0.106 (3)0.088 (2)0.0036 (16)0.0107 (18)0.0102 (19)
C31'0.0528 (12)0.0854 (15)0.0657 (14)0.0211 (11)0.0180 (10)0.0095 (11)
C32'0.0505 (16)0.0910 (18)0.081 (2)0.0139 (14)0.0171 (13)0.0238 (16)
C33'0.0545 (19)0.106 (3)0.088 (2)0.0036 (16)0.0107 (18)0.0102 (19)
Geometric parameters (Å, º) top
N1—C61.4538 (18)C19—H190.9300
N1—C21.4570 (17)C20—H200.9300
N1—C71.4616 (18)C21—C221.457 (2)
O1—C41.2228 (17)C21—H210.9300
O2—C181.3618 (18)C22—C271.387 (2)
O2—C281.417 (2)C22—C231.394 (2)
O3—C31'1.314 (19)C23—C241.369 (2)
O3—C251.3599 (18)C23—H230.9300
O3—C311.401 (2)C24—C251.377 (2)
C2—C31.5006 (19)C24—H240.9300
C2—H2A0.9700C25—C261.380 (2)
C2—H2B0.9700C26—C271.380 (2)
C3—C141.3324 (19)C26—H260.9300
C3—C41.4869 (19)C27—H270.9300
C4—C51.4851 (19)C28—C29'1.465 (8)
C5—C211.3365 (19)C28—C291.540 (5)
C5—C61.4986 (19)C28—H28A0.9700
C6—H6A0.9700C28—H28B0.9700
C6—H6B0.9700C28—H28C0.9700
C7—C81.503 (2)C28—H28D0.9700
C7—H7A0.9700C29—C301.237 (8)
C7—H7B0.9700C29—H290.9300
C8—C131.374 (2)C30—H30A0.9300
C8—C91.375 (2)C30—H30B0.9300
C9—C101.378 (2)C29'—C30'1.319 (11)
C9—H90.9300C29'—H29'0.9300
C10—C111.364 (2)C30'—H30C0.9300
C10—H100.9300C30'—H30D0.9300
C11—C121.364 (2)C31—C321.474 (3)
C11—H110.9300C31—H31A0.9700
C12—C131.376 (2)C31—H31B0.9700
C12—H120.9300C32—C331.280 (4)
C13—H130.9300C32—H320.9300
C14—C151.4593 (19)C33—H33A0.9300
C14—H140.9300C33—H33B0.9300
C15—C201.387 (2)C31'—C32'1.52 (3)
C15—C161.394 (2)C31'—H31C0.9700
C16—C171.371 (2)C31'—H31D0.9700
C16—H160.9300C32'—C33'1.307 (10)
C17—C181.382 (2)C32'—H32'0.9300
C17—H170.9300C33'—H33C0.9300
C18—C191.379 (2)C33'—H33D0.9300
C19—C201.378 (2)
C6—N1—C2109.14 (11)C19—C20—H20119.2
C6—N1—C7110.51 (11)C15—C20—H20119.2
C2—N1—C7111.44 (11)C5—C21—C22131.92 (14)
C18—O2—C28118.54 (13)C5—C21—H21114.0
C31'—O3—C25128.3 (7)C22—C21—H21114.0
C31'—O3—C31103.7 (7)C27—C22—C23116.76 (14)
C25—O3—C31119.87 (14)C27—C22—C21126.12 (13)
N1—C2—C3109.08 (11)C23—C22—C21117.09 (13)
N1—C2—H2A109.9C24—C23—C22121.95 (15)
C3—C2—H2A109.9C24—C23—H23119.0
N1—C2—H2B109.9C22—C23—H23119.0
C3—C2—H2B109.9C23—C24—C25120.16 (15)
H2A—C2—H2B108.3C23—C24—H24119.9
C14—C3—C4116.93 (12)C25—C24—H24119.9
C14—C3—C2126.17 (13)O3—C25—C24115.97 (14)
C4—C3—C2116.90 (11)O3—C25—C26124.68 (15)
O1—C4—C5121.41 (13)C24—C25—C26119.36 (14)
O1—C4—C3121.37 (13)C25—C26—C27119.99 (15)
C5—C4—C3117.11 (12)C25—C26—H26120.0
C21—C5—C4116.93 (13)C27—C26—H26120.0
C21—C5—C6125.70 (13)C26—C27—C22121.68 (15)
C4—C5—C6117.37 (12)C26—C27—H27119.2
N1—C6—C5110.54 (12)C22—C27—H27119.2
N1—C6—H6A109.5O2—C28—C29'107.8 (3)
C5—C6—H6A109.5O2—C28—C29106.5 (2)
N1—C6—H6B109.5O2—C28—H28A110.4
C5—C6—H6B109.5C29—C28—H28A110.4
H6A—C6—H6B108.1O2—C28—H28B110.4
N1—C7—C8114.38 (12)C29—C28—H28B110.4
N1—C7—H7A108.7H28A—C28—H28B108.6
C8—C7—H7A108.7O2—C28—H28C110.1
N1—C7—H7B108.7C29'—C28—H28C110.1
C8—C7—H7B108.7O2—C28—H28D110.1
H7A—C7—H7B107.6C29'—C28—H28D110.1
C13—C8—C9118.37 (14)H28C—C28—H28D108.5
C13—C8—C7122.46 (13)C30—C29—C28122.0 (5)
C9—C8—C7119.05 (13)C30—C29—H29119.0
C8—C9—C10120.77 (15)C28—C29—H29119.0
C8—C9—H9119.6C29—C30—H30A120.0
C10—C9—H9119.6C29—C30—H30B120.0
C11—C10—C9120.30 (16)H30A—C30—H30B120.0
C11—C10—H10119.8C30'—C29'—C28117.0 (7)
C9—C10—H10119.8C30'—C29'—H29'121.5
C12—C11—C10119.36 (16)C28—C29'—H29'121.5
C12—C11—H11120.3C29'—C30'—H30C120.0
C10—C11—H11120.3C29'—C30'—H30D120.0
C11—C12—C13120.60 (15)H30C—C30'—H30D120.0
C11—C12—H12119.7O3—C31—C32109.5 (2)
C13—C12—H12119.7O3—C31—H31A109.8
C8—C13—C12120.57 (14)C32—C31—H31A109.8
C8—C13—H13119.7O3—C31—H31B109.8
C12—C13—H13119.7C32—C31—H31B109.8
C3—C14—C15130.70 (13)H31A—C31—H31B108.2
C3—C14—H14114.6C33—C32—C31126.9 (3)
C15—C14—H14114.6C33—C32—H32116.6
C20—C15—C16117.24 (13)C31—C32—H32116.6
C20—C15—C14123.90 (13)C32—C33—H33A120.0
C16—C15—C14118.66 (13)C32—C33—H33B120.0
C17—C16—C15121.81 (14)H33A—C33—H33B120.0
C17—C16—H16119.1O3—C31'—C32'120.8 (17)
C15—C16—H16119.1O3—C31'—H31C107.1
C16—C17—C18119.71 (14)C32'—C31'—H31C107.1
C16—C17—H17120.1O3—C31'—H31D107.1
C18—C17—H17120.1C32'—C31'—H31D107.1
O2—C18—C19124.96 (14)H31C—C31'—H31D106.8
O2—C18—C17115.21 (14)C33'—C32'—C31'114 (3)
C19—C18—C17119.81 (14)C33'—C32'—H32'122.9
C20—C19—C18119.82 (14)C31'—C32'—H32'122.9
C20—C19—H19120.1C32'—C33'—H33C120.0
C18—C19—H19120.1C32'—C33'—H33D120.0
C19—C20—C15121.59 (14)H33C—C33'—H33D120.0
C6—N1—C2—C368.12 (14)C16—C17—C18—O2176.47 (16)
C7—N1—C2—C3169.55 (11)C16—C17—C18—C191.9 (3)
N1—C2—C3—C14152.11 (13)O2—C18—C19—C20177.17 (16)
N1—C2—C3—C427.71 (16)C17—C18—C19—C201.0 (3)
C14—C3—C4—O110.5 (2)C18—C19—C20—C150.2 (2)
C2—C3—C4—O1169.32 (13)C16—C15—C20—C190.5 (2)
C14—C3—C4—C5165.87 (12)C14—C15—C20—C19174.31 (15)
C2—C3—C4—C514.30 (18)C4—C5—C21—C22179.52 (14)
O1—C4—C5—C2115.5 (2)C6—C5—C21—C220.3 (3)
C3—C4—C5—C21160.86 (12)C5—C21—C22—C2718.6 (3)
O1—C4—C5—C6164.67 (14)C5—C21—C22—C23163.22 (16)
C3—C4—C5—C618.95 (18)C27—C22—C23—C242.6 (2)
C2—N1—C6—C563.70 (15)C21—C22—C23—C24178.99 (15)
C7—N1—C6—C5173.41 (12)C22—C23—C24—C250.3 (3)
C21—C5—C6—N1161.14 (13)C31'—O3—C25—C2424.9 (11)
C4—C5—C6—N119.07 (18)C31—O3—C25—C24168.30 (18)
C6—N1—C7—C8165.49 (12)C31'—O3—C25—C26155.5 (11)
C2—N1—C7—C872.97 (16)C31—O3—C25—C2612.1 (3)
N1—C7—C8—C1328.1 (2)C23—C24—C25—O3177.96 (15)
N1—C7—C8—C9156.00 (14)C23—C24—C25—C262.4 (3)
C13—C8—C9—C101.1 (3)O3—C25—C26—C27177.74 (16)
C7—C8—C9—C10175.03 (16)C24—C25—C26—C272.7 (3)
C8—C9—C10—C111.6 (3)C25—C26—C27—C220.2 (3)
C9—C10—C11—C120.8 (3)C23—C22—C27—C262.4 (2)
C10—C11—C12—C130.5 (3)C21—C22—C27—C26179.42 (15)
C9—C8—C13—C120.3 (2)C18—O2—C28—C29'170.8 (3)
C7—C8—C13—C12176.20 (15)C18—O2—C28—C29159.7 (3)
C11—C12—C13—C81.0 (3)O2—C28—C29—C30119.0 (5)
C4—C3—C14—C15173.76 (13)C29'—C28—C29—C3022.0 (7)
C2—C3—C14—C156.4 (2)O2—C28—C29'—C30'108.0 (7)
C3—C14—C15—C2029.2 (2)C29—C28—C29'—C30'16.1 (6)
C3—C14—C15—C16156.02 (15)C31'—O3—C31—C3211.6 (9)
C20—C15—C16—C170.4 (2)C25—O3—C31—C32162.8 (2)
C14—C15—C16—C17175.49 (14)O3—C31—C32—C331.7 (4)
C15—C16—C17—C181.6 (3)C25—O3—C31'—C32'155.8 (16)
C28—O2—C18—C194.7 (3)C31—O3—C31'—C32'8 (2)
C28—O2—C18—C17173.51 (17)O3—C31'—C32'—C33'3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N10.932.612.912 (2)100
C14—H14···O10.932.332.7385 (18)106
C21—H21···O10.932.342.7482 (19)106
C9—H9···Cg4i0.932.973.8089 (19)151
C33—H33A···O30.932.412.726 (4)100
C33—H33B···Cg2ii0.932.863.771 (4)165
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC32H31NO3
Mr477.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)15.6161 (4), 9.2654 (2), 18.9696 (5)
β (°) 111.031 (1)
V3)2561.87 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.33 × 0.29 × 0.27
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.896, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
26042, 5029, 3882
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.01
No. of reflections5029
No. of parameters342
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg4i0.932.973.8089 (19)151
C33—H33B···Cg2ii0.932.863.771 (4)165
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z.
 

Acknowledgements

RSR thanks the Council for Scientific and Industrial Research, New Delhi, for funding under the scientist's pool scheme and the Bioinformatics Infrastructure Facility of the University of Hyderabad for computational resources. We acknowledge Mr V. Ramkumar, Department of Chemistry, IIT Madras, for help with the XRD experiment.

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, N. S., Sathiyanarayanan, K., Aravindan, P. G. & Rathore, R. S. (2009). Acta Cryst. E65, o2775.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRathore, R. S., Karthikeyan, N. S., Sathiyanarayanan, K. & Aravindan, P. G. (2009). Acta Cryst. E65, o2667.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuresh, J., Suresh Kumar, R., Perumal, S. & Natarajan, S. (2007). Acta Cryst. C63, o315–o318.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds