organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydr­­oxy-N-(2,4,6-tri­bromo­phen­yl)-2H-1,2-benzo­thia­zine-3-carboxamide 1,1-dioxide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Ferozpure Road, Lahore 54600, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 30 October 2009; accepted 2 November 2009; online 4 November 2009)

In the title compound, C15H19Br3N2O4S, the thia­zine ring adopts a distorted half-chair conformation. The enolic H atom is involved in an intra­molecular O—H⋯O hydrogen bond, forming a six-membered ring. In the crystal, the mol­ecules are linked into a three-dimensional network through inter­molecular N—H⋯O, N—H⋯Br and O—H⋯Br hydrogen bonds.

Related literature

For the synthesis of related mol­ecules, see: Kojić-Prodić & Rużić-Toroš (1982[Kojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948-2951.]); Zia-ur-Rehman, Choudary & Ahmad (2005[Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771-1175.]). For the applications of 1,2-benzothia­zine 1,1-dioxides and their precursor inter­mediates as non-steroidal anti-inflammatory compounds, see: Turck et al. (1996[Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79-84.]). For bond-length data, see: Weast et al. (1984[Weast, R. C., Astle, M. J. & Beyer, W. H. (1984). Handbook of Chemistry and Physics, 65th ed. Boca Raton, Florida: CRC Press.]).

[Scheme 1]

Experimental

Crystal data
  • C15H9Br3N2O4S

  • Mr = 553.03

  • Triclinic, [P \overline 1]

  • a = 7.5082 (4) Å

  • b = 8.7486 (6) Å

  • c = 13.0669 (9) Å

  • α = 83.618 (2)°

  • β = 86.280 (2)°

  • γ = 87.684 (2)°

  • V = 850.72 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.26 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.355, Tmax = 0.502

  • 16515 measured reflections

  • 3794 independent reflections

  • 2599 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.01

  • 3794 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 1.16 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.82 1.83 2.561 (5) 147
N1—H1⋯O1Ai 0.86 2.29 2.966 (5) 136
N2—H2A⋯Br2ii 0.86 2.79 3.597 (4) 157
O4—H4⋯Br2iii 0.82 2.88 3.403 (3) 124
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Owing to the applications of 1,2-benzothiazine 1,1-dioxides and their precursor intermediates as non-steroidal anti-inflammatory compounds (Turck et al., 1996), considerable attention has been given to their synthesis. As part of a research program synthesizing 1,2-benzothiazines (Zia-ur-Rehman et al., 2005), we herein report the crystal structure of the title compound, (I) (Scheme and figure 1).

The thiazine ring, involving two double bonds, exhibits a sofa conformation; with S1/C1/C6/C7 relatively planar and N1 showing significant departure from plane due to its pyramidal geometry. The enolic hydrogen on O4 is involved in intramolecular hydrogen bonding [O4—H4···O3] with the carbonyl oxygen at C9 giving rise to a six-membered hydrogen bond ring (Table 1). The C1—S1 [1.757 (5) Å] bond is shorter than a normal C—S single bond (1.81–2.55 Å) (Weast et al., 1984) due to partial double bond character and is in agreement with similar molecules (Kojić-Prodić & Rużić-Toroš, 1982). Each molecule is linked to its adjacent one through intermolecular N—H···Br forming a centrosymmetric dimer which is further linked to the next via O—H···Br hydrogen bonds giving rise to a zigzag chain along b (Figure 2). The title molecules are also linked to each other via N—H···O hydrogen bonds forming dimers along b which furthr links to the adjacent dimer through O—H···Br hydrogen bonds giving rise to a zigzag chain along b (Figure 3).

Related literature top

For the synthesis of related molecules, see: Kojić-Prodić & Rużić-Toroš (1982); Zia-ur-Rehman, Choudary & Ahmad (2005). For the applications of 1,2-benzothiazine 1,1-dioxides and their precursor intermediates as non-steroidal anti-inflammatory compounds, see: Turck et al. (1996). For bond-length data, see: Weast et al. (1984).

Experimental top

A mixture of methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate-1,1-dioxide (2.55 g; 10.0 mmoles), 2,3-dimethyl aniline (4.947 g; 15.0 mmoles) and xylene (25.0 ml) was refluxed under nitrogen atmosphere in a Soxhlet apparatus having Linde type 4Å molecular sieves. Three fourth of the xylene was then distilled off and the remaining contents were allowed to stand overnight at room temperature. Settled solids were filtered off, washed with diethyl ether and crystallized from ethanol. Yield: 82%.

Refinement top

All hydrogen atoms were identified in the difference map and subsequently fixed in ideal positions and treated as riding on their parent atoms. In the case of the methyl and hydroxyl H atoms the torsion angles were freely refined. The following distances were used: methyl C—H = 0.98Å, aromatic C—H = 0.95Å, hydroxyl O—H = 0.84Å. U(H) was set to 1.2Ueq of the parent atoms or 1.5Ueq for methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the three-dimensional crystal packing showing N—H···Br and O—H···Br hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. Another perspective view of the three-dimensional crystal packing showing N—H···O and O—H···Br hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
4-Hydroxy-N-(2,4,6-tribromophenyl)-2H-1,2-benzothiazine-3- carboxamide 1,1-dioxide top
Crystal data top
C15H9Br3N2O4SZ = 2
Mr = 553.03F(000) = 532
Triclinic, P1Dx = 2.159 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5082 (4) ÅCell parameters from 5092 reflections
b = 8.7486 (6) Åθ = 2.3–24.2°
c = 13.0669 (9) ŵ = 7.26 mm1
α = 83.618 (2)°T = 296 K
β = 86.280 (2)°Needle, light yellow
γ = 87.684 (2)°0.18 × 0.16 × 0.11 mm
V = 850.72 (9) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3794 independent reflections
Radiation source: fine-focus sealed tube2599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 99
Tmin = 0.355, Tmax = 0.502k = 1111
16515 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.049P)2 + 2.0189P]
where P = (Fo2 + 2Fc2)/3
3794 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C15H9Br3N2O4Sγ = 87.684 (2)°
Mr = 553.03V = 850.72 (9) Å3
Triclinic, P1Z = 2
a = 7.5082 (4) ÅMo Kα radiation
b = 8.7486 (6) ŵ = 7.26 mm1
c = 13.0669 (9) ÅT = 296 K
α = 83.618 (2)°0.18 × 0.16 × 0.11 mm
β = 86.280 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3794 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2599 reflections with I > 2σ(I)
Tmin = 0.355, Tmax = 0.502Rint = 0.031
16515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.01Δρmax = 1.16 e Å3
3794 reflectionsΔρmin = 0.63 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.82014 (8)0.13368 (9)0.54929 (5)0.0701 (2)
Br20.30934 (9)0.34516 (6)0.26785 (4)0.0603 (2)
Br30.17498 (9)0.43843 (7)0.68227 (5)0.0629 (2)
C10.8054 (6)0.2197 (6)1.0575 (4)0.0373 (11)
C20.8789 (7)0.2424 (6)1.1475 (4)0.0462 (12)
H20.90240.34121.16170.055*
C30.9184 (8)0.1144 (8)1.2182 (5)0.0591 (15)
H30.96410.12861.28080.071*
C40.8905 (7)0.0287 (8)1.1956 (5)0.0625 (17)
H4A0.92110.11271.24190.075*
C50.8152 (6)0.0538 (6)1.1026 (4)0.0454 (12)
H50.79710.15331.08780.055*
C60.7687 (6)0.0711 (5)1.0339 (4)0.0360 (10)
C70.6899 (6)0.0507 (5)0.9372 (4)0.0364 (10)
C80.6194 (6)0.1678 (5)0.8750 (4)0.0354 (10)
C90.5696 (6)0.1459 (6)0.7707 (4)0.0382 (11)
C100.4863 (6)0.2808 (5)0.6055 (4)0.0361 (10)
C110.5909 (6)0.2214 (5)0.5271 (4)0.0392 (11)
C120.5352 (7)0.2323 (6)0.4267 (4)0.0430 (12)
H120.60340.18740.37530.052*
C130.3776 (7)0.3105 (5)0.4054 (4)0.0383 (11)
C140.2718 (7)0.3729 (5)0.4799 (4)0.0421 (12)
H140.16550.42590.46380.050*
C150.3259 (6)0.3557 (5)0.5797 (4)0.0401 (11)
N10.6041 (5)0.3207 (4)0.9051 (3)0.0383 (9)
H10.51180.37980.89310.046*
N20.5404 (6)0.2763 (5)0.7070 (3)0.0430 (10)
H2A0.55600.36270.73030.052*
O20.9238 (5)0.3836 (4)0.8929 (3)0.0500 (9)
O30.5570 (5)0.0166 (4)0.7438 (3)0.0492 (9)
O40.6955 (5)0.0922 (4)0.9118 (3)0.0470 (9)
H40.64710.09400.85750.070*
O1A0.7151 (5)0.5147 (4)1.0094 (3)0.0481 (9)
S10.77172 (16)0.37606 (13)0.96331 (10)0.0381 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0467 (3)0.1064 (6)0.0550 (4)0.0271 (3)0.0078 (3)0.0070 (3)
Br20.0949 (5)0.0455 (3)0.0440 (3)0.0073 (3)0.0311 (3)0.0082 (2)
Br30.0685 (4)0.0635 (4)0.0548 (4)0.0185 (3)0.0116 (3)0.0145 (3)
C10.032 (2)0.046 (3)0.034 (3)0.0044 (19)0.0033 (19)0.005 (2)
C20.048 (3)0.052 (3)0.041 (3)0.002 (2)0.008 (2)0.011 (2)
C30.051 (3)0.085 (5)0.044 (3)0.008 (3)0.007 (3)0.018 (3)
C40.043 (3)0.067 (4)0.070 (4)0.005 (3)0.004 (3)0.024 (3)
C50.038 (3)0.050 (3)0.047 (3)0.003 (2)0.003 (2)0.005 (2)
C60.029 (2)0.042 (3)0.037 (3)0.0009 (19)0.0021 (19)0.006 (2)
C70.035 (2)0.037 (3)0.038 (3)0.0014 (19)0.002 (2)0.007 (2)
C80.036 (2)0.037 (3)0.035 (3)0.0008 (19)0.0050 (19)0.013 (2)
C90.039 (3)0.041 (3)0.035 (3)0.003 (2)0.004 (2)0.009 (2)
C100.043 (3)0.034 (2)0.033 (3)0.002 (2)0.007 (2)0.006 (2)
C110.043 (3)0.038 (3)0.037 (3)0.004 (2)0.007 (2)0.005 (2)
C120.050 (3)0.042 (3)0.038 (3)0.003 (2)0.002 (2)0.010 (2)
C130.047 (3)0.030 (2)0.039 (3)0.001 (2)0.011 (2)0.006 (2)
C140.044 (3)0.037 (3)0.046 (3)0.005 (2)0.010 (2)0.004 (2)
C150.043 (3)0.035 (3)0.042 (3)0.000 (2)0.005 (2)0.009 (2)
N10.040 (2)0.037 (2)0.041 (2)0.0094 (17)0.0127 (17)0.0113 (18)
N20.062 (3)0.036 (2)0.033 (2)0.0022 (19)0.0145 (19)0.0089 (18)
O20.048 (2)0.050 (2)0.050 (2)0.0003 (16)0.0008 (17)0.0019 (17)
O30.067 (2)0.041 (2)0.042 (2)0.0016 (17)0.0091 (17)0.0152 (17)
O40.056 (2)0.041 (2)0.047 (2)0.0037 (16)0.0011 (17)0.0202 (16)
O1A0.053 (2)0.045 (2)0.052 (2)0.0170 (16)0.0234 (17)0.0265 (17)
S10.0404 (6)0.0357 (6)0.0399 (7)0.0042 (5)0.0088 (5)0.0094 (5)
Geometric parameters (Å, º) top
Br1—C111.882 (5)C8—C91.471 (6)
Br2—C131.890 (5)C9—O31.230 (6)
Br3—C151.886 (5)C9—N21.355 (6)
C1—C21.368 (7)C10—C111.385 (7)
C1—C61.411 (7)C10—C151.391 (7)
C1—S11.757 (5)C10—N21.408 (6)
C2—C31.405 (8)C11—C121.395 (7)
C2—H20.9300C12—C131.371 (7)
C3—C41.345 (9)C12—H120.9300
C3—H30.9300C13—C141.363 (7)
C4—C51.415 (8)C14—C151.381 (7)
C4—H4A0.9300C14—H140.9300
C5—C61.383 (7)N1—S11.628 (4)
C5—H50.9300N1—H10.8600
C6—C71.461 (7)N2—H2A0.8600
C7—O41.328 (5)O2—S11.418 (4)
C7—C81.348 (7)O4—H40.8200
C8—N11.435 (6)O1A—S11.450 (3)
C2—C1—C6121.6 (5)C15—C10—N2119.5 (4)
C2—C1—S1119.9 (4)C10—C11—C12121.3 (4)
C6—C1—S1118.2 (4)C10—C11—Br1121.5 (4)
C1—C2—C3119.1 (5)C12—C11—Br1117.1 (4)
C1—C2—H2120.4C13—C12—C11118.6 (4)
C3—C2—H2120.4C13—C12—H12120.7
C4—C3—C2120.2 (6)C11—C12—H12120.7
C4—C3—H3119.9C14—C13—C12122.0 (5)
C2—C3—H3119.9C14—C13—Br2118.1 (4)
C3—C4—C5121.2 (6)C12—C13—Br2119.8 (4)
C3—C4—H4A119.4C13—C14—C15118.5 (4)
C5—C4—H4A119.4C13—C14—H14120.7
C6—C5—C4119.4 (5)C15—C14—H14120.7
C6—C5—H5120.3C14—C15—C10122.1 (4)
C4—C5—H5120.3C14—C15—Br3117.9 (4)
C5—C6—C1118.3 (5)C10—C15—Br3120.0 (4)
C5—C6—C7121.3 (5)C8—N1—S1116.2 (3)
C1—C6—C7120.4 (4)C8—N1—H1121.9
O4—C7—C8120.9 (4)S1—N1—H1121.9
O4—C7—C6115.6 (4)C9—N2—C10124.8 (4)
C8—C7—C6123.4 (4)C9—N2—H2A117.6
C7—C8—N1120.9 (4)C10—N2—H2A117.6
C7—C8—C9121.2 (4)C7—O4—H4109.5
N1—C8—C9117.7 (4)O2—S1—O1A117.6 (2)
O3—C9—N2122.8 (4)O2—S1—N1108.5 (2)
O3—C9—C8121.5 (4)O1A—S1—N1107.9 (2)
N2—C9—C8115.8 (4)O2—S1—C1108.0 (2)
C11—C10—C15117.4 (4)O1A—S1—C1111.6 (2)
C11—C10—N2123.0 (4)N1—S1—C1101.9 (2)
C6—C1—C2—C30.1 (7)C10—C11—C12—C133.3 (7)
S1—C1—C2—C3174.8 (4)Br1—C11—C12—C13172.9 (4)
C1—C2—C3—C42.5 (8)C11—C12—C13—C142.3 (8)
C2—C3—C4—C52.3 (9)C11—C12—C13—Br2173.8 (4)
C3—C4—C5—C60.3 (8)C12—C13—C14—C150.2 (8)
C4—C5—C6—C12.6 (7)Br2—C13—C14—C15176.4 (4)
C4—C5—C6—C7179.7 (5)C13—C14—C15—C101.8 (7)
C2—C1—C6—C52.4 (7)C13—C14—C15—Br3178.5 (4)
S1—C1—C6—C5172.3 (3)C11—C10—C15—C140.8 (7)
C2—C1—C6—C7179.9 (4)N2—C10—C15—C14175.5 (4)
S1—C1—C6—C75.3 (6)C11—C10—C15—Br3179.5 (4)
C5—C6—C7—O411.4 (6)N2—C10—C15—Br34.2 (6)
C1—C6—C7—O4166.2 (4)C7—C8—N1—S140.0 (6)
C5—C6—C7—C8170.3 (5)C9—C8—N1—S1135.0 (4)
C1—C6—C7—C812.1 (7)O3—C9—N2—C102.5 (7)
O4—C7—C8—N1176.5 (4)C8—C9—N2—C10178.0 (4)
C6—C7—C8—N15.3 (7)C11—C10—N2—C964.1 (7)
O4—C7—C8—C98.7 (7)C15—C10—N2—C9119.8 (5)
C6—C7—C8—C9169.5 (4)C8—N1—S1—O265.2 (4)
C7—C8—C9—O314.5 (7)C8—N1—S1—O1A166.3 (3)
N1—C8—C9—O3170.5 (4)C8—N1—S1—C148.6 (4)
C7—C8—C9—N2165.0 (4)C2—C1—S1—O293.0 (4)
N1—C8—C9—N210.0 (6)C6—C1—S1—O281.8 (4)
C15—C10—C11—C121.8 (7)C2—C1—S1—O1A37.8 (5)
N2—C10—C11—C12178.0 (5)C6—C1—S1—O1A147.4 (4)
C15—C10—C11—Br1174.3 (4)C2—C1—S1—N1152.7 (4)
N2—C10—C11—Br11.9 (7)C6—C1—S1—N132.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.832.561 (5)147
N1—H1···O1Ai0.862.292.966 (5)136
N2—H2A···Br2ii0.862.793.597 (4)157
O4—H4···Br2iii0.822.883.403 (3)124
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H9Br3N2O4S
Mr553.03
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.5082 (4), 8.7486 (6), 13.0669 (9)
α, β, γ (°)83.618 (2), 86.280 (2), 87.684 (2)
V3)850.72 (9)
Z2
Radiation typeMo Kα
µ (mm1)7.26
Crystal size (mm)0.18 × 0.16 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.355, 0.502
No. of measured, independent and
observed [I > 2σ(I)] reflections
16515, 3794, 2599
Rint0.031
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.01
No. of reflections3794
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.16, 0.63

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.82001.83002.561 (5)147.00
N1—H1···O1Ai0.862.292.966 (5)136.0
N2—H2A···Br2ii0.862.793.597 (4)157.0
O4—H4···Br2iii0.822.883.403 (3)123.6
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for a grant.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948–2951.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol. 36, 79–84.  PubMed Web of Science Google Scholar
First citationWeast, R. C., Astle, M. J. & Beyer, W. H. (1984). Handbook of Chemistry and Physics, 65th ed. Boca Raton, Florida: CRC Press.  Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc. 26, 1771–1175.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds