organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Meth­oxy­benzyl­­idene)benzohydrazide

aCollege of Chemistry and Chemical Technology, Binzhou University, Binzhou 256600, Shandong, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266555, People's Republic of China
*Correspondence e-mail: fanchuangang2009@163.com

(Received 24 October 2009; accepted 20 November 2009; online 25 November 2009)

In the title mol­ecule, C15H14N2O2, the dihedral angle between the benzene rings is 5.93 (17)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [010].

Related literature

For properties of Schiff base ligands, see: Cozzi et al. (2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]). For related crystal structures, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Cui et al. (2009[Cui, C., Meng, Q. & Wang, Y. (2009). Acta Cryst. E65, o2472.]); Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2

  • Mr = 254.28

  • Orthorhombic, P c a 21

  • a = 31.414 (3) Å

  • b = 5.1067 (5) Å

  • c = 8.1336 (9) Å

  • V = 1304.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.49 × 0.48 × 0.30 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.974

  • 2220 measured reflections

  • 1239 independent reflections

  • 920 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.106

  • S = 1.03

  • 1239 reflections

  • 173 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.17 2.961 (2) 152
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are popular ligands in coordination chemistry due to their ease of synthesis and their ability to be readily modified both electronically and sterically. Mixed-donor Schiff bases have been used extensively in catalysis (Cozzi, 2004).

In (I), (Fig. 1), the bond lengths an angles are normal and are comparable to the values observed in similar compounds (Nie et al., 2008; Fun et al., 2008; Cui et al., 2009).

In the crystal structure, the C8=N2 bond length in the molecule is 1.269 (3) °, showing the double-bond character. Meanwhile, the dihedral angle between the benzene ring (C2-C7) and the benzene ring (C9-C14) in the Schiff base molecule is 5.93 (17) °, indicating that the two aromatic ring planes are almost coplanar. Moreover, the crystal supramolecular structure was built from the connections of weak intermolecular N—H···O hydrogen bonds, as shown in table 1, and these hydrogen bonds link molecules into one-dimensional chains propagated in direction [010].

Related literature top

For properties of Schiff base ligands, see: Cozzi et al. (2004). For related crystal structures, see: Fun et al. (2008); Cui et al. (2009); Nie (2008).

Experimental top

Benzohydrazide (5.0 mmol), 20 ml ethanol and 4-methoxybenzaldehyde (5.0 mmol) were mixed in 50 ml flash. After refluxing 3 h, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid. Elemental analysis: calculated for C15H14N2O2: C 70.85, H 5.55, N 11.02%; found: C 70.78, H 5.64, N 11.13%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H=0.86 and C—H=0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C) (C,N). Because of the meaningless of the absolute structure parameter, 981 Friedel-pairs were merged before final refinement.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of (I) builted from the connections of weak intermolecular N—H···O hydrogen bonds with dashed lines.
(E)-N'-(4-Methoxybenzylidene)benzohydrazide top
Crystal data top
C15H14N2O2F(000) = 536
Mr = 254.28Dx = 1.294 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1475 reflections
a = 31.414 (3) Åθ = 2.6–22.4°
b = 5.1067 (5) ŵ = 0.09 mm1
c = 8.1336 (9) ÅT = 298 K
V = 1304.8 (2) Å3Block, colourless
Z = 40.49 × 0.48 × 0.30 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1239 independent reflections
Radiation source: fine-focus sealed tube920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
phi and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 036
Tmin = 0.958, Tmax = 0.974k = 06
2220 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.051P)2 + 0.0327P]
where P = (Fo2 + 2Fc2)/3
1239 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.14 e Å3
Crystal data top
C15H14N2O2V = 1304.8 (2) Å3
Mr = 254.28Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 31.414 (3) ŵ = 0.09 mm1
b = 5.1067 (5) ÅT = 298 K
c = 8.1336 (9) Å0.49 × 0.48 × 0.30 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1239 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
920 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.974Rint = 0.037
2220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
1239 reflectionsΔρmin = 0.14 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.32900 (6)0.0513 (4)0.8803 (3)0.0446 (6)
H10.31820.20510.86910.053*
N20.37282 (6)0.0199 (4)0.8715 (3)0.0448 (6)
O10.31604 (5)0.3787 (3)0.9244 (3)0.0612 (6)
O20.57114 (5)0.2572 (4)0.8020 (3)0.0618 (6)
C10.30295 (7)0.1548 (5)0.9062 (4)0.0414 (6)
C20.25645 (8)0.0907 (4)0.9049 (4)0.0404 (6)
C30.22924 (9)0.2535 (6)0.9909 (4)0.0522 (8)
H30.24000.39611.04870.063*
C40.18566 (10)0.2029 (7)0.9905 (5)0.0688 (11)
H40.16730.30981.05010.083*
C50.16978 (9)0.0027 (7)0.9031 (6)0.0707 (10)
H50.14070.03660.90430.085*
C60.19643 (9)0.1599 (6)0.8133 (5)0.0653 (10)
H60.18530.29590.75050.078*
C70.23964 (8)0.1159 (5)0.8162 (4)0.0506 (8)
H70.25770.22620.75790.061*
C80.39287 (8)0.2202 (5)0.8213 (4)0.0437 (7)
H80.37750.36760.78980.052*
C90.43914 (7)0.2271 (5)0.8114 (4)0.0399 (6)
C100.46450 (8)0.0478 (5)0.8944 (4)0.0478 (7)
H100.45170.08540.95470.057*
C110.50810 (8)0.0635 (5)0.8889 (4)0.0479 (7)
H110.52450.05770.94600.058*
C120.52766 (7)0.2591 (5)0.7988 (4)0.0420 (6)
C130.50332 (9)0.4391 (5)0.7160 (4)0.0472 (7)
H130.51630.57080.65500.057*
C140.45933 (8)0.4235 (5)0.7239 (4)0.0485 (8)
H140.44300.54790.66910.058*
C150.59304 (9)0.4528 (7)0.7113 (5)0.0735 (10)
H15A0.58480.44350.59780.110*
H15B0.62320.42490.72030.110*
H15C0.58600.62240.75440.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0362 (12)0.0317 (11)0.0658 (16)0.0055 (9)0.0014 (13)0.0011 (12)
N20.0331 (12)0.0412 (12)0.0600 (16)0.0020 (10)0.0012 (13)0.0067 (12)
O10.0481 (10)0.0330 (10)0.1026 (18)0.0060 (8)0.0035 (13)0.0002 (12)
O20.0379 (11)0.0707 (13)0.0766 (14)0.0043 (10)0.0008 (12)0.0158 (12)
C10.0410 (13)0.0339 (13)0.0492 (17)0.0011 (12)0.0008 (16)0.0051 (15)
C20.0402 (14)0.0369 (13)0.0439 (17)0.0002 (11)0.0016 (15)0.0060 (16)
C30.0510 (18)0.0496 (17)0.056 (2)0.0085 (14)0.0014 (16)0.0045 (16)
C40.050 (2)0.082 (3)0.075 (3)0.0216 (18)0.0150 (19)0.018 (2)
C50.0399 (16)0.079 (2)0.093 (3)0.0042 (16)0.011 (2)0.022 (3)
C60.0501 (19)0.060 (2)0.086 (3)0.0124 (16)0.0138 (19)0.009 (2)
C70.0453 (17)0.0448 (15)0.062 (2)0.0023 (13)0.0056 (16)0.0029 (17)
C80.0398 (14)0.0357 (14)0.0556 (19)0.0035 (12)0.0036 (14)0.0009 (14)
C90.0398 (14)0.0342 (14)0.0456 (16)0.0011 (12)0.0002 (15)0.0049 (14)
C100.0451 (15)0.0416 (14)0.0566 (19)0.0012 (12)0.0025 (17)0.0087 (18)
C110.0428 (15)0.0446 (15)0.0563 (19)0.0049 (12)0.0057 (17)0.0068 (18)
C120.0336 (15)0.0442 (15)0.0482 (16)0.0017 (13)0.0013 (15)0.0061 (14)
C130.0444 (17)0.0428 (17)0.0542 (19)0.0055 (13)0.0028 (16)0.0076 (15)
C140.0444 (18)0.0408 (16)0.060 (2)0.0063 (13)0.0031 (16)0.0051 (15)
C150.0471 (19)0.081 (2)0.092 (3)0.0165 (16)0.0041 (18)0.013 (2)
Geometric parameters (Å, º) top
N1—C11.350 (3)C6—H60.9300
N1—N21.388 (2)C7—H70.9300
N1—H10.8600C8—C91.456 (3)
N2—C81.269 (3)C8—H80.9300
O1—C11.224 (3)C9—C141.384 (4)
O2—C121.366 (3)C9—C101.389 (4)
O2—C151.420 (4)C10—C111.373 (3)
C1—C21.497 (3)C10—H100.9300
C2—C31.382 (4)C11—C121.383 (4)
C2—C71.383 (3)C11—H110.9300
C3—C41.393 (4)C12—C131.372 (4)
C3—H30.9300C13—C141.386 (4)
C4—C51.363 (5)C13—H130.9300
C4—H40.9300C14—H140.9300
C5—C61.370 (5)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—C71.376 (4)C15—H15C0.9600
C1—N1—N2121.29 (19)N2—C8—H8118.9
C1—N1—H1119.4C9—C8—H8118.9
N2—N1—H1119.4C14—C9—C10117.7 (2)
C8—N2—N1114.6 (2)C14—C9—C8120.2 (2)
C12—O2—C15118.0 (2)C10—C9—C8122.0 (3)
O1—C1—N1122.9 (2)C11—C10—C9121.2 (3)
O1—C1—C2122.2 (2)C11—C10—H10119.4
N1—C1—C2114.8 (2)C9—C10—H10119.4
C3—C2—C7119.1 (2)C10—C11—C12120.2 (3)
C3—C2—C1117.9 (2)C10—C11—H11119.9
C7—C2—C1122.9 (2)C12—C11—H11119.9
C2—C3—C4119.7 (3)O2—C12—C13124.8 (3)
C2—C3—H3120.2O2—C12—C11115.4 (2)
C4—C3—H3120.2C13—C12—C11119.8 (2)
C5—C4—C3120.3 (3)C12—C13—C14119.7 (3)
C5—C4—H4119.9C12—C13—H13120.2
C3—C4—H4119.9C14—C13—H13120.2
C4—C5—C6120.4 (3)C9—C14—C13121.5 (3)
C4—C5—H5119.8C9—C14—H14119.2
C6—C5—H5119.8C13—C14—H14119.2
C5—C6—C7119.9 (3)O2—C15—H15A109.5
C5—C6—H6120.1O2—C15—H15B109.5
C7—C6—H6120.1H15A—C15—H15B109.5
C6—C7—C2120.7 (3)O2—C15—H15C109.5
C6—C7—H7119.7H15A—C15—H15C109.5
C2—C7—H7119.7H15B—C15—H15C109.5
N2—C8—C9122.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.172.961 (2)152
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O2
Mr254.28
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)298
a, b, c (Å)31.414 (3), 5.1067 (5), 8.1336 (9)
V3)1304.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.48 × 0.30
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
2220, 1239, 920
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 1.03
No. of reflections1239
No. of parameters173
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.172.961 (2)152.1
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors acknowledge the financial support of the Foundation of Binzhou University.

References

First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCui, C., Meng, Q. & Wang, Y. (2009). Acta Cryst. E65, o2472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds