organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-1-(4-methyl­phenyl­sulfon­yl)-1H-pyrrolo[2,3-b]pyridine

aEberhard-Karls-University Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany, bUniversity Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany, and cc-a-i-r biosciences GmbH, Paul-Ehrlich-Strasse 15, 72076 Tübingen, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 23 October 2009; accepted 26 October 2009; online 7 November 2009)

The crystal structure of the title compound, C14H11ClN2O2S, features a three-dimensional network stabilized by ππ inter­actions between the rings of the 4-methyl­phenyl­sulfonyl protecting group [centroid–centroid distance = 3.623 (1) Å]. The 4-methyl­phenyl­sulfonyl ring makes a dihedral angle of 79.60 (6)° with the 4-chloro-1H-pyrrolo[2,3-b]pyridine unit.

Related literature

For the synthesis of the title compound, see: Desarbre et al. (1997[Desarbre, E., Coudret, S., Meheust, C. & Merour, J.-Y. (1997). Tetrahedron, 53, 3637-3648.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClN2O2S

  • Mr = 306.76

  • Monoclinic, C 2/c

  • a = 21.7342 (12) Å

  • b = 7.6313 (2) Å

  • c = 16.4649 (8) Å

  • β = 91.531 (2)°

  • V = 2729.9 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.94 mm−1

  • T = 193 K

  • 0.52 × 0.24 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: numerical (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.319, Tmax = 0.519

  • 2580 measured reflections

  • 2580 independent reflections

  • 2435 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.09

  • 2580 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In recent years, compounds with the 1H-pyrrolo[2,3-b]pyridine moiety have been shown to display significant biological activities. The N-protected 4-chloro-1H-pyrrolo[2,3-b]pyridine is an important precursor for NH sensitive reactions like coupling reactions or metalation experiments. The title compound forms a three dimensional network stabilized by π -π interactions between two phenyl moieties of the 4-methylphenylsulfonyl protecting group (distance between centroids 3.623 (1) Å). The 4-methylphenylsulfonyl ring makes a dihedral angle of 79.60 (6)° to the 4-chloro-1H-pyrrolo[2,3-b]pyridine.

Related literature top

For the synthesis of the title compound, see: Desarbre et al. (1997).

Experimental top

Finely powdered sodium hydroxide (1.9 g, 34 mmol) was added to a solution of dichloromethane containing benzyltriethylammonium chloride (67 mg, 0.30 mmol) and 4-chlor-1H-pyrrolo[2,3-b]pyridine (1.5 g, 9.8 mmol). p-Toluensulfonylchloride (2.2 g, 12 mmol) was slowly added at 273 K and the resulting suspension was stirred at this temperature for 2 h at room temperature. The suspension was filtered through celite, washed with dichloromethane and the filtrate was evaporated in vacuo. The residue was suspendet in methanol and filtered off. The filtrate was dried in vacuo to give the pure title compound in a good yield of 78%.

Refinement top

Hydrogen atoms were placed at calculated positions with Caromatic—H = 0.95 Å or Cmethyl—H = 0.98Å and they were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level.
4-Chloro-1-(4-methylphenylsulfonyl)-1H-pyrrolo[2,3-b]pyridine top
Crystal data top
C14H11ClN2O2SF(000) = 1264
Mr = 306.76Dx = 1.493 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 21.7342 (12) Åθ = 65–70°
b = 7.6313 (2) ŵ = 3.94 mm1
c = 16.4649 (8) ÅT = 193 K
β = 91.531 (2)°Block, colourless
V = 2729.9 (2) Å30.52 × 0.24 × 0.20 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
2435 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.000
Graphite monochromatorθmax = 69.9°, θmin = 4.1°
ω/2θ scansh = 026
Absorption correction: numerical
(PLATON; Spek, 2009)
k = 09
Tmin = 0.319, Tmax = 0.519l = 2020
2580 measured reflections3 standard reflections every 60 min
2580 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0708P)2 + 2.2448P]
where P = (Fo2 + 2Fc2)/3
2580 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C14H11ClN2O2SV = 2729.9 (2) Å3
Mr = 306.76Z = 8
Monoclinic, C2/cCu Kα radiation
a = 21.7342 (12) ŵ = 3.94 mm1
b = 7.6313 (2) ÅT = 193 K
c = 16.4649 (8) Å0.52 × 0.24 × 0.20 mm
β = 91.531 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2435 reflections with I > 2σ(I)
Absorption correction: numerical
(PLATON; Spek, 2009)
Rint = 0.000
Tmin = 0.319, Tmax = 0.5193 standard reflections every 60 min
2580 measured reflections intensity decay: 2%
2580 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.09Δρmax = 0.26 e Å3
2580 reflectionsΔρmin = 0.49 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37591 (3)0.21601 (7)0.24460 (3)0.04415 (18)
Cl10.17076 (3)0.02839 (8)0.52042 (4)0.0552 (2)
O10.35059 (9)0.2966 (2)0.17315 (9)0.0568 (4)
O20.40887 (9)0.0548 (2)0.23960 (10)0.0574 (4)
N10.31423 (8)0.1778 (2)0.30138 (10)0.0419 (4)
C20.25596 (11)0.2537 (3)0.28739 (14)0.0471 (5)
H20.24480.32490.24200.057*
C30.21846 (10)0.2106 (3)0.34773 (14)0.0452 (5)
H30.17660.24400.35200.054*
C3A0.25318 (9)0.1048 (3)0.40466 (12)0.0393 (4)
C40.24293 (10)0.0231 (3)0.47865 (13)0.0428 (5)
C50.29115 (11)0.0600 (3)0.51803 (13)0.0463 (5)
H50.28530.11650.56860.056*
C60.34872 (11)0.0608 (3)0.48308 (13)0.0458 (5)
H60.38140.11780.51200.055*
N70.36143 (8)0.0130 (2)0.41150 (11)0.0427 (4)
C7A0.31332 (9)0.0897 (2)0.37609 (12)0.0374 (4)
C80.41925 (9)0.3694 (3)0.30021 (11)0.0381 (4)
C90.40403 (10)0.5448 (3)0.29162 (14)0.0466 (5)
H90.36960.57850.25850.056*
C100.43905 (10)0.6698 (3)0.33118 (14)0.0478 (5)
H100.42840.78990.32520.057*
C110.48956 (9)0.6237 (3)0.37969 (12)0.0434 (5)
C120.50321 (10)0.4468 (3)0.38851 (14)0.0484 (5)
H120.53730.41290.42230.058*
C130.46853 (10)0.3189 (3)0.34933 (13)0.0451 (5)
H130.47850.19850.35610.054*
C140.52904 (13)0.7648 (4)0.41851 (17)0.0615 (6)
H14A0.56280.71050.45020.092*
H14B0.50400.83620.45440.092*
H14C0.54610.83920.37610.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0603 (3)0.0409 (3)0.0313 (3)0.0037 (2)0.0033 (2)0.00179 (18)
Cl10.0548 (3)0.0523 (3)0.0593 (4)0.0143 (2)0.0148 (3)0.0159 (2)
O10.0779 (11)0.0603 (11)0.0319 (7)0.0021 (8)0.0050 (7)0.0023 (7)
O20.0793 (12)0.0432 (9)0.0503 (9)0.0096 (8)0.0149 (8)0.0083 (7)
N10.0500 (10)0.0398 (9)0.0359 (8)0.0004 (7)0.0024 (7)0.0025 (7)
C20.0551 (12)0.0437 (11)0.0417 (11)0.0038 (10)0.0146 (9)0.0013 (9)
C30.0437 (11)0.0434 (12)0.0479 (11)0.0010 (9)0.0102 (9)0.0115 (9)
C3A0.0450 (10)0.0315 (9)0.0411 (10)0.0049 (8)0.0031 (8)0.0102 (8)
C40.0503 (11)0.0348 (10)0.0433 (11)0.0095 (8)0.0045 (9)0.0113 (8)
C50.0645 (13)0.0360 (10)0.0383 (10)0.0070 (10)0.0012 (9)0.0001 (8)
C60.0584 (12)0.0348 (10)0.0440 (11)0.0037 (9)0.0036 (9)0.0026 (9)
N70.0509 (10)0.0355 (9)0.0416 (9)0.0038 (7)0.0007 (7)0.0006 (7)
C7A0.0473 (10)0.0285 (9)0.0362 (9)0.0016 (8)0.0013 (8)0.0044 (7)
C80.0450 (10)0.0387 (10)0.0310 (9)0.0052 (8)0.0077 (7)0.0022 (7)
C90.0504 (12)0.0422 (11)0.0469 (11)0.0105 (9)0.0042 (9)0.0061 (9)
C100.0551 (12)0.0367 (11)0.0519 (12)0.0071 (9)0.0051 (10)0.0053 (9)
C110.0431 (10)0.0476 (12)0.0401 (10)0.0026 (9)0.0107 (8)0.0034 (9)
C120.0431 (11)0.0534 (13)0.0483 (12)0.0063 (10)0.0025 (9)0.0077 (10)
C130.0505 (11)0.0402 (11)0.0447 (11)0.0120 (9)0.0038 (9)0.0061 (9)
C140.0609 (14)0.0572 (15)0.0665 (16)0.0147 (12)0.0030 (12)0.0037 (12)
Geometric parameters (Å, º) top
S1—O11.4250 (16)C6—H60.9500
S1—O21.4269 (17)N7—C7A1.320 (3)
S1—N11.6803 (18)C8—C131.380 (3)
S1—C81.746 (2)C8—C91.385 (3)
Cl1—C41.730 (2)C9—C101.374 (3)
N1—C7A1.402 (3)C9—H90.9500
N1—C21.406 (3)C10—C111.386 (3)
C2—C31.343 (3)C10—H100.9500
C2—H20.9500C11—C121.389 (3)
C3—C3A1.436 (3)C11—C141.508 (3)
C3—H30.9500C12—C131.382 (3)
C3A—C41.392 (3)C12—H120.9500
C3A—C7A1.406 (3)C13—H130.9500
C4—C51.373 (3)C14—H14A0.9800
C5—C61.391 (3)C14—H14B0.9800
C5—H50.9500C14—H14C0.9800
C6—N71.342 (3)
O1—S1—O2120.52 (10)N7—C7A—N1124.77 (19)
O1—S1—N1103.77 (10)N7—C7A—C3A128.40 (19)
O2—S1—N1106.95 (10)N1—C7A—C3A106.81 (17)
O1—S1—C8109.55 (10)C13—C8—C9120.6 (2)
O2—S1—C8110.09 (10)C13—C8—S1121.32 (17)
N1—S1—C8104.58 (9)C9—C8—S1118.05 (16)
C7A—N1—C2107.91 (18)C10—C9—C8119.7 (2)
C7A—N1—S1126.97 (15)C10—C9—H9120.2
C2—N1—S1124.46 (16)C8—C9—H9120.2
C3—C2—N1109.85 (19)C9—C10—C11121.2 (2)
C3—C2—H2125.1C9—C10—H10119.4
N1—C2—H2125.1C11—C10—H10119.4
C2—C3—C3A107.59 (19)C10—C11—C12118.1 (2)
C2—C3—H3126.2C10—C11—C14119.7 (2)
C3A—C3—H3126.2C12—C11—C14122.1 (2)
C4—C3A—C7A115.35 (19)C13—C12—C11121.7 (2)
C4—C3A—C3136.9 (2)C13—C12—H12119.2
C7A—C3A—C3107.75 (19)C11—C12—H12119.2
C5—C4—C3A118.8 (2)C8—C13—C12118.8 (2)
C5—C4—Cl1120.78 (17)C8—C13—H13120.6
C3A—C4—Cl1120.37 (17)C12—C13—H13120.6
C4—C5—C6119.4 (2)C11—C14—H14A109.5
C4—C5—H5120.3C11—C14—H14B109.5
C6—C5—H5120.3H14A—C14—H14B109.5
N7—C6—C5124.8 (2)C11—C14—H14C109.5
N7—C6—H6117.6H14A—C14—H14C109.5
C5—C6—H6117.6H14B—C14—H14C109.5
C7A—N7—C6113.26 (19)
O1—S1—N1—C7A175.64 (17)C2—N1—C7A—C3A3.3 (2)
O2—S1—N1—C7A47.22 (19)S1—N1—C7A—C3A174.17 (14)
C8—S1—N1—C7A69.55 (19)C4—C3A—C7A—N72.3 (3)
O1—S1—N1—C214.9 (2)C3—C3A—C7A—N7175.68 (19)
O2—S1—N1—C2143.28 (18)C4—C3A—C7A—N1179.38 (16)
C8—S1—N1—C299.95 (18)C3—C3A—C7A—N12.6 (2)
C7A—N1—C2—C32.7 (2)O1—S1—C8—C13151.45 (17)
S1—N1—C2—C3173.92 (15)O2—S1—C8—C1316.72 (19)
N1—C2—C3—C3A1.0 (2)N1—S1—C8—C1397.86 (17)
C2—C3—C3A—C4178.3 (2)O1—S1—C8—C926.4 (2)
C2—C3—C3A—C7A1.0 (2)O2—S1—C8—C9161.17 (17)
C7A—C3A—C4—C51.5 (3)N1—S1—C8—C984.25 (18)
C3—C3A—C4—C5175.7 (2)C13—C8—C9—C101.2 (3)
C7A—C3A—C4—Cl1179.07 (14)S1—C8—C9—C10176.68 (17)
C3—C3A—C4—Cl13.8 (3)C8—C9—C10—C110.0 (3)
C3A—C4—C5—C60.1 (3)C9—C10—C11—C121.2 (3)
Cl1—C4—C5—C6179.55 (16)C9—C10—C11—C14176.6 (2)
C4—C5—C6—N70.9 (3)C10—C11—C12—C131.1 (3)
C5—C6—N7—C7A0.3 (3)C14—C11—C12—C13176.7 (2)
C6—N7—C7A—N1179.39 (18)C9—C8—C13—C121.3 (3)
C6—N7—C7A—C3A1.4 (3)S1—C8—C13—C12176.54 (17)
C2—N1—C7A—N7175.14 (19)C11—C12—C13—C80.1 (3)
S1—N1—C7A—N74.2 (3)

Experimental details

Crystal data
Chemical formulaC14H11ClN2O2S
Mr306.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)21.7342 (12), 7.6313 (2), 16.4649 (8)
β (°) 91.531 (2)
V3)2729.9 (2)
Z8
Radiation typeCu Kα
µ (mm1)3.94
Crystal size (mm)0.52 × 0.24 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionNumerical
(PLATON; Spek, 2009)
Tmin, Tmax0.319, 0.519
No. of measured, independent and
observed [I > 2σ(I)] reflections
2580, 2580, 2435
Rint0.000
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.09
No. of reflections2580
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.49

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors would like to thank the Federal Ministry of Education and Research, Germany, Merckle GmbH, Ulm, Germany, and the Fonds der Chemischen Industrie, Germany, for their generous support of this work.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDesarbre, E., Coudret, S., Meheust, C. & Merour, J.-Y. (1997). Tetrahedron, 53, 3637–3648.  CrossRef CAS Web of Science Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds