metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1512-m1513

catena-Poly[[[bis­­(N,N-di­methyl­formamide)iron(II)]-{μ-2,2′-bis­­(di­phenyl­phosphino­yl)-N,N′-[(1R,2R)-cyclo­hexane-1,2-di­yl]dibenzamide}] bis­­(perchlorate) N,N-di­methyl­formamide disolvate]

aDepartment of Chemistry and Biochemistry, University of San Diego, 5998 Alcalá Park, San Diego, CA 92110, USA, and bDepartment of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: cjdaley@sandiego.edu

(Received 11 September 2009; accepted 28 October 2009; online 4 November 2009)

The title extended solid coordination compound, {[Fe(C44H40N2O4P2)(C3H7NO)2](ClO4)2·2C3H7NO}n, was crystallized un­ex­pectedly from the reaction mixture containing the Trost ligand (1R,2R)-(+)-1,2-diamino­cyclo­hexane-N,N′-bis­(2′-di­phenyl­phosphinobenzo­yl) and Fe(ClO4)2·6H2O in a 1:1 ratio in dimethyl­formamide (DMF) under reflux conditions. The polymeric complex is characterized by FeII metal centers that are coordinated by two oxidized Trost ligands, each coordinated in a bidentate fashion in a square plane, along with two DMF mol­ecules above and below the plane [average Fe—ODMF = 2.086 (4) Å], forming an overall pseudo-octa­hedral geometry. The Trost ligand binds adjacent FeII centers, each FeII being bound through the O atom of one of the phosphine oxides [average Fe—OPPh2 = 2.115 (4) Å] and the carbonyl O atom of the adjacent amide [average Fe—Oamide = 2.192 (3) Å]. Disorder is observed in the co-solvated solvent: there are two DMF mol­ecules per FeII centre, which were modeled as one DMF mol­ecule with complete occupancy and the other being modeled in two positions with equal occupancy. Disorder was also observed with one of the perchlorate anions, which was modeled in two positions with 0.75:0.25 occupancy.

Related literature

For a general background to diamidato-bis­(phosphine) ligand systems, see: Trost et al. (1994[Trost, B. M., Breit, B. & Organ, M. G. (1994). Tetrahedron Lett. 35, 5817-5820.]); Chahan et al. (2006[Chahen, L. Karmazin-Brelot, L. & Süss-Fink, G. (2006). Inorg. Chem. Commun. 9, 1151-1154.]); Burger et al. (2003[Burger, S., Therrien, B. & Süss-Fink, G. (2003). Eur. J. Inorg. Chem. pp. 3099-3103.]); Campos et al. (2005[Campos, K. R., Journet, M., Lee, S., Grabowski, E. J. & Tillyer, R. D. (2005). J. Org. Chem. 70, 268-274]). For related structures of iron complexes with bis­(imino­phospho­rane)-bis­(phosphine oxide) ligands, see: Buchard et al. (2009[Buchard, A., Heuclin, H., Auffrant, A., Le Goff, X. F. & Le Floch, P. (2009). Dalton Trans. pp. 1659-1667.]). For Fe-OAmide bond distances, see: Mandal & Que (1997[Mandal, S. K. & Que, L. Jr (1997). Inorg. Chem. 36, 5424-5425.]); Constant et al. (1971[Constant, G., Daran, J. C. & Jeannin, Y. (1971). J. Inorg. Nuc. Chem. 33, 4209-4217.]); Müller et al. (1989[Müller, A., Schladerbeck, N. H., Krickenmeyer, E., Bögge, H. & Schmitz, K. (1989). Z. Anorg. Allg. Chem. 570, 7-36.]). For Fe—OPPh2 bond lengths, see: Buchard et al. (2009[Buchard, A., Heuclin, H., Auffrant, A., Le Goff, X. F. & Le Floch, P. (2009). Dalton Trans. pp. 1659-1667.]); Escriche et al. (2006[Escriche, L., Casabó, J., Muns, V., Kivekäs, R. & Sillanpää, R. (2006). Polyhedron, 25, 801-808.]); For the preparation, see: Gao et al. (1996[Gao, J.-X., Wan, H.-L., Wong, W.-K., Tse, M.-C. & Wong, W.-T. (1996). Polyhedron, 15, 1241-1251.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C44H40N2O4P2)(C3H7NO)2]·(ClO4)2·2C3H7NO

  • Mr = 1269.85

  • Orthorhombic, P 21 21 21

  • a = 10.9725 (4) Å

  • b = 15.4417 (6) Å

  • c = 36.2173 (14) Å

  • V = 6136.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 150 K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.914

  • 41558 measured reflections

  • 12467 independent reflections

  • 9643 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.197

  • S = 1.04

  • 12467 reflections

  • 820 parameters

  • 110 restraints

  • H-atom parameters constrained

  • Δρmax = 0.90 e Å−3

  • Δρmin = −0.68 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5499 Friedel pairs

  • Flack parameter: 0.01 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

In the course of examining metal-amidato systems, we reacted the Trost ligand (1R,2R)-(+)-1,2- diaminocyclohexane-N,N'-bis(2'-diphenylphosphinobenzoyl) with Fe(ClO4)2.6H2O in order to form the tetracoordinated FeII complex using similar conditions reported by Wong (Gao et al., 1996) for the analogous RuII complex (Figure 1). Using Fe(ClO4)2.6H2O as the metal salt and DMF as the solvent, a pale brown solid was obtained which was recrystallized for x-ray analysis.

The structure of the extended cation of [[Fe(µ-(κ4-O1:O2, O1': O2' H2N2(P O)2)2(DMF)2](ClO4)2.2DMF]x is shown in Figure 2. It is noted that adventitious water and/or oxygen oxidized the phosphine moieties. Only one isomer of the product was observed; where two oxidized Trost ligands (phosphine oxides) adopt a trans-coordination geometry with respect to each other, and two DMF molecules binding to the apical sites forming an octahedral FeII complex (Figure 3). The ligands bond to FeII through the amide carbonyl O atom and the O atom of the oxidized PPh2 unit. The Fe—OPPh2 bond lengths are 2.089 (3) and 2.140 (4) Å, which are in the range of those reported (2.097 (2) - 2.132 (2) Å) for other FeII phosphine oxide complexes (e.g. Buchard et al., 2009 and Escriche et al., 2006).

The Fe-OAmide bond distances (2.187 (3) and 2.197 (3) Å) are longer than those observed in [FeII(BPGm)(O2CCH3)(CH3OH)]BPh4 (2.170 (5) Å; BPGm = bis(2-pyridylmethyl)glycinamide: Mandal et al., 1997) and significantly longer than those in Fe—ODMF complexes (2.12 Å average; Constant et al., 1971; Müller et al., 1989), including those in the title structure (Fe—ODMF: 2.084 (4) and 2.087 (4) Å). Disorder was observed solely from the co-solvated DMF molecules and one of the perchlorate anions (see Figure 3). The co-solvated DMF was modeled with one molecule at 100% occupancy and the other modeled at two positions (DMF's containing N3s and N4s) with 50:50 occupancy. Bond distances of one DMF molecule were restrained owing to unmodelable disorder. The disordered perchlorate ion (containing Cl2) was modeled in two positions with 75:25 occupancy and some of the thermal parameters were restrained to be similar to each other because of NPD's.

Related literature top

For a general background to diamidato-bis(phosphine) ligand systems, see: Trost et al. (1994); Chahan et al. (2006); Burger et al. (2003); Campos et al. (2005). For related structures of iron complexes with bis(iminophosphorane)-bis(phosphine oxide) ligands, see: Buchard et al. (2009). For Fe-OAmide bond distances, see: Mandal & Que (1997); Constant et al. (1971); Müller et al. (1989). For Fe—OPPh2 bond lengths, see: Buchard et al. (2009); Escriche et al. (2006); For the preparation, see: Gao et al. (1996).

Experimental top

To a 100 ml sidearm flask containing a stirbar and ligand (1R,2R)-(+)-1,2- diaminocyclohexane-N,N'-bis(2'-diphenylphosphinobenzoyl) (0.1235 g, 1.787x10-4 mol) was added Fe(ClO4)2.6 H2O (0.06650 g, 1.833x10-4 mol). The sidearm had a septum placed on it and was evacuated under high vacuum and re-filled with N2 (x3) and left under an N2 atmosphere. De-oxygenated acetonitrile (dried via Innovative Technologies solvent purification system: SPS) was cannulated (25 ml) into the sidearm. The mixture was left unstirred for 4 h and then it was stirred and all solid dissolved leaving a light yellow solution. The septum on the sidearm was replaced with a reflux condenser and gas-inlet adaptor (oven dried overnight), all flushed with N2. The reaction mixture was heated to reflux in an oil bath (80–85 °C) and left to stir for 14 h. The solution was cooled to room temperature and the solution was filtered into another sidearm flask. The filtrate solvent was removed under reduced pressure leaving a resulting brown solid (mass) that was transferred to the glovebox for storage. The solid (20 mg) was dissolved in minimal DMF (dried via SPS), filtered to remove any undissolved particles, and placed in a 1 dram vial. The vial was placed in a 3 dram vial containing diethyl ether (dried via SPS) and the 3 dram vial was sealed to allow vapor diffusion crystallization to occur. After 2 days, oval crystals of the title complex precipitated and one was characterized by x-ray crystallography.

Refinement top

Owing to unmodelable disorder, the bond distances on one of the co-solvated molecules of DMF was restrained. Furthermore, one of the co-solvated DMF molecules was disordered 75:25. One of the perchlorates was disordered 50:50 and some of the thermal parameters were restrained to be similar to each other because of NPD's.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORETP-3 (Farrugia, 1997); software used to prepare material for publication: pubCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Reported synthesis of a neutral RuII complex containing an achiral aliphatic Trost ligand analogue.
[Figure 2] Fig. 2. Perspective view of the polymeric cationic portion of the title structure showing three FeII centers and the coordination geometry of the oxidized Trost ligand ((1R,2R)-(+)-1,2- diaminocyclohexane-N,N'-bis(2'-diphenyloxophosphinobenzoyl)) that bridges adjacent FeII centers in the polymer. H-atoms, co-solvated DMF, and ClO4- anions are not displayed for clarity. Thermal ellipsoids are drawn at 30% probability.
[Figure 3] Fig. 3. A secondary perspective view showing the asymmetric unit of the title compound including the ClO4- anions and co-solvated DMF molecules. H-atoms and the phenyl ring substituents of the phosphines have been omitted for clarity. Thermal ellipsoids are drawn at 30% probability.
catena-Poly[[[bis(N,N-dimethylformamide)iron(II)]- {µ-2,2'-bis(diphenylphosphinoyl)-N,N'-[(1R,2R)- cyclohexane-1,2-diyl]dibenzamide}] bis(perchlorate) N,N-dimethylformamide disolvate] top
Crystal data top
[Fe(C44H40N2O4P2)(C3H7NO)2]·(ClO4)2·2C3H7NOF(000) = 2656
Mr = 1269.85Dx = 1.375 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9959 reflections
a = 10.9725 (4) Åθ = 2.2–25.6°
b = 15.4417 (6) ŵ = 0.46 mm1
c = 36.2173 (14) ÅT = 150 K
V = 6136.4 (4) Å3Block, yellow
Z = 40.25 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
12467 independent reflections
Radiation source: fine-focus sealed tube9643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ and ω scansθmax = 26.4°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.895, Tmax = 0.914k = 1918
41558 measured reflectionsl = 4445
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.069 w = 1/[σ2(Fo2) + (0.1202P)2 + 2.5012P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.197(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.90 e Å3
12467 reflectionsΔρmin = 0.68 e Å3
820 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 restraintsExtinction coefficient: 0.0008 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 5499 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (2)
Crystal data top
[Fe(C44H40N2O4P2)(C3H7NO)2]·(ClO4)2·2C3H7NOV = 6136.4 (4) Å3
Mr = 1269.85Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.9725 (4) ŵ = 0.46 mm1
b = 15.4417 (6) ÅT = 150 K
c = 36.2173 (14) Å0.25 × 0.25 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
12467 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
9643 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.914Rint = 0.053
41558 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.197Δρmax = 0.90 e Å3
S = 1.04Δρmin = 0.68 e Å3
12467 reflectionsAbsolute structure: Flack (1983), 5499 Friedel pairs
820 parametersAbsolute structure parameter: 0.01 (2)
110 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3022 (4)0.4030 (3)0.86152 (14)0.0348 (12)
C20.3236 (5)0.4777 (4)0.83557 (16)0.0398 (12)
C30.2628 (6)0.5532 (4)0.84174 (19)0.0558 (17)
H30.20190.55570.86030.067*
C40.2895 (7)0.6270 (4)0.8209 (2)0.071 (2)
H40.24960.68030.82600.085*
C50.3751 (7)0.6214 (5)0.7927 (2)0.067 (2)
H50.39270.67090.77800.080*
C60.4335 (6)0.5457 (4)0.78609 (18)0.0535 (16)
H60.49130.54260.76660.064*
C70.4099 (5)0.4708 (4)0.80771 (14)0.0398 (12)
C80.1502 (4)0.3087 (3)0.89115 (13)0.0311 (11)
H80.19440.31670.91510.037*
C90.0127 (4)0.3125 (3)0.89886 (13)0.0292 (10)
H90.03170.30130.87520.035*
C100.0212 (5)0.2422 (3)0.92629 (15)0.0359 (12)
H10A0.02030.25360.95010.043*
H10B0.11020.24390.93070.043*
C110.0139 (5)0.1532 (3)0.91265 (16)0.0383 (12)
H11A0.03570.13870.89070.046*
H11B0.00440.11000.93210.046*
C120.1476 (5)0.1480 (4)0.90273 (16)0.0384 (12)
H12A0.16510.09110.89130.046*
H12B0.19740.15310.92540.046*
C130.1821 (5)0.2198 (3)0.87601 (15)0.0372 (12)
H13A0.13880.21070.85230.045*
H13B0.27070.21710.87100.045*
C140.8661 (4)0.4277 (3)0.90926 (13)0.0271 (10)
C150.8451 (4)0.5177 (3)0.92230 (13)0.0275 (10)
C160.9171 (5)0.5839 (3)0.90780 (15)0.0385 (12)
H160.98110.56970.89120.046*
C170.8976 (5)0.6692 (4)0.91698 (17)0.0425 (13)
H170.94860.71320.90710.051*
C180.8029 (5)0.6908 (3)0.94073 (17)0.0420 (13)
H180.78850.74970.94690.050*
C190.7292 (4)0.6265 (3)0.95554 (15)0.0348 (11)
H190.66450.64180.97170.042*
C200.7491 (4)0.5390 (3)0.94691 (13)0.0272 (10)
C210.3980 (5)0.2834 (4)0.79526 (14)0.0370 (12)
C220.2800 (6)0.2909 (5)0.78274 (17)0.0523 (16)
H220.24560.34660.77880.063*
C230.2120 (7)0.2179 (6)0.77596 (19)0.067 (2)
H230.13050.22350.76750.080*
C240.2604 (7)0.1373 (5)0.78130 (18)0.063 (2)
H240.21350.08700.77610.076*
C250.3760 (7)0.1300 (5)0.79404 (17)0.0575 (17)
H250.40910.07400.79810.069*
C260.4467 (6)0.2018 (4)0.80121 (17)0.0484 (15)
H260.52770.19540.81010.058*
C270.5632 (6)0.3843 (4)0.75390 (17)0.0515 (15)
C280.4870 (8)0.3819 (5)0.72211 (17)0.0629 (18)
H280.40090.37990.72470.075*
C290.5387 (10)0.3824 (5)0.6877 (2)0.078 (2)
H290.48700.38190.66670.094*
C300.6579 (10)0.3836 (6)0.6828 (2)0.082 (2)
H300.69030.38340.65850.098*
C310.7384 (9)0.3851 (8)0.7137 (2)0.100 (3)
H310.82420.38460.71030.120*
C320.6868 (7)0.3874 (6)0.74988 (19)0.076 (2)
H320.73800.39090.77100.091*
C330.5714 (4)0.5073 (3)1.00510 (13)0.0284 (10)
C340.4438 (5)0.5076 (3)1.00321 (15)0.0362 (12)
H340.40130.48180.98320.043*
C350.3810 (5)0.5486 (4)1.03304 (17)0.0453 (14)
H350.29450.55161.03280.054*
C360.4436 (6)0.5833 (4)1.06169 (17)0.0468 (15)
H360.40030.60911.08160.056*
C370.5691 (6)0.5815 (3)1.06238 (16)0.0445 (14)
H370.61140.60611.08270.053*
C380.6335 (5)0.5446 (3)1.03398 (15)0.0367 (11)
H380.72000.54481.03430.044*
C390.7466 (4)0.3751 (3)0.98693 (12)0.0250 (9)
C400.7016 (4)0.2908 (3)0.98801 (13)0.0273 (10)
H400.62760.27710.97570.033*
C410.7653 (4)0.2262 (3)1.00714 (14)0.0301 (10)
H410.73450.16871.00790.036*
C420.8727 (4)0.2465 (3)1.02483 (14)0.0321 (11)
H420.91510.20341.03840.039*
C430.9184 (4)0.3294 (3)1.02275 (13)0.0330 (11)
H430.99390.34201.03440.040*
C440.8582 (4)0.3948 (3)1.00422 (13)0.0290 (10)
H440.89120.45161.00320.035*
C1S0.6579 (7)0.5532 (4)0.85218 (17)0.0546 (16)
H1S0.71350.51720.83920.066*
C2S0.5853 (9)0.6966 (4)0.8653 (2)0.075 (2)
H2S10.52090.71720.84870.112*
H2S20.63380.74600.87380.112*
H2S30.54840.66740.88660.112*
C3S0.7590 (17)0.6723 (8)0.8206 (3)0.162 (7)
H3S10.82050.62750.81610.244*
H3S20.79770.72270.83210.244*
H3S30.72190.68950.79710.244*
C4S0.5363 (6)0.1985 (6)0.89094 (18)0.0617 (19)
H4S0.45830.21260.88130.074*
C5S0.4706 (8)0.0542 (6)0.8859 (3)0.087 (3)
H5S10.44430.02300.90810.130*
H5S20.50280.01300.86790.130*
H5S30.40090.08500.87530.130*
C6S0.6682 (7)0.0843 (5)0.9135 (2)0.076 (2)
H6S10.71450.13400.92270.114*
H6S20.71850.05160.89600.114*
H6S30.64540.04680.93420.114*
C7S0.7337 (14)0.0738 (12)0.7958 (4)0.073 (4)0.50
H7S0.73100.04000.77380.087*0.50
C8S0.8177 (13)0.2045 (12)0.8203 (6)0.088 (6)0.50
H8S10.87420.18240.83900.132*0.50
H8S20.73870.21670.83180.132*0.50
H8S30.85060.25780.80950.132*0.50
C9S0.8683 (14)0.1656 (15)0.7617 (5)0.090 (6)0.50
H9S10.81140.18250.74210.136*0.50
H9S20.91580.11530.75360.136*0.50
H9S30.92340.21390.76700.136*0.50
C10S0.0132 (11)0.3143 (10)0.6572 (3)0.072 (4)0.50
H10S0.02340.26200.66540.087*0.50
C11S0.0111 (14)0.4612 (9)0.6631 (3)0.073 (5)0.50
H11C0.04970.46050.64330.110*0.50
H11D0.08200.49520.65530.110*0.50
H11E0.02450.48740.68530.110*0.50
C12S0.1468 (17)0.3777 (13)0.6934 (5)0.211 (17)0.50
H12C0.12090.39130.71870.317*0.50
H12D0.20270.42270.68460.317*0.50
H12E0.18830.32150.69310.317*0.50
C13S0.1600 (6)0.5598 (4)0.96013 (19)0.0507 (15)
H13S0.09380.57190.97630.061*
C14S0.2130 (8)0.7101 (4)0.9664 (2)0.0675 (19)
H14A0.13440.71100.97930.101*
H14B0.21180.75220.94620.101*
H14C0.27810.72510.98380.101*
C15S0.3432 (7)0.6118 (5)0.92843 (18)0.0641 (18)
H15A0.35020.55080.92140.096*
H15B0.41600.62920.94230.096*
H15C0.33590.64760.90620.096*
Cl10.50260 (15)0.85461 (10)0.94046 (5)0.0593 (4)
Cl20.9939 (3)0.4579 (3)0.78860 (11)0.0913 (10)0.75
Fe10.58549 (6)0.38649 (5)0.885291 (19)0.02820 (18)
N10.1873 (4)0.3786 (3)0.86586 (11)0.0339 (9)
H1N0.13050.40540.85310.041*
N20.9789 (3)0.3981 (3)0.91209 (11)0.0281 (8)
H2N1.03500.43110.92230.034*
Cl2B0.9774 (11)0.5106 (10)0.7963 (4)0.110 (3)0.25
N1S0.6622 (7)0.6372 (4)0.84593 (15)0.0696 (18)
N2S0.5616 (7)0.1139 (4)0.89539 (18)0.0749 (19)
N3S0.8031 (10)0.1444 (9)0.7934 (3)0.062 (3)0.50
N4S0.0485 (10)0.3745 (7)0.6712 (2)0.058 (3)0.50
N5S0.2350 (5)0.6237 (3)0.95160 (14)0.0476 (12)
O10.5973 (3)0.3611 (3)0.82730 (10)0.0453 (9)
O20.3882 (3)0.3688 (3)0.87832 (10)0.0365 (8)
O30.5607 (3)0.4197 (2)0.94070 (9)0.0315 (8)
O40.7818 (3)0.3839 (2)0.89566 (9)0.0336 (8)
O1A0.4093 (5)0.8463 (4)0.91396 (16)0.0812 (16)
O2A0.5138 (5)0.7759 (3)0.96162 (16)0.0766 (15)
O3A0.4698 (7)0.9222 (4)0.96452 (19)0.105 (2)
O4A0.6165 (5)0.8726 (3)0.9218 (2)0.095 (2)
O5A0.9724 (9)0.3674 (6)0.7799 (4)0.139 (4)0.75
O6A0.9855 (6)0.4607 (5)0.82655 (17)0.112 (2)
O7A0.9060 (7)0.5084 (5)0.7701 (2)0.117 (2)
O8A1.1074 (7)0.4787 (6)0.7775 (3)0.130 (2)
O9A0.990 (3)0.5906 (16)0.8090 (8)0.111 (9)0.25
O1S0.5875 (3)0.5186 (2)0.87352 (9)0.0377 (8)
O2S0.6001 (4)0.2549 (3)0.89770 (12)0.0531 (11)
O3S0.6748 (11)0.0458 (9)0.8204 (3)0.085 (3)0.50
O4S0.0973 (11)0.2932 (8)0.6382 (3)0.092 (4)0.50
O5S0.1713 (4)0.4836 (3)0.94803 (15)0.0652 (13)
P10.50025 (13)0.37469 (10)0.79961 (4)0.0402 (3)
P20.65128 (10)0.45737 (8)0.96670 (3)0.0258 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.034 (3)0.032 (3)0.039 (3)0.005 (2)0.009 (2)0.008 (2)
C20.037 (3)0.031 (3)0.051 (3)0.002 (2)0.004 (2)0.000 (3)
C30.058 (4)0.036 (4)0.073 (4)0.001 (3)0.023 (3)0.007 (3)
C40.078 (5)0.032 (4)0.102 (6)0.009 (3)0.019 (4)0.012 (4)
C50.078 (5)0.043 (4)0.080 (5)0.005 (4)0.021 (4)0.021 (4)
C60.058 (4)0.043 (4)0.059 (4)0.010 (3)0.022 (3)0.003 (3)
C70.047 (3)0.036 (3)0.037 (3)0.005 (3)0.003 (2)0.001 (2)
C80.025 (2)0.034 (3)0.035 (3)0.002 (2)0.001 (2)0.003 (2)
C90.028 (2)0.027 (3)0.033 (2)0.002 (2)0.0004 (19)0.001 (2)
C100.030 (2)0.035 (3)0.043 (3)0.004 (2)0.007 (2)0.002 (2)
C110.042 (3)0.029 (3)0.044 (3)0.000 (2)0.003 (2)0.001 (2)
C120.040 (3)0.027 (3)0.048 (3)0.005 (2)0.000 (2)0.005 (2)
C130.036 (3)0.032 (3)0.044 (3)0.009 (2)0.005 (2)0.003 (2)
C140.023 (2)0.028 (3)0.030 (2)0.0010 (19)0.0018 (19)0.005 (2)
C150.024 (2)0.026 (3)0.032 (2)0.0004 (19)0.0040 (19)0.005 (2)
C160.033 (2)0.031 (3)0.051 (3)0.004 (2)0.011 (2)0.005 (2)
C170.042 (3)0.025 (3)0.060 (3)0.004 (2)0.008 (3)0.006 (3)
C180.045 (3)0.017 (3)0.064 (4)0.003 (2)0.008 (3)0.002 (3)
C190.032 (2)0.025 (3)0.047 (3)0.000 (2)0.003 (2)0.007 (2)
C200.026 (2)0.018 (2)0.038 (2)0.0020 (19)0.0053 (19)0.003 (2)
C210.041 (3)0.036 (3)0.034 (3)0.003 (2)0.003 (2)0.003 (2)
C220.062 (4)0.050 (4)0.044 (3)0.015 (3)0.003 (3)0.012 (3)
C230.068 (4)0.076 (6)0.055 (4)0.024 (4)0.003 (3)0.016 (4)
C240.084 (5)0.058 (5)0.048 (4)0.034 (4)0.015 (3)0.013 (3)
C250.083 (5)0.041 (4)0.048 (3)0.011 (3)0.011 (3)0.005 (3)
C260.050 (3)0.046 (4)0.049 (3)0.002 (3)0.010 (3)0.001 (3)
C270.071 (4)0.033 (3)0.050 (3)0.003 (3)0.015 (3)0.005 (3)
C280.095 (5)0.049 (4)0.045 (3)0.013 (4)0.007 (3)0.006 (3)
C290.136 (8)0.042 (4)0.056 (4)0.023 (5)0.014 (4)0.010 (4)
C300.121 (7)0.063 (5)0.061 (4)0.013 (6)0.023 (5)0.006 (4)
C310.093 (6)0.139 (10)0.068 (5)0.017 (7)0.038 (5)0.022 (6)
C320.069 (5)0.105 (7)0.054 (4)0.004 (5)0.025 (3)0.002 (5)
C330.032 (2)0.019 (2)0.035 (2)0.0056 (19)0.010 (2)0.008 (2)
C340.036 (3)0.029 (3)0.043 (3)0.006 (2)0.006 (2)0.010 (2)
C350.039 (3)0.037 (3)0.060 (4)0.018 (2)0.014 (3)0.015 (3)
C360.069 (4)0.028 (3)0.044 (3)0.014 (3)0.015 (3)0.010 (3)
C370.067 (4)0.020 (3)0.047 (3)0.006 (3)0.000 (3)0.003 (2)
C380.040 (3)0.023 (2)0.047 (3)0.001 (2)0.003 (2)0.004 (2)
C390.023 (2)0.021 (2)0.031 (2)0.0029 (18)0.0029 (17)0.003 (2)
C400.024 (2)0.022 (2)0.036 (3)0.0026 (18)0.0012 (19)0.003 (2)
C410.033 (2)0.018 (2)0.039 (3)0.0000 (19)0.004 (2)0.004 (2)
C420.026 (2)0.031 (3)0.039 (3)0.007 (2)0.0063 (19)0.010 (2)
C430.024 (2)0.033 (3)0.042 (3)0.003 (2)0.011 (2)0.004 (2)
C440.029 (2)0.022 (2)0.036 (2)0.000 (2)0.0024 (19)0.003 (2)
C1S0.075 (4)0.046 (4)0.043 (3)0.012 (3)0.001 (3)0.001 (3)
C2S0.120 (6)0.030 (4)0.074 (5)0.011 (4)0.018 (5)0.008 (4)
C3S0.293 (19)0.112 (10)0.082 (7)0.093 (12)0.047 (10)0.022 (7)
C4S0.045 (3)0.090 (6)0.050 (4)0.008 (4)0.009 (3)0.006 (4)
C5S0.086 (5)0.081 (6)0.094 (6)0.028 (5)0.019 (5)0.001 (5)
C6S0.074 (5)0.066 (5)0.089 (5)0.029 (4)0.024 (4)0.027 (5)
C7S0.058 (8)0.099 (14)0.061 (9)0.007 (9)0.004 (7)0.003 (9)
C8S0.047 (8)0.094 (13)0.124 (14)0.032 (8)0.027 (9)0.042 (12)
C9S0.058 (8)0.138 (18)0.075 (10)0.026 (10)0.008 (8)0.036 (11)
C10S0.099 (9)0.083 (9)0.036 (6)0.057 (8)0.012 (6)0.012 (6)
C11S0.076 (9)0.101 (12)0.044 (7)0.007 (9)0.021 (7)0.049 (8)
C12S0.25 (3)0.079 (15)0.31 (3)0.088 (18)0.19 (3)0.12 (2)
C13S0.043 (3)0.038 (4)0.071 (4)0.001 (3)0.021 (3)0.006 (3)
C14S0.088 (5)0.036 (4)0.079 (5)0.002 (3)0.009 (4)0.012 (4)
C15S0.087 (5)0.051 (4)0.054 (4)0.005 (4)0.002 (4)0.005 (4)
Cl10.0557 (9)0.0319 (8)0.0903 (12)0.0051 (7)0.0153 (9)0.0077 (8)
Cl20.0628 (16)0.104 (3)0.107 (2)0.0066 (18)0.0185 (16)0.028 (2)
Fe10.0276 (3)0.0214 (3)0.0356 (3)0.0015 (3)0.0017 (3)0.0005 (3)
N10.032 (2)0.031 (2)0.039 (2)0.0011 (18)0.0006 (17)0.005 (2)
N20.0216 (18)0.026 (2)0.037 (2)0.0006 (16)0.0002 (15)0.0010 (18)
Cl2B0.103 (5)0.115 (5)0.111 (5)0.028 (5)0.023 (4)0.018 (5)
N1S0.124 (5)0.038 (3)0.046 (3)0.025 (3)0.014 (3)0.007 (3)
N2S0.118 (5)0.031 (3)0.075 (4)0.028 (4)0.008 (4)0.007 (3)
N3S0.048 (6)0.088 (9)0.050 (6)0.000 (6)0.004 (5)0.009 (6)
N4S0.107 (8)0.054 (7)0.013 (4)0.052 (6)0.001 (4)0.001 (4)
N5S0.056 (3)0.031 (3)0.055 (3)0.002 (2)0.009 (2)0.006 (2)
O10.046 (2)0.045 (2)0.045 (2)0.0051 (18)0.0048 (18)0.0127 (18)
O20.0233 (15)0.043 (2)0.0430 (19)0.0015 (14)0.0017 (14)0.0011 (17)
O30.0261 (16)0.0281 (18)0.0402 (18)0.0027 (13)0.0025 (14)0.0031 (16)
O40.0277 (15)0.0276 (18)0.0455 (19)0.0006 (15)0.0011 (14)0.0009 (17)
O1A0.078 (3)0.066 (3)0.099 (4)0.015 (3)0.027 (3)0.024 (3)
O2A0.091 (4)0.039 (3)0.100 (4)0.016 (3)0.018 (3)0.006 (3)
O3A0.156 (6)0.054 (3)0.105 (4)0.052 (4)0.033 (4)0.029 (3)
O4A0.059 (3)0.041 (3)0.186 (7)0.000 (2)0.014 (4)0.002 (4)
O5A0.112 (7)0.071 (6)0.232 (13)0.002 (5)0.055 (8)0.027 (7)
O6A0.103 (4)0.155 (5)0.077 (3)0.025 (4)0.014 (3)0.050 (4)
O7A0.103 (4)0.129 (5)0.119 (4)0.024 (4)0.043 (4)0.025 (4)
O8A0.093 (4)0.133 (5)0.164 (5)0.009 (4)0.001 (4)0.017 (5)
O9A0.14 (2)0.065 (16)0.13 (2)0.018 (15)0.002 (18)0.053 (15)
O1S0.0430 (19)0.032 (2)0.0384 (18)0.0045 (17)0.0060 (17)0.0061 (16)
O2S0.062 (3)0.031 (2)0.066 (3)0.018 (2)0.015 (2)0.004 (2)
O3S0.089 (8)0.100 (9)0.068 (6)0.012 (7)0.003 (6)0.004 (7)
O4S0.099 (8)0.079 (8)0.098 (8)0.008 (7)0.030 (7)0.010 (7)
O5S0.050 (2)0.040 (3)0.106 (4)0.000 (2)0.026 (2)0.024 (3)
P10.0423 (7)0.0364 (8)0.0421 (7)0.0046 (6)0.0086 (6)0.0012 (7)
P20.0226 (5)0.0194 (6)0.0353 (6)0.0015 (5)0.0030 (5)0.0031 (5)
Geometric parameters (Å, º) top
C1—O21.241 (6)C41—C421.378 (7)
C1—N11.325 (6)C41—H410.9500
C1—C21.506 (8)C42—C431.377 (7)
C2—C31.361 (8)C42—H420.9500
C2—C71.388 (8)C43—C441.381 (7)
C3—C41.397 (9)C43—H430.9500
C3—H30.9500C44—H440.9500
C4—C51.390 (10)C1S—O1S1.216 (7)
C4—H40.9500C1S—N1S1.318 (9)
C5—C61.355 (10)C1S—H1S0.9500
C5—H50.9500C2S—N1S1.431 (10)
C6—C71.421 (8)C2S—H2S10.9800
C6—H60.9500C2S—H2S20.9800
C7—P11.808 (6)C2S—H2S30.9800
C8—N11.474 (6)C3S—N1S1.503 (13)
C8—C131.519 (7)C3S—H3S10.9800
C8—C91.536 (6)C3S—H3S20.9800
C8—H81.0000C3S—H3S30.9800
C9—N2i1.454 (6)C4S—O2S1.144 (8)
C9—C101.518 (7)C4S—N2S1.344 (10)
C9—H91.0000C4S—H4S0.9500
C10—C111.510 (8)C5S—N2S1.401 (11)
C10—H10A0.9900C5S—H5S10.9800
C10—H10B0.9900C5S—H5S20.9800
C11—C121.513 (8)C5S—H5S30.9800
C11—H11A0.9900C6S—N2S1.416 (11)
C11—H11B0.9900C6S—H6S10.9800
C12—C131.518 (8)C6S—H6S20.9800
C12—H12A0.9900C6S—H6S30.9800
C12—H12B0.9900C7S—O3S1.185 (17)
C13—H13A0.9900C7S—N3S1.33 (2)
C13—H13B0.9900C7S—H7S0.9500
C14—O41.247 (6)C8S—N3S1.35 (2)
C14—N21.323 (6)C8S—H8S10.9800
C14—C151.485 (7)C8S—H8S20.9800
C15—C161.394 (7)C8S—H8S30.9800
C15—C201.419 (6)C9S—N3S1.39 (2)
C16—C171.376 (8)C9S—H9S10.9800
C16—H160.9500C9S—H9S20.9800
C17—C181.389 (8)C9S—H9S30.9800
C17—H170.9500C10S—O4S1.196 (14)
C18—C191.388 (7)C10S—N4S1.256 (14)
C18—H180.9500C10S—H10S0.9500
C19—C201.403 (7)C11S—N4S1.431 (14)
C19—H190.9500C11S—H11C0.9800
C20—P21.804 (5)C11S—H11D0.9800
C21—C221.377 (9)C11S—H11E0.9800
C21—C261.386 (8)C12S—N4S1.347 (16)
C21—P11.808 (6)C12S—H12C0.9800
C22—C231.375 (10)C12S—H12D0.9800
C22—H220.9500C12S—H12E0.9800
C23—C241.367 (11)C13S—O5S1.262 (7)
C23—H230.9500C13S—N5S1.322 (8)
C24—C251.354 (11)C13S—H13S0.9500
C24—H240.9500C14S—N5S1.457 (8)
C25—C261.378 (9)C14S—H14A0.9800
C25—H250.9500C14S—H14B0.9800
C26—H260.9500C14S—H14C0.9800
C27—C321.365 (10)C15S—N5S1.466 (9)
C27—C281.423 (10)C15S—H15A0.9800
C27—P11.800 (6)C15S—H15B0.9800
C28—C291.368 (10)C15S—H15C0.9800
C28—H280.9500Cl1—O3A1.406 (6)
C29—C301.321 (13)Cl1—O1A1.410 (5)
C29—H290.9500Cl1—O2A1.442 (5)
C30—C311.424 (13)Cl1—O4A1.447 (6)
C30—H300.9500Cl2—Cl2B0.878 (14)
C31—C321.429 (10)Cl2—O8A1.347 (8)
C31—H310.9500Cl2—O6A1.378 (7)
C32—H320.9500Cl2—O7A1.409 (7)
C33—C381.375 (7)Cl2—O5A1.453 (9)
C33—C341.402 (7)Fe1—O1S2.084 (4)
C33—P21.816 (5)Fe1—O2S2.087 (4)
C34—C351.430 (8)Fe1—O32.089 (3)
C34—H340.9500Fe1—O12.140 (4)
C35—C361.354 (9)Fe1—O42.187 (3)
C35—H350.9500Fe1—O22.197 (3)
C36—C371.378 (9)N1—H1N0.8800
C36—H360.9500N2—C9ii1.454 (6)
C37—C381.372 (8)N2—H2N0.8800
C37—H370.9500Cl2B—O7A1.229 (14)
C38—H380.9500Cl2B—O9A1.32 (3)
C39—C401.392 (7)Cl2B—O6A1.344 (14)
C39—C441.408 (6)Cl2B—O8A1.656 (13)
C39—P21.801 (5)O1—P11.478 (4)
C40—C411.401 (6)O3—P21.488 (4)
C40—H400.9500
O2—C1—N1122.9 (5)N1S—C2S—H2S2109.5
O2—C1—C2120.9 (4)H2S1—C2S—H2S2109.5
N1—C1—C2116.1 (5)N1S—C2S—H2S3109.5
C3—C2—C7121.3 (5)H2S1—C2S—H2S3109.5
C3—C2—C1118.5 (5)H2S2—C2S—H2S3109.5
C7—C2—C1120.1 (5)N1S—C3S—H3S1109.5
C2—C3—C4120.5 (6)N1S—C3S—H3S2109.5
C2—C3—H3119.8H3S1—C3S—H3S2109.5
C4—C3—H3119.8N1S—C3S—H3S3109.5
C5—C4—C3119.2 (7)H3S1—C3S—H3S3109.5
C5—C4—H4120.4H3S2—C3S—H3S3109.5
C3—C4—H4120.4O2S—C4S—N2S126.1 (7)
C6—C5—C4120.2 (6)O2S—C4S—H4S117.0
C6—C5—H5119.9N2S—C4S—H4S117.0
C4—C5—H5119.9N2S—C5S—H5S1109.5
C5—C6—C7121.3 (6)N2S—C5S—H5S2109.5
C5—C6—H6119.4H5S1—C5S—H5S2109.5
C7—C6—H6119.4N2S—C5S—H5S3109.5
C2—C7—C6117.5 (5)H5S1—C5S—H5S3109.5
C2—C7—P1123.7 (4)H5S2—C5S—H5S3109.5
C6—C7—P1118.6 (4)N2S—C6S—H6S1109.5
N1—C8—C13112.0 (4)N2S—C6S—H6S2109.5
N1—C8—C9110.8 (4)H6S1—C6S—H6S2109.5
C13—C8—C9109.1 (4)N2S—C6S—H6S3109.5
N1—C8—H8108.3H6S1—C6S—H6S3109.5
C13—C8—H8108.3H6S2—C6S—H6S3109.5
C9—C8—H8108.3O3S—C7S—N3S131.2 (16)
N2i—C9—C10111.9 (4)O3S—C7S—H7S114.4
N2i—C9—C8110.2 (4)N3S—C7S—H7S114.4
C10—C9—C8109.4 (4)N3S—C8S—H8S1109.5
N2i—C9—H9108.4N3S—C8S—H8S2109.5
C10—C9—H9108.4H8S1—C8S—H8S2109.5
C8—C9—H9108.4N3S—C8S—H8S3109.5
C11—C10—C9112.0 (4)H8S1—C8S—H8S3109.5
C11—C10—H10A109.2H8S2—C8S—H8S3109.5
C9—C10—H10A109.2N3S—C9S—H9S1109.5
C11—C10—H10B109.2N3S—C9S—H9S2109.5
C9—C10—H10B109.2H9S1—C9S—H9S2109.5
H10A—C10—H10B107.9N3S—C9S—H9S3109.5
C10—C11—C12111.9 (4)H9S1—C9S—H9S3109.5
C10—C11—H11A109.2H9S2—C9S—H9S3109.5
C12—C11—H11A109.2O4S—C10S—N4S148.1 (15)
C10—C11—H11B109.2O4S—C10S—H10S106.0
C12—C11—H11B109.2N4S—C10S—H10S106.0
H11A—C11—H11B107.9N4S—C11S—H11C109.5
C11—C12—C13110.8 (4)N4S—C11S—H11D109.5
C11—C12—H12A109.5H11C—C11S—H11D109.5
C13—C12—H12A109.5N4S—C11S—H11E109.5
C11—C12—H12B109.5H11C—C11S—H11E109.5
C13—C12—H12B109.5H11D—C11S—H11E109.5
H12A—C12—H12B108.1N4S—C12S—H12C109.5
C12—C13—C8111.8 (4)N4S—C12S—H12D109.5
C12—C13—H13A109.3H12C—C12S—H12D109.5
C8—C13—H13A109.3N4S—C12S—H12E109.5
C12—C13—H13B109.3H12C—C12S—H12E109.5
C8—C13—H13B109.3H12D—C12S—H12E109.5
H13A—C13—H13B107.9O5S—C13S—N5S123.6 (6)
O4—C14—N2122.5 (5)O5S—C13S—H13S118.2
O4—C14—C15121.2 (4)N5S—C13S—H13S118.2
N2—C14—C15116.3 (4)N5S—C14S—H14A109.5
C16—C15—C20119.1 (5)N5S—C14S—H14B109.5
C16—C15—C14118.5 (4)H14A—C14S—H14B109.5
C20—C15—C14122.2 (4)N5S—C14S—H14C109.5
C17—C16—C15121.5 (5)H14A—C14S—H14C109.5
C17—C16—H16119.2H14B—C14S—H14C109.5
C15—C16—H16119.2N5S—C15S—H15A109.5
C16—C17—C18119.7 (5)N5S—C15S—H15B109.5
C16—C17—H17120.1H15A—C15S—H15B109.5
C18—C17—H17120.1N5S—C15S—H15C109.5
C19—C18—C17120.2 (5)H15A—C15S—H15C109.5
C19—C18—H18119.9H15B—C15S—H15C109.5
C17—C18—H18119.9O3A—Cl1—O1A107.6 (4)
C18—C19—C20120.8 (5)O3A—Cl1—O2A108.6 (4)
C18—C19—H19119.6O1A—Cl1—O2A110.3 (3)
C20—C19—H19119.6O3A—Cl1—O4A111.5 (4)
C19—C20—C15118.6 (4)O1A—Cl1—O4A109.1 (4)
C19—C20—P2119.4 (3)O2A—Cl1—O4A109.6 (4)
C15—C20—P2121.9 (4)Cl2B—Cl2—O8A93.7 (10)
C22—C21—C26119.4 (6)Cl2B—Cl2—O6A69.1 (10)
C22—C21—P1123.1 (5)O8A—Cl2—O6A110.7 (5)
C26—C21—P1117.1 (4)Cl2B—Cl2—O7A59.8 (10)
C23—C22—C21120.0 (7)O8A—Cl2—O7A111.1 (6)
C23—C22—H22120.0O6A—Cl2—O7A114.3 (5)
C21—C22—H22120.0Cl2B—Cl2—O5A157.9 (12)
C24—C23—C22120.7 (7)O8A—Cl2—O5A108.3 (7)
C24—C23—H23119.6O6A—Cl2—O5A103.5 (7)
C22—C23—H23119.6O7A—Cl2—O5A108.6 (6)
C25—C24—C23119.2 (7)O1S—Fe1—O2S174.95 (17)
C25—C24—H24120.4O1S—Fe1—O387.58 (14)
C23—C24—H24120.4O2S—Fe1—O392.41 (15)
C24—C25—C26121.6 (7)O1S—Fe1—O188.75 (15)
C24—C25—H25119.2O2S—Fe1—O191.61 (17)
C26—C25—H25119.2O3—Fe1—O1174.52 (15)
C25—C26—C21119.0 (6)O1S—Fe1—O492.43 (14)
C25—C26—H26120.5O2S—Fe1—O482.52 (16)
C21—C26—H26120.5O3—Fe1—O488.16 (13)
C32—C27—C28119.9 (6)O1—Fe1—O496.06 (14)
C32—C27—P1118.8 (5)O1S—Fe1—O296.26 (14)
C28—C27—P1121.1 (5)O2S—Fe1—O288.79 (16)
C29—C28—C27119.5 (8)O3—Fe1—O290.72 (13)
C29—C28—H28120.3O1—Fe1—O285.63 (14)
C27—C28—H28120.3O4—Fe1—O2171.18 (14)
C30—C29—C28122.3 (9)C1—N1—C8123.0 (4)
C30—C29—H29118.9C1—N1—H1N118.5
C28—C29—H29118.9C8—N1—H1N118.5
C29—C30—C31120.5 (8)C14—N2—C9ii121.8 (4)
C29—C30—H30119.7C14—N2—H2N119.1
C31—C30—H30119.7C9ii—N2—H2N119.1
C30—C31—C32118.4 (8)Cl2—Cl2B—O7A82.1 (13)
C30—C31—H31120.8Cl2—Cl2B—O9A162 (2)
C32—C31—H31120.8O7A—Cl2B—O9A110.9 (17)
C27—C32—C31119.4 (8)Cl2—Cl2B—O6A73.3 (11)
C27—C32—H32120.3O7A—Cl2B—O6A130.9 (14)
C31—C32—H32120.3O9A—Cl2B—O6A104.2 (17)
C38—C33—C34122.1 (5)Cl2—Cl2B—O8A54.3 (8)
C38—C33—P2121.4 (4)O7A—Cl2B—O8A103.0 (10)
C34—C33—P2116.5 (4)O9A—Cl2B—O8A109.5 (17)
C33—C34—C35116.5 (5)O6A—Cl2B—O8A96.2 (8)
C33—C34—H34121.8C1S—N1S—C2S121.8 (6)
C35—C34—H34121.8C1S—N1S—C3S119.0 (8)
C36—C35—C34120.6 (5)C2S—N1S—C3S119.0 (8)
C36—C35—H35119.7C4S—N2S—C5S117.5 (7)
C34—C35—H35119.7C4S—N2S—C6S122.6 (7)
C35—C36—C37120.9 (6)C5S—N2S—C6S119.3 (6)
C35—C36—H36119.6C7S—N3S—C8S125.5 (14)
C37—C36—H36119.6C7S—N3S—C9S122.7 (14)
C38—C37—C36120.6 (6)C8S—N3S—C9S111.8 (15)
C38—C37—H37119.7C10S—N4S—C12S134.4 (13)
C36—C37—H37119.7C10S—N4S—C11S117.1 (11)
C37—C38—C33119.3 (5)C12S—N4S—C11S108.5 (13)
C37—C38—H38120.4C13S—N5S—C14S119.6 (6)
C33—C38—H38120.4C13S—N5S—C15S123.0 (6)
C40—C39—C44119.8 (4)C14S—N5S—C15S117.4 (6)
C40—C39—P2117.7 (3)P1—O1—Fe1126.6 (2)
C44—C39—P2122.2 (4)C1—O2—Fe1138.8 (3)
C39—C40—C41120.2 (4)P2—O3—Fe1128.09 (19)
C39—C40—H40119.9C14—O4—Fe1142.0 (3)
C41—C40—H40119.9Cl2B—O6A—Cl237.6 (6)
C42—C41—C40119.6 (5)Cl2B—O7A—Cl238.1 (7)
C42—C41—H41120.2Cl2—O8A—Cl2B32.0 (6)
C40—C41—H41120.2C1S—O1S—Fe1124.5 (4)
C43—C42—C41119.8 (5)C4S—O2S—Fe1130.5 (5)
C43—C42—H42120.1O1—P1—C27111.1 (3)
C41—C42—H42120.1O1—P1—C21113.3 (3)
C42—C43—C44122.2 (4)C27—P1—C21102.8 (3)
C42—C43—H43118.9O1—P1—C7113.7 (2)
C44—C43—H43118.9C27—P1—C7107.0 (3)
C43—C44—C39118.3 (5)C21—P1—C7108.3 (3)
C43—C44—H44120.8O3—P2—C39111.7 (2)
C39—C44—H44120.8O3—P2—C20114.8 (2)
O1S—C1S—N1S124.3 (7)C39—P2—C20108.0 (2)
O1S—C1S—H1S117.8O3—P2—C33109.2 (2)
N1S—C1S—H1S117.8C39—P2—C33105.5 (2)
N1S—C2S—H2S1109.5C20—P2—C33107.1 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C44H40N2O4P2)(C3H7NO)2]·(ClO4)2·2C3H7NO
Mr1269.85
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)10.9725 (4), 15.4417 (6), 36.2173 (14)
V3)6136.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.895, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
41558, 12467, 9643
Rint0.053
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.197, 1.04
No. of reflections12467
No. of parameters820
No. of restraints110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.90, 0.68
Absolute structureFlack (1983), 5499 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORETP-3 (Farrugia, 1997), pubCIF (Westrip, 2009).

 

Acknowledgements

This work was supported by the National Science Foundation (NSF-RUI #CHE-0809266), and the University of San Diego.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuchard, A., Heuclin, H., Auffrant, A., Le Goff, X. F. & Le Floch, P. (2009). Dalton Trans. pp. 1659–1667.  Web of Science CSD CrossRef Google Scholar
First citationBurger, S., Therrien, B. & Süss-Fink, G. (2003). Eur. J. Inorg. Chem. pp. 3099–3103.  Web of Science CSD CrossRef Google Scholar
First citationCampos, K. R., Journet, M., Lee, S., Grabowski, E. J. & Tillyer, R. D. (2005). J. Org. Chem. 70, 268–274  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChahen, L. Karmazin-Brelot, L. & Süss-Fink, G. (2006). Inorg. Chem. Commun. 9, 1151–1154.  Web of Science CSD CrossRef CAS Google Scholar
First citationConstant, G., Daran, J. C. & Jeannin, Y. (1971). J. Inorg. Nuc. Chem. 33, 4209–4217.  CSD CrossRef CAS Web of Science Google Scholar
First citationEscriche, L., Casabó, J., Muns, V., Kivekäs, R. & Sillanpää, R. (2006). Polyhedron, 25, 801–808.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGao, J.-X., Wan, H.-L., Wong, W.-K., Tse, M.-C. & Wong, W.-T. (1996). Polyhedron, 15, 1241–1251.  CrossRef CAS Web of Science Google Scholar
First citationMandal, S. K. & Que, L. Jr (1997). Inorg. Chem. 36, 5424–5425.  CSD CrossRef CAS Web of Science Google Scholar
First citationMüller, A., Schladerbeck, N. H., Krickenmeyer, E., Bögge, H. & Schmitz, K. (1989). Z. Anorg. Allg. Chem. 570, 7–36.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrost, B. M., Breit, B. & Organ, M. G. (1994). Tetrahedron Lett. 35, 5817–5820.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1512-m1513
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds