organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­bromo-6-{(E)-[(R)-1-phenyl­ethyl]imino­meth­yl}phenol

aState Key Laboratory Base of Novel Functional Materials and Preparation Science Institute of solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China
*Correspondence e-mail: leikeweipublic@hotmail.com

(Received 21 July 2009; accepted 27 October 2009; online 21 November 2009)

In the title Schiff base, C15H13Br2NO, the benzene and phenyl rings form a dihedral angle of 75.18 (13)°. The N=C bond length of 1.263 (6) Å is shorter than of the N—C bond [1.476 (5) Å], indicating a double bond. In the crystal, there is some pseudosymmetry. This occurs because most of the two mol­ecules are centrosymmetrically related. The mol­ecular structure is stabilized by intra­molecular O—H⋯N hydrogen bonds.

Related literature

For photochromism and thermochromism in Schiff base compounds, see: Cohen et al. (1964[Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041-2043.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13Br2NO

  • Mr = 383.08

  • Monoclinic, I 2

  • a = 15.523 (2) Å

  • b = 9.3533 (12) Å

  • c = 21.527 (4) Å

  • β = 109.287 (2)°

  • V = 2950.1 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.49 mm−1

  • T = 296 K

  • 0.38 × 0.31 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.158, Tmax = 0.236

  • 12876 measured reflections

  • 6480 independent reflections

  • 4357 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.082

  • S = 0.99

  • 6480 reflections

  • 346 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3189 Friedel pairs

  • Flack parameter: 0.022 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.81 1.89 2.603 (4) 147
O2—H2⋯N2 0.87 1.79 2.558 (5) 147

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases have been used extensively as ligands in the field of coordination chemistry. Some of the reasons are that the N atom plays an important role in the formation of metal complexes, and that Schiff base coppounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxyl O atom to the imine N atom (Cohen et al., 1964). Here we report on a new chiral Schiff base(I).

The chiral molecular structures of (I) which are two molecules in the illustrated in Fig. 1. The bond lengths and bond angles in (I) are within normal ranges. The N1–C7 distance of 1.263 (6) Å is a slightly smaller than the distance of N2–C22(1.270 (6)). The C7, N1, C8 and C2, C1, Br1 atoms form a bond angle of 119.3 (4) and 119.5 (3) °, respectively (Table 1). The molecular conformation is stabiized by an intramolecular O–H···N hydrogen bond (Table 2).

Related literature top

For photochromism and thermochromism in Schiff base coppounds, see: Cohen et al. (1964).

Experimental top

R-1-phenylethanamine (0.02 mol,2.42 g) and 3,5-dibromo-2-hydroxybenzaldehyde (0.02 mol,5.60 g) were dissolved in ethanol and the solution was refluxed for 4 h. After evaporation, a crude product was recrystallized twice from ethanol to give a pure yellow product. Yield: 83.7%. Calcd.for C15H13Br2NO: C, 47.03; H, 3.42; N, 3.66; Found: C, 46.95; H, 3.49; N, 3.62%.

Refinement top

All H atoms were located from difference Fourier syntheses, H atoms from the C—H groups were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A, 0.96%A, 0.97%A;) and Uiso(H) values equal to 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
2,4-Dibromo-6-{(E)-[(R)-1-phenylethyl]iminomethyl}phenol top
Crystal data top
C15H13Br2NOF(000) = 1504
Mr = 383.08Dx = 1.725 Mg m3
Monoclinic, I2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2yCell parameters from 3597 reflections
a = 15.523 (2) Åθ = 2.4–23.4°
b = 9.3533 (12) ŵ = 5.49 mm1
c = 21.527 (4) ÅT = 296 K
β = 109.287 (2)°Block, yellow
V = 2950.1 (7) Å30.38 × 0.31 × 0.26 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
6480 independent reflections
Radiation source: fine-focus sealed tube4357 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 2020
Tmin = 0.158, Tmax = 0.236k = 1211
12876 measured reflectionsl = 2726
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0192P)2 + 1.2456P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.002
6480 reflectionsΔρmax = 0.62 e Å3
346 parametersΔρmin = 0.50 e Å3
1 restraintAbsolute structure: Flack (1983), 2872 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.022 (9)
Crystal data top
C15H13Br2NOV = 2950.1 (7) Å3
Mr = 383.08Z = 8
Monoclinic, I2Mo Kα radiation
a = 15.523 (2) ŵ = 5.49 mm1
b = 9.3533 (12) ÅT = 296 K
c = 21.527 (4) Å0.38 × 0.31 × 0.26 mm
β = 109.287 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6480 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4357 reflections with I > 2σ(I)
Tmin = 0.158, Tmax = 0.236Rint = 0.026
12876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082Δρmax = 0.62 e Å3
S = 0.99Δρmin = 0.50 e Å3
6480 reflectionsAbsolute structure: Flack (1983), 2872 Friedel pairs
346 parametersAbsolute structure parameter: 0.022 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.37953 (5)0.48288 (5)1.03409 (3)0.0857 (2)
Br20.34338 (4)0.04283 (6)1.15258 (2)0.07989 (19)
Br30.16026 (3)0.83627 (6)0.83602 (2)0.06812 (15)
Br40.11106 (5)1.32687 (6)0.97217 (3)0.0987 (2)
N10.3623 (2)0.1446 (4)0.90617 (16)0.0519 (9)
N20.1352 (2)0.6719 (4)1.07323 (16)0.0545 (9)
O10.3584 (2)0.1594 (3)1.02596 (14)0.0596 (9)
H10.3621 (3)0.1891 (19)0.992 (2)0.089*
O20.1494 (2)0.6885 (3)0.95843 (14)0.0616 (9)
H20.1469 (3)0.649 (2)0.994 (2)0.092*
C10.3775 (3)0.2791 (5)1.0328 (2)0.0527 (11)
C20.3679 (3)0.2060 (5)1.0852 (2)0.0492 (11)
H2B0.36530.25461.12220.059*
C30.3622 (3)0.0595 (5)1.08201 (19)0.0512 (11)
C40.3661 (3)0.0165 (5)1.02755 (18)0.0434 (9)
C50.3760 (3)0.0612 (5)0.97431 (19)0.0459 (10)
C60.3816 (3)0.2091 (5)0.9777 (2)0.0540 (12)
H6A0.38810.26100.94270.065*
C70.3746 (3)0.0115 (5)0.9143 (2)0.0515 (10)
H7A0.38320.04230.88050.062*
C80.3566 (3)0.2086 (5)0.84227 (19)0.0549 (11)
H8A0.37050.13530.81440.066*
C90.2603 (3)0.2606 (4)0.80995 (18)0.0448 (10)
C100.2032 (3)0.1924 (5)0.7561 (2)0.0555 (11)
H10A0.22490.11560.73820.067*
C110.1137 (3)0.2351 (7)0.7277 (2)0.0750 (15)
H11A0.07560.18620.69140.090*
C120.0810 (3)0.3481 (7)0.7525 (3)0.0783 (16)
H12A0.02110.37840.73260.094*
C130.1371 (4)0.4176 (6)0.8071 (3)0.0737 (15)
H13A0.11450.49350.82500.088*
C140.2261 (3)0.3758 (5)0.8354 (2)0.0601 (12)
H14A0.26390.42490.87170.072*
C150.4278 (3)0.3274 (6)0.8551 (2)0.0783 (15)
H15A0.48760.28750.87500.117*
H15B0.41640.39700.88430.117*
H15C0.42420.37240.81430.117*
C160.1200 (3)1.1252 (5)0.9680 (2)0.0541 (11)
C170.1326 (2)1.0647 (5)0.91308 (18)0.0465 (9)
H17A0.13521.12180.87840.056*
C180.1413 (3)0.9194 (5)0.91066 (18)0.0447 (10)
C190.1391 (2)0.8311 (6)0.96208 (17)0.0460 (9)
C200.1247 (3)0.8938 (5)1.01712 (19)0.0468 (10)
C210.1163 (3)1.0434 (5)1.01940 (19)0.0553 (12)
H21A0.10821.08641.05600.066*
C220.1220 (3)0.8060 (6)1.0725 (2)0.0591 (13)
H22A0.11040.84901.10790.071*
C230.1351 (3)0.5817 (5)1.12971 (19)0.0582 (12)
H23A0.11980.48491.11210.070*
C240.2320 (3)0.5733 (5)1.17797 (19)0.0508 (10)
C250.2650 (3)0.6751 (6)1.2257 (2)0.0672 (13)
H25A0.22730.74961.22940.081*
C260.3544 (4)0.6682 (7)1.2688 (3)0.0884 (18)
H26A0.37660.73781.30100.106*
C270.4104 (4)0.5554 (9)1.2630 (3)0.094 (2)
H27A0.46970.54751.29200.113*
C280.3767 (4)0.4568 (8)1.2141 (3)0.0921 (19)
H28A0.41370.38241.20920.111*
C290.2892 (3)0.4672 (6)1.1726 (2)0.0691 (14)
H29A0.26780.39951.13940.083*
C300.0640 (3)0.6210 (7)1.1599 (2)0.0813 (16)
H30A0.00510.62251.12640.122*
H30B0.07740.71391.17970.122*
H30C0.06410.55191.19290.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1247 (5)0.0516 (3)0.0857 (4)0.0224 (3)0.0414 (4)0.0129 (3)
Br20.1140 (4)0.0779 (4)0.0438 (2)0.0113 (3)0.0207 (2)0.0087 (3)
Br30.0959 (4)0.0645 (3)0.0470 (2)0.0069 (3)0.0277 (2)0.0083 (3)
Br40.1556 (6)0.0524 (3)0.1062 (4)0.0174 (4)0.0676 (4)0.0002 (4)
N10.055 (2)0.055 (3)0.0459 (19)0.0056 (18)0.0166 (16)0.0031 (18)
N20.050 (2)0.061 (3)0.049 (2)0.0049 (18)0.0103 (17)0.0050 (18)
O10.083 (2)0.0407 (18)0.0500 (18)0.0035 (15)0.0152 (16)0.0009 (14)
O20.080 (2)0.050 (2)0.0496 (18)0.0038 (16)0.0148 (16)0.0040 (15)
C10.048 (3)0.047 (3)0.059 (3)0.009 (2)0.013 (2)0.008 (2)
C20.049 (3)0.053 (3)0.044 (2)0.003 (2)0.0131 (19)0.0082 (19)
C30.048 (3)0.059 (3)0.040 (2)0.001 (2)0.006 (2)0.009 (2)
C40.039 (2)0.039 (2)0.044 (2)0.0001 (19)0.0036 (17)0.0030 (19)
C50.040 (2)0.048 (3)0.047 (2)0.005 (2)0.0122 (19)0.003 (2)
C60.050 (3)0.062 (3)0.053 (3)0.014 (2)0.021 (2)0.001 (2)
C70.045 (2)0.059 (3)0.051 (2)0.006 (2)0.0177 (19)0.000 (2)
C80.057 (3)0.067 (3)0.047 (2)0.001 (2)0.025 (2)0.008 (2)
C90.050 (3)0.047 (2)0.042 (2)0.003 (2)0.022 (2)0.0084 (19)
C100.068 (3)0.049 (3)0.056 (3)0.002 (2)0.028 (2)0.004 (2)
C110.062 (3)0.089 (4)0.065 (3)0.019 (3)0.008 (3)0.017 (3)
C120.060 (3)0.077 (4)0.098 (4)0.019 (3)0.027 (3)0.036 (4)
C130.081 (4)0.058 (3)0.096 (4)0.009 (3)0.049 (3)0.015 (3)
C140.062 (3)0.058 (3)0.066 (3)0.007 (2)0.029 (2)0.003 (2)
C150.056 (3)0.095 (4)0.083 (3)0.011 (3)0.022 (2)0.032 (3)
C160.062 (3)0.051 (3)0.052 (3)0.006 (2)0.022 (2)0.003 (2)
C170.048 (2)0.045 (2)0.043 (2)0.001 (2)0.0105 (18)0.008 (2)
C180.041 (2)0.053 (3)0.039 (2)0.0018 (19)0.0110 (19)0.0010 (19)
C190.034 (2)0.052 (3)0.046 (2)0.008 (2)0.0057 (17)0.001 (2)
C200.041 (2)0.060 (3)0.038 (2)0.0021 (19)0.0121 (18)0.011 (2)
C210.055 (3)0.067 (3)0.048 (2)0.002 (2)0.023 (2)0.005 (2)
C220.054 (3)0.078 (4)0.046 (2)0.002 (3)0.019 (2)0.007 (2)
C230.060 (3)0.065 (3)0.045 (2)0.009 (2)0.011 (2)0.013 (2)
C240.049 (2)0.061 (3)0.044 (2)0.003 (2)0.0170 (18)0.015 (2)
C250.057 (3)0.074 (3)0.067 (3)0.005 (3)0.015 (2)0.007 (3)
C260.088 (5)0.093 (5)0.071 (4)0.026 (4)0.008 (3)0.003 (3)
C270.046 (3)0.124 (6)0.099 (4)0.005 (4)0.006 (3)0.044 (5)
C280.066 (4)0.103 (5)0.116 (5)0.030 (4)0.042 (4)0.044 (4)
C290.070 (3)0.073 (4)0.071 (3)0.013 (3)0.032 (3)0.020 (3)
C300.051 (3)0.124 (5)0.068 (3)0.000 (3)0.018 (2)0.037 (3)
Geometric parameters (Å, º) top
Br1—C11.907 (5)C13—C141.370 (7)
Br2—C31.898 (4)C13—H13A0.9300
Br3—C181.894 (4)C14—H14A0.9300
Br4—C161.896 (5)C15—H15A0.9600
N1—C71.263 (6)C15—H15B0.9600
N1—C81.476 (5)C15—H15C0.9600
N2—C221.270 (6)C16—C211.362 (6)
N2—C231.480 (5)C16—C171.381 (6)
O1—C41.342 (5)C17—C181.369 (6)
O1—H10.8066C17—H17A0.9300
O2—C191.348 (6)C18—C191.390 (6)
O2—H20.8662C19—C201.405 (6)
C1—C21.368 (6)C20—C211.408 (7)
C1—C61.374 (6)C20—C221.460 (6)
C2—C31.373 (6)C21—H21A0.9300
C2—H2B0.9300C22—H22A0.9300
C3—C41.389 (6)C23—C301.500 (6)
C4—C51.408 (6)C23—C241.521 (6)
C5—C61.386 (6)C23—H23A0.9800
C5—C71.453 (6)C24—C291.362 (6)
C6—H6A0.9300C24—C251.370 (6)
C7—H7A0.9300C25—C261.392 (7)
C8—C91.507 (6)C25—H25A0.9300
C8—C151.527 (6)C26—C271.399 (9)
C8—H8A0.9800C26—H26A0.9300
C9—C101.363 (5)C27—C281.366 (9)
C9—C141.390 (6)C27—H27A0.9300
C10—C111.379 (6)C28—C291.360 (7)
C10—H10A0.9300C28—H28A0.9300
C11—C121.355 (8)C29—H29A0.9300
C11—H11A0.9300C30—H30A0.9600
C12—C131.373 (7)C30—H30B0.9600
C12—H12A0.9300C30—H30C0.9600
C7—N1—C8119.3 (4)H15A—C15—H15C109.5
C22—N2—C23121.9 (4)H15B—C15—H15C109.5
C4—O1—H1109.5C21—C16—C17121.4 (4)
C19—O2—H2109.5C21—C16—Br4119.8 (3)
C2—C1—C6121.5 (4)C17—C16—Br4118.8 (3)
C2—C1—Br1119.5 (3)C18—C17—C16118.8 (4)
C6—C1—Br1118.9 (4)C18—C17—H17A120.6
C1—C2—C3118.7 (4)C16—C17—H17A120.6
C1—C2—H2B120.7C17—C18—C19122.1 (4)
C3—C2—H2B120.7C17—C18—Br3119.0 (3)
C2—C3—C4122.2 (4)C19—C18—Br3118.9 (3)
C2—C3—Br2119.2 (4)O2—C19—C18120.4 (4)
C4—C3—Br2118.6 (3)O2—C19—C20121.1 (4)
O1—C4—C3120.2 (4)C18—C19—C20118.4 (5)
O1—C4—C5121.8 (4)C19—C20—C21119.1 (4)
C3—C4—C5118.0 (4)C19—C20—C22120.6 (4)
C6—C5—C4119.6 (4)C21—C20—C22120.2 (4)
C6—C5—C7119.7 (4)C16—C21—C20120.0 (4)
C4—C5—C7120.6 (4)C16—C21—H21A120.0
C1—C6—C5120.0 (4)C20—C21—H21A120.0
C1—C6—H6A120.0N2—C22—C20121.1 (4)
C5—C6—H6A120.0N2—C22—H22A119.4
N1—C7—C5122.8 (4)C20—C22—H22A119.4
N1—C7—H7A118.6N2—C23—C30114.6 (4)
C5—C7—H7A118.6N2—C23—C24108.8 (3)
N1—C8—C9107.8 (3)C30—C23—C24114.8 (4)
N1—C8—C15108.0 (3)N2—C23—H23A106.0
C9—C8—C15113.4 (4)C30—C23—H23A106.0
N1—C8—H8A109.2C24—C23—H23A106.0
C9—C8—H8A109.2C29—C24—C25118.5 (4)
C15—C8—H8A109.2C29—C24—C23120.3 (5)
C10—C9—C14118.2 (4)C25—C24—C23121.1 (4)
C10—C9—C8120.6 (4)C24—C25—C26120.8 (5)
C14—C9—C8121.2 (4)C24—C25—H25A119.6
C9—C10—C11121.2 (4)C26—C25—H25A119.6
C9—C10—H10A119.4C25—C26—C27119.1 (5)
C11—C10—H10A119.4C25—C26—H26A120.4
C12—C11—C10120.3 (5)C27—C26—H26A120.4
C12—C11—H11A119.8C28—C27—C26119.2 (5)
C10—C11—H11A119.8C28—C27—H27A120.4
C11—C12—C13119.5 (5)C26—C27—H27A120.4
C11—C12—H12A120.3C29—C28—C27120.2 (6)
C13—C12—H12A120.3C29—C28—H28A119.9
C14—C13—C12120.4 (5)C27—C28—H28A119.9
C14—C13—H13A119.8C28—C29—C24122.2 (6)
C12—C13—H13A119.8C28—C29—H29A118.9
C13—C14—C9120.4 (4)C24—C29—H29A118.9
C13—C14—H14A119.8C23—C30—H30A109.5
C9—C14—H14A119.8C23—C30—H30B109.5
C8—C15—H15A109.5H30A—C30—H30B109.5
C8—C15—H15B109.5C23—C30—H30C109.5
H15A—C15—H15B109.5H30A—C30—H30C109.5
C8—C15—H15C109.5H30B—C30—H30C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.811.892.603 (4)147
O2—H2···N20.871.792.558 (5)147

Experimental details

Crystal data
Chemical formulaC15H13Br2NO
Mr383.08
Crystal system, space groupMonoclinic, I2
Temperature (K)296
a, b, c (Å)15.523 (2), 9.3533 (12), 21.527 (4)
β (°) 109.287 (2)
V3)2950.1 (7)
Z8
Radiation typeMo Kα
µ (mm1)5.49
Crystal size (mm)0.38 × 0.31 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.158, 0.236
No. of measured, independent and
observed [I > 2σ(I)] reflections
12876, 6480, 4357
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.082, 0.99
No. of reflections6480
No. of parameters346
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.50
Absolute structureFlack (1983), 2872 Friedel pairs
Absolute structure parameter0.022 (9)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Br1—C11.907 (5)N1—C71.263 (6)
Br2—C31.898 (4)N1—C81.476 (5)
Br3—C181.894 (4)N2—C221.270 (6)
Br4—C161.896 (5)N2—C231.480 (5)
C7—N1—C8119.3 (4)C4—C3—Br2118.6 (3)
C22—N2—C23121.9 (4)N1—C8—C9107.8 (3)
C2—C1—Br1119.5 (3)N1—C8—C15108.0 (3)
C6—C1—Br1118.9 (4)N2—C23—C30114.6 (4)
C2—C3—Br2119.2 (4)N2—C23—C24108.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.811.892.603 (4)146.9
O2—H2···N20.871.792.558 (5)147.4
 

Acknowledgements

This project was supported by the Talent Fund of Ningbo University (grant No. 2006668) and sponsored by the K.C. Wong Magna Fund of Ningbo University.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2043.  CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds