organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3158-o3159

Bis[2-(morpholinometh­yl)phen­yl]phenyl­phosphane

aFaculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Str. no. 11, RO-400028, Cluj Napoca, Romania
*Correspondence e-mail: richy@chem.ubbcluj.ro

(Received 11 November 2009; accepted 17 November 2009; online 21 November 2009)

The title compound, C28H33N2O2P, contains a penta­coordinated P atom as a result of the weak N→P intra­molecular inter­actions, with three C atoms, two N atoms and the lone pair arranged in a dicapped pseudo-tetra­hedral geometry. The morpholine rings exhibit an almost ideal chair conformation. In the crystal, two weak C—H⋯O hydrogen-bond inter­actions link the mol­ecules in layers stacked along the a axis; there are no further inter­actions between the layers.

Related literature

For related structures, see Chuit et al. (1993[Chuit, C., Corriu, R. J. P., Monforte, P., Reyk, C., Declercq, J.-P. & Dubourg, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1430-1432.]); Copolovici, et al. (2007[Copolovici, D., Silvestru, C. & Varga, R. A. (2007). Acta Cryst. E63, o2465.]); Copolovici, Silvestru, Isaia et al. (2008[Copolovici, D., Silvestru, C., Isaia, F. & Varga, R. A. (2008). Acta Cryst. E64, m1057-m1058.]); Copolovici, Silvestru & Varga (2008[Copolovici, D., Silvestru, C. & Varga, R. A. (2008). Acta Cryst. C64, m37-m39.]). For the use of phosphines containing organic groups with pendant arms as ligands in the coordination chemistry, see Alonso et al. (2003[Alonso, M. A., Casares, J. A., Espinet, P., Soulantica, K., Orpen, A. G. & Phetmung, H. (2003). Inorg. Chem. 42, 3856-3864.]), Brammer et al. (2000[Brammer, L., Mareque Rivas, J. C. & Spilling, C. D. (2000). J. Organomet. Chem. 609, 36-43.]), de Graaf et al. (1988[Graaf, W. de, Harder, S., Boersma, J., van Koten, G. & Kanters, J. A. (1988). J. Organomet. Chem. 358, 545-562.]), Kapteijn et al. (1996[Kapteijn, G. M., Spee, M. P. R., Grove, D. M., Kooijman, H., Spek, A. L. & van Koten, G. (1996). Organometallics, 15, 1405-1413.]), Fierro-Arias et al. (2005[Fierro-Arias, J. G., Redon, R., Garcia, J. J., Hernandez-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2005). J. Mol. Catal. A Chem. 233, 17-27.]), Pfeiffer et al. (2000[Pfeiffer, J., Kickelbick, G. & Schubert, U. (2000). Organometallics, 19, 62-71.])]. For van der Waals radii, see: Emsley (1994[Emsley, J. (1994). In Die Elemente. Berlin: Walter de Gruyter.]).

[Scheme 1]

Experimental

Crystal data
  • C28H33N2O2P

  • Mr = 460.53

  • Monoclinic, P 21 /c

  • a = 14.640 (7) Å

  • b = 11.656 (5) Å

  • c = 14.998 (7) Å

  • β = 101.950 (9)°

  • V = 2504 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 297 K

  • 0.30 × 0.26 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.984

  • 17694 measured reflections

  • 4412 independent reflections

  • 3184 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.112

  • wR(F2) = 0.207

  • S = 1.23

  • 4412 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯O1i 0.93 2.46 3.370 (8) 166
C11—H11B⋯O2ii 0.97 2.55 3.426 (6) 151
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND 3 (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Phosphines containing organic groups with pendant arms, e.g. PPhn[C6H4(CH2NMe2)-2]3-n, were successfully used as ligands in the coordination chemistry of various transition metals [Co (Brammer et al., 2000), Rh (Alonso et al., 2003), Pd (de Graaf et al., 1988; Kapteijn et al., 1996; Fierro-Arias et al., 2005), Pt (Pfeiffer et al., 2000)]. In order to extend this class of potential phosphine ligands we decided to investigate other related compounds and here we report on the molecular structure of PPh[C6H4{CH2N(CH2CH2)2O}-2]2.

The structure of (I) with its atomic numbering scheme is depicted in Figure 1. The N atoms from the two morphilinyl pendant arms form weak intramolecular interactions with the central phosphorus atom [N1···P1 = 3.038 (4) and N2···P1 = 3.105 (4) Å; c.f. sums of the covalent radii, Σrcov(P,N) 1.80 Å, and van der Waals radii, ΣrvdW(P,N) 3.44 Å (Emsley, 1994)]. The magnitude of the NP interactions is similar to the ones present in tris[2-(dimethylaminomethyl)phenyl]phosphane (Chuit et al., 1993). Taking into account these intramolecular interactions a dicapped pseudo-tetrahedron can be considered around the phosphorus, with the three carbon atoms and the phosphorus lone pair describing the tetrahedral skeleton.

An almost ideal chair conformation was observed for both morpholinyl groups with torsion angles [C8—N1—C11—C10 = 56.5 (6)°, C10—O1—C9—C8 = -57.9 (6)°, C19—N2—C21—C22 = 56.7 (6)° and C22—O2—C20—C19 = -58.1 (6)°] similar with those found in 4-benzylmorpholin-4-ium chloride (Copolovici et al., 2007), tris[2-(morpholin-4-ylmethyl)phenyl-κ2C1,N]antimony(III) (Copolovici, Silvestru & Varga (2008) and in di-µ-chlorido-bis{[2-(morpholin-4-ylmethyl)phenyl-k2C1,N]palladium(II)} (Copolovici, Silvestru, Isaia et al. (2008).

Weak hydrogen bonds between one morpholinyl oxygen atom and an aromatic C—H [H25···O1i = 2.46 Å; symmetry code: (i) x, -y + 1/2, z - 1/2] and between the other morpholinyl oxygen and a CH2 hydrogen [H11B···O2ii = 2.55 Å; symmetry code: (ii) x, y - 1, z] (Figure 2) give rise to a bidimensional layer along the bc plane. The layers are stacked along the a axis, with no further interactions (Figure 3).

Related literature top

For related structures, see Chuit et al. (1993); Copolovici, et al. (2007); Copolovici, Silvestru, Isaia et al. (2008); Copolovici, Silvestru & Varga (2008). For the use of phosphines containing organic groups with pendant arms as ligands in the coordination chemistry, see Alonso et al. (2003), Brammer et al. (2000), de Graaf et al. (1988), Kapteijn et al. (1996), Fierro-Arias et al. (2005), Pfeiffer et al. (2000)].

For related literature, see: Emsley (1994).

Experimental top

To a solution of the [2-{O(CH2CH2)2NCH2}C6H4]Li (2.72 g, 14 mmol) in cold thf (-70 °C) was added dropwise a solution of PPhCl2(1.01 ml, ρ = 1.319 g/ml, 7 mmol) in thf. The reaction mixture was stirred at -70 °C for additional 2 h, then it was allowed to reach the room temperature and the solvent was removed under vacuum. The obtained oily product was extracted with CH2Cl2. The solid residue was filtered off and the solvent was removed in vacuum. The remaining viscous oil solidified on addition of hexane. The title compound was isolated as a white solid. Colorless crystals suitable for X-ray diffraction studies were obtained by slow diffusion of hexane into a CH2Cl2 solution of the title compound (1:1 v/v ratio) (yield: 2.76 g, 81%; m.p. 89 °C).

Refinement top

All H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and treated using a riding model with Uiso= 1.2Ueq(C). The R factor is 0.112 due to the crystal quality and because the measurement was made at room temperature. We tried several times to grow quality crystals and measured 4 different ones but only the one submitted was acceptable.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND 3 (Brandenburg & Putz, 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. : Hydrogen bonds in the title compound (dashed lines; only H atoms involved in interactions are shown). Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) x, y-1, z.
[Figure 3] Fig. 3. : Molecular packing as viewed along the c axis. Hydrogen bonds are shown as dashed lines; only H atoms involved in interactions are shown.
Bis[2-(morpholinomethyl)phenyl]phenylphosphane top
Crystal data top
C28H33N2O2PF(000) = 984
Mr = 460.53Dx = 1.222 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2411 reflections
a = 14.640 (7) Åθ = 2.2–20.0°
b = 11.656 (5) ŵ = 0.14 mm1
c = 14.998 (7) ÅT = 297 K
β = 101.950 (9)°Block, colourless
V = 2504 (2) Å30.30 × 0.26 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4412 independent reflections
Radiation source: fine-focus sealed tube3184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1717
Tmin = 0.960, Tmax = 0.984k = 1313
17694 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.112Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0459P)2 + 3.678P]
where P = (Fo2 + 2Fc2)/3
4412 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C28H33N2O2PV = 2504 (2) Å3
Mr = 460.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.640 (7) ŵ = 0.14 mm1
b = 11.656 (5) ÅT = 297 K
c = 14.998 (7) Å0.30 × 0.26 × 0.12 mm
β = 101.950 (9)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4412 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3184 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.984Rint = 0.099
17694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1120 restraints
wR(F2) = 0.207H-atom parameters constrained
S = 1.23Δρmax = 0.47 e Å3
4412 reflectionsΔρmin = 0.27 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8291 (3)0.6869 (4)0.0252 (3)0.0286 (11)
C20.8999 (3)0.6704 (4)0.1032 (3)0.0331 (11)
C30.9912 (4)0.6862 (4)0.0965 (4)0.0433 (14)
H31.03820.67630.14810.052*
C41.0150 (4)0.7158 (5)0.0161 (4)0.0469 (14)
H41.07740.72500.01320.056*
C50.9466 (4)0.7320 (5)0.0602 (4)0.0475 (15)
H50.96230.75210.11520.057*
C60.8551 (3)0.7185 (4)0.0550 (3)0.0360 (12)
H60.80900.73080.10690.043*
C70.8755 (3)0.6394 (4)0.1929 (3)0.0358 (12)
H7A0.93240.63500.23920.043*
H7B0.83700.69970.21030.043*
C80.7893 (4)0.5140 (5)0.2711 (4)0.0552 (16)
H8A0.74690.57610.27720.066*
H8B0.84010.51490.32420.066*
C90.7389 (5)0.4023 (5)0.2665 (5)0.070 (2)
H9A0.71510.39230.32180.084*
H9B0.68590.40380.21550.084*
C100.8860 (4)0.4335 (4)0.1789 (4)0.0460 (14)
H10A0.93970.43190.22910.055*
H10B0.90840.44200.12270.055*
C110.8324 (4)0.3235 (4)0.1766 (4)0.0540 (16)
H11A0.78110.32380.12400.065*
H11B0.87300.25970.16990.065*
C120.6424 (3)0.7480 (4)0.0629 (3)0.0355 (12)
C130.6155 (3)0.8617 (4)0.0499 (4)0.0397 (13)
C140.5645 (4)0.9221 (5)0.1217 (4)0.0568 (16)
H140.54910.99790.11250.068*
C150.5352 (4)0.8745 (6)0.2073 (5)0.070 (2)
H150.49950.91650.25470.085*
C160.5607 (4)0.7625 (7)0.2202 (4)0.072 (2)
H160.54230.72800.27700.086*
C170.6126 (4)0.7027 (5)0.1497 (4)0.0507 (15)
H170.62910.62760.16020.061*
C180.6392 (4)0.9177 (5)0.0427 (4)0.0457 (14)
H18A0.61310.99450.03790.055*
H18B0.60940.87480.08420.055*
C190.7540 (4)0.9681 (5)0.1751 (4)0.0569 (16)
H19A0.72430.91750.21180.068*
H19B0.72641.04370.17570.068*
C200.8568 (4)0.9748 (6)0.2152 (4)0.0660 (18)
H20A0.86611.00560.27650.079*
H20B0.88330.89830.21900.079*
C210.7873 (4)0.9979 (5)0.0286 (4)0.0478 (14)
H21A0.76161.07490.02520.057*
H21B0.77910.96820.03300.057*
C220.8891 (4)1.0021 (5)0.0712 (4)0.0543 (16)
H22A0.91540.92560.07200.065*
H22B0.92101.05090.03500.065*
C230.6850 (3)0.5187 (4)0.0066 (3)0.0347 (12)
C240.7352 (4)0.4612 (5)0.0615 (4)0.0481 (14)
H240.78520.49780.07880.058*
C250.7123 (4)0.3509 (5)0.0911 (4)0.0590 (17)
H250.74560.31430.12930.071*
C260.6405 (4)0.2956 (5)0.0640 (5)0.0633 (19)
H260.62510.22100.08350.076*
C270.5907 (4)0.3504 (5)0.0075 (5)0.0669 (19)
H270.54210.31250.01140.080*
C280.6129 (4)0.4608 (5)0.0209 (4)0.0481 (14)
H280.57920.49710.05890.058*
N10.8259 (3)0.5307 (3)0.1898 (3)0.0336 (10)
N20.7376 (3)0.9253 (3)0.0814 (3)0.0354 (10)
O10.7968 (3)0.3077 (3)0.2563 (3)0.0681 (13)
O20.9036 (3)1.0454 (3)0.1617 (3)0.0595 (11)
P10.70675 (9)0.66657 (11)0.03556 (9)0.0311 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (2)0.021 (3)0.037 (3)0.001 (2)0.008 (2)0.000 (2)
C20.040 (3)0.020 (3)0.037 (3)0.002 (2)0.002 (2)0.005 (2)
C30.045 (3)0.030 (3)0.051 (4)0.001 (2)0.000 (3)0.007 (3)
C40.028 (3)0.050 (4)0.064 (4)0.002 (3)0.014 (3)0.014 (3)
C50.044 (3)0.060 (4)0.044 (3)0.005 (3)0.021 (3)0.018 (3)
C60.039 (3)0.038 (3)0.032 (3)0.002 (2)0.007 (2)0.005 (2)
C70.048 (3)0.031 (3)0.025 (3)0.003 (2)0.001 (2)0.007 (2)
C80.083 (4)0.040 (3)0.051 (4)0.007 (3)0.032 (3)0.009 (3)
C90.099 (5)0.059 (4)0.068 (5)0.001 (4)0.054 (4)0.010 (4)
C100.055 (4)0.036 (3)0.046 (3)0.002 (3)0.007 (3)0.002 (3)
C110.076 (4)0.027 (3)0.062 (4)0.001 (3)0.022 (3)0.004 (3)
C120.026 (3)0.037 (3)0.043 (3)0.003 (2)0.007 (2)0.004 (3)
C130.023 (3)0.045 (3)0.050 (3)0.001 (2)0.007 (2)0.003 (3)
C140.049 (4)0.050 (4)0.068 (4)0.013 (3)0.004 (3)0.004 (3)
C150.050 (4)0.082 (5)0.071 (5)0.018 (4)0.005 (3)0.020 (4)
C160.060 (4)0.100 (6)0.047 (4)0.015 (4)0.008 (3)0.006 (4)
C170.047 (3)0.055 (4)0.044 (4)0.008 (3)0.005 (3)0.011 (3)
C180.042 (3)0.037 (3)0.062 (4)0.006 (3)0.019 (3)0.007 (3)
C190.066 (4)0.058 (4)0.053 (4)0.010 (3)0.025 (3)0.007 (3)
C200.077 (5)0.067 (4)0.053 (4)0.022 (4)0.012 (4)0.012 (3)
C210.052 (4)0.037 (3)0.056 (4)0.005 (3)0.013 (3)0.007 (3)
C220.057 (4)0.040 (4)0.068 (4)0.007 (3)0.020 (3)0.002 (3)
C230.031 (3)0.035 (3)0.035 (3)0.005 (2)0.001 (2)0.002 (2)
C240.049 (3)0.047 (4)0.049 (4)0.002 (3)0.010 (3)0.011 (3)
C250.056 (4)0.051 (4)0.068 (4)0.005 (3)0.009 (3)0.023 (3)
C260.049 (4)0.036 (3)0.094 (5)0.003 (3)0.009 (4)0.023 (3)
C270.043 (4)0.051 (4)0.107 (6)0.008 (3)0.015 (4)0.002 (4)
C280.041 (3)0.036 (3)0.066 (4)0.002 (3)0.007 (3)0.000 (3)
N10.047 (3)0.025 (2)0.030 (2)0.0021 (19)0.0089 (19)0.0011 (18)
N20.041 (3)0.035 (2)0.032 (2)0.002 (2)0.011 (2)0.0034 (19)
O10.107 (4)0.040 (2)0.066 (3)0.005 (2)0.040 (3)0.018 (2)
O20.059 (3)0.039 (2)0.075 (3)0.012 (2)0.003 (2)0.010 (2)
P10.0313 (7)0.0320 (7)0.0314 (7)0.0006 (6)0.0097 (5)0.0040 (6)
Geometric parameters (Å, º) top
C1—C61.385 (6)C14—H140.9300
C1—C21.407 (6)C15—C161.382 (9)
C1—P11.845 (5)C15—H150.9300
C2—C31.374 (7)C16—C171.360 (8)
C2—C71.505 (6)C16—H160.9300
C3—C41.367 (7)C17—H170.9300
C3—H30.9300C18—N21.439 (6)
C4—C51.368 (7)C18—H18A0.9700
C4—H40.9300C18—H18B0.9700
C5—C61.366 (7)C19—N21.463 (6)
C5—H50.9300C19—C201.502 (8)
C6—H60.9300C19—H19A0.9700
C7—N11.456 (6)C19—H19B0.9700
C7—H7A0.9700C20—O21.420 (7)
C7—H7B0.9700C20—H20A0.9700
C8—N11.444 (6)C20—H20B0.9700
C8—C91.491 (8)C21—N21.454 (6)
C8—H8A0.9700C21—C221.496 (7)
C8—H8B0.9700C21—H21A0.9700
C9—O11.418 (7)C21—H21B0.9700
C9—H9A0.9700C22—O21.423 (6)
C9—H9B0.9700C22—H22A0.9700
C10—N11.465 (6)C22—H22B0.9700
C10—C111.499 (7)C23—C241.385 (7)
C10—H10A0.9700C23—C281.385 (7)
C10—H10B0.9700C23—P11.841 (5)
C11—O11.413 (6)C24—C251.379 (7)
C11—H11A0.9700C24—H240.9300
C11—H11B0.9700C25—C261.364 (8)
C12—C171.390 (7)C25—H250.9300
C12—C131.407 (7)C26—C271.384 (8)
C12—P11.842 (5)C26—H260.9300
C13—C141.371 (7)C27—C281.373 (8)
C13—C181.510 (7)C27—H270.9300
C14—C151.383 (8)C28—H280.9300
C6—C1—C2118.1 (4)C16—C17—C12123.4 (6)
C6—C1—P1123.6 (4)C16—C17—H17118.3
C2—C1—P1118.2 (4)C12—C17—H17118.3
C3—C2—C1118.7 (4)N2—C18—C13114.7 (4)
C3—C2—C7120.9 (4)N2—C18—H18A108.6
C1—C2—C7120.4 (4)C13—C18—H18A108.6
C4—C3—C2121.9 (5)N2—C18—H18B108.6
C4—C3—H3119.1C13—C18—H18B108.6
C2—C3—H3119.1H18A—C18—H18B107.6
C3—C4—C5119.8 (5)N2—C19—C20110.8 (5)
C3—C4—H4120.1N2—C19—H19A109.5
C5—C4—H4120.1C20—C19—H19A109.5
C6—C5—C4119.5 (5)N2—C19—H19B109.5
C6—C5—H5120.2C20—C19—H19B109.5
C4—C5—H5120.2H19A—C19—H19B108.1
C5—C6—C1122.0 (5)O2—C20—C19111.3 (5)
C5—C6—H6119.0O2—C20—H20A109.4
C1—C6—H6119.0C19—C20—H20A109.4
N1—C7—C2113.0 (4)O2—C20—H20B109.4
N1—C7—H7A109.0C19—C20—H20B109.4
C2—C7—H7A109.0H20A—C20—H20B108.0
N1—C7—H7B109.0N2—C21—C22110.7 (5)
C2—C7—H7B109.0N2—C21—H21A109.5
H7A—C7—H7B107.8C22—C21—H21A109.5
N1—C8—C9110.2 (5)N2—C21—H21B109.5
N1—C8—H8A109.6C22—C21—H21B109.5
C9—C8—H8A109.6H21A—C21—H21B108.1
N1—C8—H8B109.6O2—C22—C21110.9 (5)
C9—C8—H8B109.6O2—C22—H22A109.5
H8A—C8—H8B108.1C21—C22—H22A109.5
O1—C9—C8112.5 (5)O2—C22—H22B109.5
O1—C9—H9A109.1C21—C22—H22B109.5
C8—C9—H9A109.1H22A—C22—H22B108.0
O1—C9—H9B109.1C24—C23—C28118.2 (5)
C8—C9—H9B109.1C24—C23—P1125.6 (4)
H9A—C9—H9B107.8C28—C23—P1116.3 (4)
N1—C10—C11109.9 (4)C25—C24—C23121.3 (5)
N1—C10—H10A109.7C25—C24—H24119.4
C11—C10—H10A109.7C23—C24—H24119.4
N1—C10—H10B109.7C26—C25—C24119.7 (6)
C11—C10—H10B109.7C26—C25—H25120.1
H10A—C10—H10B108.2C24—C25—H25120.1
O1—C11—C10112.1 (5)C25—C26—C27120.0 (6)
O1—C11—H11A109.2C25—C26—H26120.0
C10—C11—H11A109.2C27—C26—H26120.0
O1—C11—H11B109.2C28—C27—C26120.1 (6)
C10—C11—H11B109.2C28—C27—H27119.9
H11A—C11—H11B107.9C26—C27—H27119.9
C17—C12—C13116.4 (5)C27—C28—C23120.7 (6)
C17—C12—P1124.4 (4)C27—C28—H28119.6
C13—C12—P1119.1 (4)C23—C28—H28119.6
C14—C13—C12119.9 (5)C8—N1—C7111.1 (4)
C14—C13—C18119.0 (5)C8—N1—C10109.1 (4)
C12—C13—C18121.1 (5)C7—N1—C10111.7 (4)
C13—C14—C15122.5 (6)C18—N2—C21112.8 (4)
C13—C14—H14118.8C18—N2—C19111.1 (4)
C15—C14—H14118.8C21—N2—C19108.9 (4)
C16—C15—C14117.9 (6)C11—O1—C9108.9 (4)
C16—C15—H15121.0C20—O2—C22109.9 (4)
C14—C15—H15121.0C23—P1—C12100.6 (2)
C17—C16—C15119.9 (6)C23—P1—C1101.2 (2)
C17—C16—H16120.0C12—P1—C1102.2 (2)
C15—C16—H16120.0
C6—C1—C2—C30.1 (7)C24—C25—C26—C270.3 (9)
P1—C1—C2—C3179.5 (4)C25—C26—C27—C280.5 (10)
C6—C1—C2—C7178.3 (4)C26—C27—C28—C230.1 (9)
P1—C1—C2—C71.2 (6)C24—C23—C28—C271.4 (8)
C1—C2—C3—C40.8 (7)P1—C23—C28—C27179.5 (4)
C7—C2—C3—C4179.2 (5)C9—C8—N1—C7180.0 (5)
C2—C3—C4—C50.8 (8)C9—C8—N1—C1056.4 (6)
C3—C4—C5—C60.1 (8)C2—C7—N1—C8169.7 (4)
C4—C5—C6—C11.0 (8)C2—C7—N1—C1068.2 (5)
C2—C1—C6—C51.0 (7)C11—C10—N1—C856.4 (6)
P1—C1—C6—C5179.6 (4)C11—C10—N1—C7179.7 (4)
C3—C2—C7—N1120.4 (5)C13—C18—N2—C2164.1 (6)
C1—C2—C7—N161.3 (6)C13—C18—N2—C19173.4 (5)
N1—C8—C9—O158.5 (7)C22—C21—N2—C18179.5 (4)
N1—C10—C11—O158.3 (6)C22—C21—N2—C1956.6 (6)
C17—C12—C13—C141.4 (7)C20—C19—N2—C18179.5 (5)
P1—C12—C13—C14177.5 (4)C20—C19—N2—C2155.6 (6)
C17—C12—C13—C18176.6 (5)C10—C11—O1—C957.8 (7)
P1—C12—C13—C180.5 (6)C8—C9—O1—C1157.9 (7)
C12—C13—C14—C152.1 (9)C19—C20—O2—C2258.0 (6)
C18—C13—C14—C15176.0 (5)C21—C22—O2—C2058.9 (6)
C13—C14—C15—C161.5 (10)C24—C23—P1—C1283.7 (5)
C14—C15—C16—C170.3 (10)C28—C23—P1—C1297.4 (4)
C15—C16—C17—C120.3 (10)C24—C23—P1—C121.1 (5)
C13—C12—C17—C160.3 (8)C28—C23—P1—C1157.8 (4)
P1—C12—C17—C16176.2 (5)C17—C12—P1—C2316.0 (5)
C14—C13—C18—N2121.9 (5)C13—C12—P1—C23159.8 (4)
C12—C13—C18—N260.1 (6)C17—C12—P1—C188.0 (5)
N2—C19—C20—O257.3 (7)C13—C12—P1—C196.2 (4)
N2—C21—C22—O259.1 (6)C6—C1—P1—C2383.1 (4)
C28—C23—C24—C252.3 (8)C2—C1—P1—C2397.4 (4)
P1—C23—C24—C25178.8 (4)C6—C1—P1—C1220.4 (4)
C23—C24—C25—C261.8 (9)C2—C1—P1—C12159.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O1i0.932.463.370 (8)166
C11—H11B···O2ii0.972.553.426 (6)151
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC28H33N2O2P
Mr460.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)14.640 (7), 11.656 (5), 14.998 (7)
β (°) 101.950 (9)
V3)2504 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.30 × 0.26 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.960, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
17694, 4412, 3184
Rint0.099
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.112, 0.207, 1.23
No. of reflections4412
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.27

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND 3 (Brandenburg & Putz, 2006) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O1i0.932.463.370 (8)166
C11—H11B···O2ii0.972.553.426 (6)151
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y1, z.
 

Acknowledgements

We thank the National Center for X-ray Diffraction, Cluj-Napoca, Romania, for support of the solid-state structure determinations.

References

First citationAlonso, M. A., Casares, J. A., Espinet, P., Soulantica, K., Orpen, A. G. & Phetmung, H. (2003). Inorg. Chem. 42, 3856–3864.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrammer, L., Mareque Rivas, J. C. & Spilling, C. D. (2000). J. Organomet. Chem. 609, 36–43.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChuit, C., Corriu, R. J. P., Monforte, P., Reyk, C., Declercq, J.-P. & Dubourg, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1430–1432.  CSD CrossRef Web of Science Google Scholar
First citationCopolovici, D., Silvestru, C., Isaia, F. & Varga, R. A. (2008). Acta Cryst. E64, m1057–m1058.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCopolovici, D., Silvestru, C. & Varga, R. A. (2007). Acta Cryst. E63, o2465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCopolovici, D., Silvestru, C. & Varga, R. A. (2008). Acta Cryst. C64, m37–m39.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEmsley, J. (1994). In Die Elemente. Berlin: Walter de Gruyter.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFierro-Arias, J. G., Redon, R., Garcia, J. J., Hernandez-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2005). J. Mol. Catal. A Chem. 233, 17–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationGraaf, W. de, Harder, S., Boersma, J., van Koten, G. & Kanters, J. A. (1988). J. Organomet. Chem. 358, 545–562.  Google Scholar
First citationKapteijn, G. M., Spee, M. P. R., Grove, D. M., Kooijman, H., Spek, A. L. & van Koten, G. (1996). Organometallics, 15, 1405–1413.  CSD CrossRef CAS Web of Science Google Scholar
First citationPfeiffer, J., Kickelbick, G. & Schubert, U. (2000). Organometallics, 19, 62–71.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3158-o3159
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds