organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Amino­ethyl)-2-anilinoquinazolin-4(3H)-one methanol hemisolvate

aFaculty of Chemistry and Life Science, Xianning University, Xianning 437100, People's Republic of China, bSchool of Chemistry and Material Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 October 2009; accepted 29 October 2009; online 4 November 2009)

The title methanol hemisolvated quinazolin-(3H)-one, C16H16N4O·0.5CH3OH, has an anilino substituent in the 2-position and an amino­ethyl substituent in the 3-position of the planar fused-ring system (r.m.s. deviation = 0.019 Å). The anilino N atom donates an intramolecular hydrogen bond to the amino­ethyl N atom. The mol­ecule and the solvent methanol mol­ecule are linked by N—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds. The methanol mol­ecule is disordered over two equally occupied positions about a twofold rotation axis.

Related literature

For the synthesis of this class of compounds, see: Yang et al. (2008[Yang, X.-H., Wu, M.-H., Sun, S.-F., Ding, M.-W., Xie, J.-L. & Xia, Q.-H. (2008). J. Heterocycl. Chem. 45, 1365-1369.]). For the crystal structure of a chlorine-substituted derivative, see: Yang et al. (2009[Yang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185-o186.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N4O·0.5CH4O

  • Mr = 296.35

  • Monoclinic, C 2/c

  • a = 19.5972 (11) Å

  • b = 12.2035 (7) Å

  • c = 12.8681 (8) Å

  • β = 103.301 (1)°

  • V = 2994.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: none

  • 14007 measured reflections

  • 3399 independent reflections

  • 2377 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.186

  • S = 1.09

  • 3399 reflections

  • 210 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H31⋯N4 0.88 2.04 2.811 (3) 146
N4—H41⋯O2i 0.88 2.13 2.990 (6) 168
O2—H2O⋯O1 0.84 2.01 2.755 (6) 147
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the synthesis of this class of compounds, see: Yang et al. (2008). For the crystal structure of a chlorine-substituted derivative, see: Yang et al. (2009).

Experimental top

To a THF (10 ml) solution of 2-ethoxycarbonyliminophosphorane (1.27 g, 3.0 mmol) was added phenylisocyanate (0.36 g, 3.0 mmol). The solution was set aside undisturbed for 6 h at 273 K. To this solution was added ethanolamine (0.18 g, 3 mmol) in THF (5 ml). The mixture was stirred overnight. The solvent was removed and the solid recrystallized from a chloroform/methanol (1/1) mixture to give colorless crystals in 80% yield; m.p. 433–434 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The amino and hydroxy H atoms were similarly generated.

The methanol molecule is disordered over two equally occupied positions about a two-fold rotation axis. The C–O distance was restrained to 1.500±0.002 Å. The anisotropic displacemnt parameters of the methanolic O and C atoms were restrained to be nearly isotropic.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
3-(2-Aminoethyl)-2-anilinoquinazolin-4(3H)-one methanol hemisolvate top
Crystal data top
C16H16N4O·0.5CH4OF(000) = 1256
Mr = 296.35Dx = 1.314 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3816 reflections
a = 19.5972 (11) Åθ = 2.4–25.9°
b = 12.2035 (7) ŵ = 0.09 mm1
c = 12.8681 (8) ÅT = 295 K
β = 103.301 (1)°Block, colorless
V = 2994.9 (3) Å30.30 × 0.20 × 0.10 mm
Z = 8
Data collection top
Bruker APEXII
diffractometer
2377 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω scansh = 1725
14007 measured reflectionsk = 1514
3399 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.1044P)2 + 0.1504P]
where P = (Fo2 + 2Fc2)/3
3399 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.55 e Å3
13 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H16N4O·0.5CH4OV = 2994.9 (3) Å3
Mr = 296.35Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.5972 (11) ŵ = 0.09 mm1
b = 12.2035 (7) ÅT = 295 K
c = 12.8681 (8) Å0.30 × 0.20 × 0.10 mm
β = 103.301 (1)°
Data collection top
Bruker APEXII
diffractometer
2377 reflections with I > 2σ(I)
14007 measured reflectionsRint = 0.073
3399 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06213 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.09Δρmax = 0.55 e Å3
3399 reflectionsΔρmin = 0.29 e Å3
210 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.68958 (7)0.41303 (12)0.81309 (11)0.0573 (4)
N10.73674 (8)0.41620 (12)0.66714 (11)0.0424 (4)
N20.84958 (8)0.34284 (13)0.67038 (11)0.0458 (4)
N30.77752 (9)0.40366 (13)0.51241 (12)0.0498 (4)
H310.73450.42390.48170.060*
N40.63136 (9)0.37965 (16)0.44490 (14)0.0632 (5)
H410.61310.42630.39390.076*
H420.61310.31430.42840.076*
C10.80430 (10)0.34133 (14)0.83148 (13)0.0414 (4)
C20.81360 (11)0.31401 (16)0.93932 (14)0.0503 (5)
H20.77820.32900.97460.060*
C30.87449 (12)0.26533 (18)0.99341 (15)0.0576 (6)
H30.88040.24651.06500.069*
C40.92707 (11)0.24457 (19)0.94030 (15)0.0589 (6)
H40.96840.21150.97670.071*
C50.91908 (11)0.27202 (19)0.83510 (16)0.0573 (6)
H50.95520.25790.80110.069*
C60.85720 (10)0.32115 (15)0.77791 (13)0.0427 (5)
C70.73916 (10)0.39143 (15)0.77321 (14)0.0437 (5)
C80.79099 (10)0.38642 (15)0.61962 (14)0.0414 (4)
C90.82431 (10)0.39287 (14)0.44502 (14)0.0426 (5)
C100.79487 (10)0.36669 (15)0.33875 (14)0.0462 (5)
H100.74720.35150.31750.055*
C110.83579 (12)0.36311 (17)0.26507 (15)0.0530 (5)
H110.81540.34620.19420.064*
C120.90627 (13)0.38417 (19)0.29508 (18)0.0614 (6)
H120.93380.38200.24510.074*
C130.93592 (12)0.40868 (19)0.40098 (18)0.0616 (6)
H130.98380.42250.42200.074*
C140.89551 (11)0.41293 (17)0.47595 (16)0.0534 (5)
H140.91610.42920.54680.064*
C150.67613 (10)0.48235 (17)0.61029 (15)0.0516 (5)
H15A0.69220.53350.56340.062*
H15B0.65870.52480.66240.062*
C160.61626 (11)0.41579 (18)0.54480 (17)0.0586 (6)
H16A0.60800.35240.58570.070*
H16B0.57390.45990.52980.070*
O20.5495 (3)0.4637 (6)0.7850 (7)0.176 (3)0.50
H2O0.58560.42440.80060.211*0.50
C170.4883 (4)0.3949 (6)0.7344 (11)0.101 (3)0.50
H17A0.45530.39370.77920.152*0.50
H17B0.50370.32160.72540.152*0.50
H17C0.46620.42500.66600.152*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0468 (8)0.0701 (10)0.0607 (8)0.0019 (7)0.0243 (7)0.0043 (6)
N10.0402 (9)0.0437 (9)0.0438 (8)0.0002 (7)0.0110 (7)0.0028 (6)
N20.0417 (9)0.0570 (10)0.0402 (8)0.0011 (7)0.0130 (7)0.0002 (6)
N30.0430 (9)0.0665 (11)0.0405 (8)0.0019 (8)0.0107 (7)0.0053 (7)
N40.0614 (12)0.0661 (12)0.0558 (10)0.0053 (9)0.0006 (9)0.0015 (8)
C10.0435 (10)0.0412 (10)0.0411 (9)0.0070 (8)0.0128 (8)0.0050 (7)
C20.0578 (13)0.0540 (12)0.0437 (10)0.0063 (10)0.0214 (9)0.0038 (8)
C30.0697 (14)0.0649 (13)0.0384 (9)0.0019 (11)0.0128 (10)0.0028 (9)
C40.0490 (12)0.0744 (15)0.0494 (11)0.0035 (11)0.0035 (10)0.0062 (9)
C50.0446 (12)0.0782 (15)0.0510 (11)0.0058 (10)0.0152 (9)0.0035 (10)
C60.0424 (10)0.0490 (11)0.0378 (9)0.0038 (8)0.0112 (8)0.0014 (7)
C70.0443 (11)0.0438 (10)0.0459 (10)0.0063 (8)0.0164 (8)0.0070 (7)
C80.0413 (10)0.0424 (10)0.0415 (9)0.0040 (8)0.0112 (8)0.0027 (7)
C90.0445 (11)0.0432 (10)0.0411 (9)0.0007 (8)0.0122 (8)0.0067 (7)
C100.0482 (11)0.0448 (11)0.0440 (9)0.0001 (8)0.0072 (8)0.0011 (7)
C110.0636 (14)0.0570 (12)0.0404 (9)0.0007 (10)0.0159 (9)0.0006 (8)
C120.0654 (15)0.0711 (15)0.0554 (12)0.0043 (11)0.0293 (11)0.0041 (10)
C130.0466 (12)0.0792 (16)0.0620 (13)0.0042 (10)0.0187 (10)0.0085 (10)
C140.0490 (12)0.0683 (14)0.0423 (10)0.0097 (10)0.0091 (9)0.0032 (9)
C150.0507 (12)0.0492 (12)0.0548 (11)0.0090 (9)0.0119 (9)0.0007 (8)
C160.0445 (12)0.0671 (14)0.0618 (13)0.0074 (10)0.0071 (10)0.0025 (10)
O20.109 (4)0.189 (6)0.231 (6)0.017 (4)0.043 (4)0.115 (5)
C170.044 (6)0.143 (5)0.117 (8)0.021 (4)0.017 (5)0.021 (5)
Geometric parameters (Å, º) top
O1—C71.227 (2)C5—H50.9300
N1—C71.388 (2)C9—C141.382 (3)
N1—C81.391 (2)C9—C101.394 (2)
N1—C151.482 (2)C10—C111.376 (3)
N2—C81.297 (2)C10—H100.9300
N2—C61.383 (2)C11—C121.370 (3)
N3—C81.360 (2)C11—H110.9300
N3—C91.406 (2)C12—C131.386 (3)
N3—H310.8800C12—H120.9300
N4—C161.453 (3)C13—C141.383 (3)
N4—H410.8800C13—H130.9300
N4—H420.8800C14—H140.9300
C1—C61.393 (3)C15—C161.514 (3)
C1—C21.398 (2)C15—H15A0.9700
C1—C71.458 (3)C15—H15B0.9700
C2—C31.371 (3)C16—H16A0.9700
C2—H20.9300C16—H16B0.9700
C3—C41.385 (3)O2—C171.486 (2)
C3—H30.9300O2—H2O0.8400
C4—C51.368 (3)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.400 (3)C17—H17C0.9600
C7—N1—C8121.23 (15)N2—C8—N1124.28 (16)
C7—N1—C15116.50 (15)N3—C8—N1114.57 (16)
C8—N1—C15122.13 (15)C14—C9—C10119.07 (18)
C8—N2—C6117.49 (16)C14—C9—N3124.37 (17)
C8—N3—C9127.54 (17)C10—C9—N3116.44 (17)
C8—N3—H31116.2C11—C10—C9120.53 (19)
C9—N3—H31116.2C11—C10—H10119.7
C16—N4—H41109.5C9—C10—H10119.7
C16—N4—H42109.5C12—C11—C10120.61 (19)
H41—N4—H42109.5C12—C11—H11119.7
C6—C1—C2120.49 (17)C10—C11—H11119.7
C6—C1—C7118.89 (16)C11—C12—C13119.0 (2)
C2—C1—C7120.62 (18)C11—C12—H12120.5
C3—C2—C1120.45 (19)C13—C12—H12120.5
C3—C2—H2119.8C14—C13—C12121.1 (2)
C1—C2—H2119.8C14—C13—H13119.5
C2—C3—C4119.24 (17)C12—C13—H13119.5
C2—C3—H3120.4C9—C14—C13119.66 (19)
C4—C3—H3120.4C9—C14—H14120.2
C5—C4—C3120.99 (19)C13—C14—H14120.2
C5—C4—H4119.5N1—C15—C16114.39 (17)
C3—C4—H4119.5N1—C15—H15A108.7
C4—C5—C6120.9 (2)C16—C15—H15A108.7
C4—C5—H5119.6N1—C15—H15B108.7
C6—C5—H5119.6C16—C15—H15B108.7
N2—C6—C1122.70 (17)H15A—C15—H15B107.6
N2—C6—C5119.27 (17)N4—C16—C15111.46 (19)
C1—C6—C5117.96 (16)N4—C16—H16A109.3
O1—C7—N1120.87 (17)C15—C16—H16A109.3
O1—C7—C1123.97 (17)N4—C16—H16B109.3
N1—C7—C1115.15 (16)C15—C16—H16B109.3
N2—C8—N3121.13 (18)H16A—C16—H16B108.0
C6—C1—C2—C31.1 (3)C6—N2—C8—N3175.64 (16)
C7—C1—C2—C3178.97 (17)C6—N2—C8—N12.5 (3)
C1—C2—C3—C40.7 (3)C9—N3—C8—N29.1 (3)
C2—C3—C4—C50.1 (3)C9—N3—C8—N1172.63 (16)
C3—C4—C5—C60.5 (4)C7—N1—C8—N26.1 (3)
C8—N2—C6—C11.8 (3)C15—N1—C8—N2169.49 (18)
C8—N2—C6—C5178.68 (18)C7—N1—C8—N3172.12 (15)
C2—C1—C6—N2177.50 (16)C15—N1—C8—N312.3 (2)
C7—C1—C6—N22.5 (3)C8—N3—C9—C1431.8 (3)
C2—C1—C6—C50.6 (3)C8—N3—C9—C10152.29 (18)
C7—C1—C6—C5179.41 (17)C14—C9—C10—C111.4 (3)
C4—C5—C6—N2176.84 (19)N3—C9—C10—C11174.75 (17)
C4—C5—C6—C10.2 (3)C9—C10—C11—C120.6 (3)
C8—N1—C7—O1176.29 (16)C10—C11—C12—C130.3 (3)
C15—N1—C7—O17.9 (3)C11—C12—C13—C140.5 (3)
C8—N1—C7—C14.9 (2)C10—C9—C14—C131.2 (3)
C15—N1—C7—C1170.91 (15)N3—C9—C14—C13174.6 (2)
C6—C1—C7—O1179.64 (17)C12—C13—C14—C90.3 (3)
C2—C1—C7—O10.3 (3)C7—N1—C15—C1696.6 (2)
C6—C1—C7—N10.9 (2)C8—N1—C15—C1687.6 (2)
C2—C1—C7—N1179.07 (16)N1—C15—C16—N477.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···N40.882.042.811 (3)146
N4—H41···O2i0.882.132.990 (6)168
O2—H2O···O10.842.012.755 (6)147
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC16H16N4O·0.5CH4O
Mr296.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)19.5972 (11), 12.2035 (7), 12.8681 (8)
β (°) 103.301 (1)
V3)2994.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14007, 3399, 2377
Rint0.073
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.186, 1.09
No. of reflections3399
No. of parameters210
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.29

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H31···N40.882.042.811 (3)146
N4—H41···O2i0.882.132.990 (6)168
O2—H2O···O10.842.012.755 (6)147
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

We thank Xianning University, Huangshi Institute of Technology and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationYang, X.-H., Chen, X.-B. & Zhou, S.-X. (2009). Acta Cryst. E65, o185–o186.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYang, X.-H., Wu, M.-H., Sun, S.-F., Ding, M.-W., Xie, J.-L. & Xia, Q.-H. (2008). J. Heterocycl. Chem. 45, 1365–1369.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds