organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3196-o3197

(3aR,6aR)-1-Phenyl-5-[(R)-1-phenyl­ethyl]-3-[4-(tri­fluoro­meth­yl)phen­yl]-1,6a-di­hydro­pyrrolo[3,4-c]pyrazole-4,6(3aH,5H)-dione

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA, and bDepartment of Chemistry, Abant Izzet Baysal University, TR-14280 Bolu, Turkey
*Correspondence e-mail: ffroncz@lsu.edu

(Received 11 November 2009; accepted 18 November 2009; online 25 November 2009)

In the title mol­ecule, C26H20F3N3O2, the two central five-membered rings form a dihedral angle of 62.94 (8)°. The absolute configuration was determined by analysis of Bijvoet pairs based on resonant scattering of light atoms, yielding a Hooft parameter y = −0.05 (11). Notable intra- and inter­molecular contacts include C—H⋯O and C—H⋯π(arene) hydrogen bonds.

Related literature

For cyclo­addition reactions of chiral maleimides with dipolar compounds, see: Bienayme (1997[Bienayme, H. (1997). Angew. Chem. Int. Ed. 36, 2670-2673.]); Blanarikova et al. (2001[Blanarikova, I., Dugovic, B., Fisera, L., Hametner, C. & Pronayova, N. (2001). Arkivoc, 2, 1091-1103.]); Chihab-Eddine et al. (2001[Chihab-Eddine, A., Daich, A., Jilale, A. & Decroix, B. (2001). Tetrahedron Lett. 42, 573-576.]); Oishi et al. (1993[Oishi, T., Kagawa, K. & Fujimoto, M. (1993). Polymer, 34, 2644-2649.], 1999[Oishi, T., Onimura, K., Tanaka, K., Horimoto, W. & Tsutsumi, H. (1999). J. Polym. Sci. Part A Polym. Chem. 37, 473-482.], 2007[Oishi, T., Gao, H. J., Nakamura, T., Isobe, Y. & Onimura, K. (2007). Polymer J. 39, 1047-1059.]); Ondrus & Fisera (1997[Ondrus, V. & Fisera, L. (1997). Molecules, 2, 49-56.]); Tokioka et al. (1997[Tokioka, K., Masuda, S., Fujii, T., Hata, Y. & Yamamoto, Y. (1997). Tetrahedron Asymmetry, 8, 101-107.]). For the determination of the absolute configuration by Bayesian analysis of Bijvoet differences, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related structures, see: Hursthouse et al. (2003[Hursthouse, M. B., Light, M. E. & Jones, R. C. F. (2003). Private communication to the Cambridge Structural Database (refcode WIQBIH). CCDC, Cambridge, England.]); Skof et al. (1998[Skof, M., Svete, J., Stanovnik, B., Golic, L., Golic-Grdadolnik, S. & Selic, L. (1998). Helv. Chim. Acta, 81, 2332-2340.]); Fronczek et al. (2009[Fronczek, C. F., Dürüst, Y., Yildirim, M. & Fronczek, F. R. (2009). Acta Cryst. E65, o3069.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20F3N3O2

  • Mr = 463.45

  • Orthorhombic, P 21 21 21

  • a = 8.7982 (15) Å

  • b = 9.3064 (15) Å

  • c = 25.992 (4) Å

  • V = 2128.2 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.93 mm−1

  • T = 90 K

  • 0.30 × 0.18 × 0.03 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.767, Tmax = 0.972

  • 20719 measured reflections

  • 3822 independent reflections

  • 2959 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.108

  • S = 1.03

  • 3822 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1590 Friedel pairs

  • Flack parameter: −0.2 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1 1.00 2.47 2.859 (4) 103
C8—H8⋯Cg1i 0.95 2.58 3.491 (3) 161
Symmetry code: (i) [-x-1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]. Cg1 is the centroid of the C19–C24 ring.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

There are few examples of cycloaddition reactions of chiral maleimides with dipolar compounds like nitrones, nitriloxides and anthrones reported in the literature (Bienayme, 1997; Blanarikova et al., 2001; Chihab-Eddine et al., 2001; Oishi et al., 1993; 1999; 2007; Ondrus & Fisera, 1997; Tokioka et al., 1997). Apparently, the only previously-reported example of 1,3-dipolar cycloaddition of C,N-substituted nitrilimines to chiral maleimide, (R)—N-(1-phenylethyl) maleimide is our previous work (Fronczek et al., 2009). Herein, we report the synthesis, characterization and crystal structure of the diastereomer obtained from the above reaction.

The two 5-membered rings at the core of this molecule are essentially planar and form a dihedral angle of 62.94 (8)°. The mean deviation of the seven pyrrolidine-2,5-dione atoms from their least-squares plane is 0.021 Å, and the mean deviation for the 4,5-dihydro-1H-pyrazole ring is 0.013 Å. Atom N2 deviates most from the 4,5-dihydro-1H-pyrazole ring, with deviation 0.0198 (17) Å. Atom N1 deviates most from the pyrrolidine-2,5-dione ring, with deviation 0.0610 (19) Å. The core of this structure is nearly identical to that found in a recently-reported compound produced in a similar reaction (Fronczek et al., 2009), except that it was the diastereomer with N2 and C5 swapped, and p-acetate substituent on phenyl rather than CF3. That compound had dihedral angle between the two 5-membered rings 63.66 (4)°. Similar results can also be found in compounds having refcodes CIRFEP and WIQBIH from the Cambridge Structural Database (Allen, 2002, version 5.30, Nov. 2008). In CIRFEP (Hursthouse et al., 2003), the dihedral angle between the central ring planes is 63.65 (9)°, for one of two independent molecules and 64.23 (9)° for the other. For WIQBIH, (Skof et al., 1998), the dihedral angle formed by the central ring planes 65.99 (6)°. Notable intra and intermolecular contacts include C—H···O and C—H···π(arene) hydrogen bonds, Table 1.

The absolute configuration, based on resonant scattering of the light atoms, was slightly ambiguous from of the Flack (1983) parameter, x = -0.2 (2). Analysis of the Bijvoet pairs using the method of Hooft et al. (2008) yielded a more decisive y = -0.10 (7), corresponding to a probability P2(true) = 1.000 for this structure, confirming the absolute configuration. It agrees with that of the starting materials.

Related literature top

For cycloaddition reactions of chiral maleimides with dipolar compounds, see: Bienayme (1997); Blanarikova et al. (2001); Chihab-Eddine et al. (2001); Oishi et al. (1993, 1999, 2007); Ondrus & Fisera (1997); Tokioka et al. (1997). For the determination of the absolute configuration by Bayesian analysis of Bijvoet differences, see: Hooft et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002). For related structures, see: Hursthouse et al. (2003); Skof et al. (1998); Fronczek et al. (2009). Cg1 is the centroid of the C19–C24 ring.

Experimental top

C-(4-Trifluoromethyl)-N-phenyl hydrazonyl chloride 1 (0,149 g, 0.5 mmol) and (R)—N-(1-phenylethyl) maleimide 2 (0,100 g, 0.5 mmol) were dissolved in dry acetonitrile (20 ml). Et3N (0.404 g, 4 mmol) was added dropwise into the mixture with stirring and after addition was completed, the reaction mixture was stirred at room temperature for 2 h. The progress of the reaction was monitored by TLC. When the starting materials disappeared, the solvent, CH3CN was evaporated under the reduced pressure and the crude reaction mixture was taken into water (50 ml) to remove Et3N.HCl. The crude precipitated product was filtered and washed thoroughly with water, then n-hexane and dried under vacuum. After purification on a Chromatotron (Centrifugal Thin-Layer Chromatograph) using n-hexane-ethyl acetate (2:1) as eluant and recrystallization from acetic acid yielded cycloadduct 3.

Light green needle crystals. (161 mg, 70%). [α]21°C589 = +12.0° (c= 0.01 g/ml, l=10 cm, acetone). M.p. 174–176°C. Rf: 0.68 (ethyl acetate-n-hexane; 1:2). IR (KBr): ν = 3452, 3064, 2941 (C—H), 1708 (Cδb O),1599 (Cδb N), 1500, 1327, 1193, 1166, 1068, 844, 750, 696 cm-1. 1H NMR (400 MHz, CDCl3): δ= 8.17 (q, J=3.8 Hz 2H), 7.70 (t, J=4.7 Hz, 2H), 7.61 (t, J=7.6 Hz, 2H), 7.47 (t, J=6.5 Hz 2H), 7.28–7.41 (m, 5H), 7.05 (t, J=7.0, 1H), 5.44 (t, J=7.0 Hz 1H), 5.08–5.20 (dd, J=35.9 11.0 Hz 1H), 4.76–4.85 (dd, J=23.2 11.0 Hz 1H), 1.82 (t, J=7.3 Hz 3H). 13C NMR (100 MHz,CDCl3): δ=172.1(Cδb O), 171.4 (Cδb O),143.9 (Cδb N), 141.2, 138.6, 133.8, 130.9, 129.3, 128.6, 128.3, 127.6, 127.1, 125.5 (–CF3), 122.6, 121.9, 114.5, 65.3 (–CH), 52.9 (–CH), 51.6 (–CH), 16.4 (–CH3). GC—MS (70 eV): (m/z, %)= 463 (100) [M]+, 359 (80), 315 (30), 269 (10), 105 (40), 70 (43). Anal Calcd for C26H20F3N3O2 C, 67.38; H, 4.35; N, 9.07; found C, 66.45; H, 4.50; N, 8.74.

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.95 - 1.00 Å and there after treated as riding. A torsional parameter was refined for the methyl group. Uiso for H were assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level, with H atoms having arbitrary radius.
[Figure 2] Fig. 2. The formation of the title compound.
(3aR,6aR)-1-Phenyl-5-[(R)-1-phenylethyl]-3-[4-(trifluoromethyl)phenyl]-1,6a-dihydropyrrolo[3,4-c]pyrazole-4,6(3aH,5H)-dione top
Crystal data top
C26H20F3N3O2F(000) = 960
Mr = 463.45Dx = 1.446 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 3807 reflections
a = 8.7982 (15) Åθ = 3.4–65.8°
b = 9.3064 (15) ŵ = 0.93 mm1
c = 25.992 (4) ÅT = 90 K
V = 2128.2 (6) Å3Lath, colourless
Z = 40.30 × 0.18 × 0.03 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3822 independent reflections
Radiation source: fine-focus sealed tube2959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
phi and ω scansθmax = 68.9°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1010
Tmin = 0.767, Tmax = 0.972k = 910
20719 measured reflectionsl = 3031
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0512P)2 + 0.4052P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.31 e Å3
3822 reflectionsΔρmin = 0.18 e Å3
309 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0034 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1590 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.2 (2)
Crystal data top
C26H20F3N3O2V = 2128.2 (6) Å3
Mr = 463.45Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.7982 (15) ŵ = 0.93 mm1
b = 9.3064 (15) ÅT = 90 K
c = 25.992 (4) Å0.30 × 0.18 × 0.03 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3822 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2959 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.972Rint = 0.069
20719 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.31 e Å3
S = 1.03Δρmin = 0.18 e Å3
3822 reflectionsAbsolute structure: Flack (1983), 1590 Friedel pairs
309 parametersAbsolute structure parameter: 0.2 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2050 (3)0.3740 (2)0.74363 (8)0.0649 (7)
F20.0123 (2)0.2462 (3)0.76478 (7)0.0556 (6)
F30.2228 (2)0.2229 (2)0.80549 (7)0.0451 (5)
O10.4288 (2)0.4051 (2)0.67014 (8)0.0321 (5)
O20.5158 (2)0.4981 (2)0.49986 (8)0.0312 (5)
N10.4518 (3)0.4819 (2)0.58594 (9)0.0251 (5)
N20.4312 (3)0.1795 (2)0.51974 (9)0.0254 (6)
N30.3502 (3)0.0970 (2)0.55431 (9)0.0242 (5)
C10.4613 (3)0.3818 (3)0.62588 (12)0.0278 (6)
C20.5047 (3)0.4301 (3)0.53947 (12)0.0278 (7)
C30.5441 (3)0.2709 (3)0.54625 (11)0.0252 (6)
H30.65070.24850.53570.030*
C40.5150 (3)0.2394 (3)0.60326 (11)0.0270 (6)
H40.60760.20180.62100.032*
C50.3890 (3)0.1289 (3)0.60086 (11)0.0253 (6)
C60.4527 (3)0.1235 (3)0.46979 (11)0.0239 (6)
C70.3790 (3)0.0028 (3)0.45435 (11)0.0265 (6)
H70.31550.05330.47770.032*
C80.3995 (3)0.0536 (3)0.40461 (11)0.0284 (7)
H80.34960.13920.39410.034*
C90.4919 (3)0.0190 (3)0.37010 (12)0.0315 (7)
H90.50660.01720.33630.038*
C100.5626 (4)0.1450 (3)0.38552 (11)0.0310 (7)
H100.62540.19540.36190.037*
C110.5429 (3)0.1988 (3)0.43503 (11)0.0281 (7)
H110.59060.28600.44500.034*
C120.3202 (4)0.0518 (3)0.64432 (11)0.0274 (7)
C130.3844 (4)0.0538 (3)0.69304 (11)0.0312 (7)
H130.46510.11850.70030.037*
C140.3318 (4)0.0378 (3)0.73130 (11)0.0321 (7)
H140.37780.03760.76440.039*
C150.2117 (4)0.1294 (3)0.72079 (11)0.0301 (7)
C160.1408 (3)0.1260 (3)0.67349 (11)0.0302 (7)
H160.05590.18650.66710.036*
C170.1931 (3)0.0344 (3)0.63522 (11)0.0279 (7)
H170.14250.03040.60300.033*
C180.3916 (3)0.6287 (3)0.59575 (12)0.0277 (7)
H180.32860.62230.62770.033*
C190.5216 (3)0.7315 (3)0.60757 (11)0.0260 (6)
C200.5713 (3)0.7462 (3)0.65816 (12)0.0310 (7)
H200.52560.68960.68430.037*
C210.6860 (4)0.8416 (3)0.67111 (13)0.0355 (8)
H210.71790.85060.70590.043*
C220.7537 (3)0.9240 (3)0.63311 (13)0.0361 (8)
H220.83160.99040.64180.043*
C230.7077 (4)0.9093 (3)0.58217 (13)0.0338 (7)
H230.75530.96480.55610.041*
C240.5922 (3)0.8135 (3)0.56927 (12)0.0280 (7)
H240.56130.80390.53440.034*
C250.2853 (4)0.6748 (3)0.55281 (12)0.0313 (7)
H25A0.34290.68520.52080.047*
H25B0.23830.76700.56170.047*
H25C0.20590.60210.54820.047*
C260.1630 (4)0.2415 (4)0.75849 (12)0.0402 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.110 (2)0.0300 (11)0.0548 (13)0.0067 (13)0.0139 (13)0.0070 (10)
F20.0414 (13)0.0789 (16)0.0464 (12)0.0149 (12)0.0022 (9)0.0186 (11)
F30.0419 (12)0.0597 (13)0.0336 (10)0.0020 (10)0.0040 (8)0.0095 (9)
O10.0368 (13)0.0260 (12)0.0335 (12)0.0022 (10)0.0047 (10)0.0027 (9)
O20.0277 (11)0.0264 (11)0.0394 (12)0.0006 (9)0.0035 (9)0.0002 (9)
N10.0242 (13)0.0189 (13)0.0322 (13)0.0008 (10)0.0027 (10)0.0019 (10)
N20.0193 (12)0.0227 (13)0.0343 (13)0.0037 (10)0.0008 (10)0.0049 (10)
N30.0186 (13)0.0184 (13)0.0356 (13)0.0004 (10)0.0021 (10)0.0014 (10)
C10.0204 (15)0.0238 (16)0.0391 (17)0.0026 (13)0.0037 (12)0.0027 (13)
C20.0189 (16)0.0257 (16)0.0387 (17)0.0009 (13)0.0013 (13)0.0058 (13)
C30.0156 (14)0.0202 (15)0.0397 (16)0.0008 (12)0.0007 (12)0.0054 (12)
C40.0232 (16)0.0215 (15)0.0361 (15)0.0047 (13)0.0050 (12)0.0026 (13)
C50.0184 (15)0.0230 (15)0.0343 (16)0.0052 (12)0.0034 (12)0.0021 (13)
C60.0173 (14)0.0202 (15)0.0342 (15)0.0008 (12)0.0000 (11)0.0029 (12)
C70.0193 (15)0.0217 (15)0.0385 (17)0.0025 (13)0.0023 (12)0.0005 (13)
C80.0256 (17)0.0212 (16)0.0384 (17)0.0020 (12)0.0007 (13)0.0044 (12)
C90.0281 (17)0.0299 (18)0.0366 (16)0.0020 (14)0.0015 (13)0.0022 (13)
C100.0267 (17)0.0288 (17)0.0376 (17)0.0027 (14)0.0029 (13)0.0025 (13)
C110.0215 (15)0.0234 (16)0.0394 (17)0.0035 (13)0.0006 (13)0.0021 (12)
C120.0298 (17)0.0199 (15)0.0324 (16)0.0069 (12)0.0015 (13)0.0002 (12)
C130.0306 (17)0.0242 (17)0.0388 (17)0.0004 (14)0.0054 (14)0.0065 (13)
C140.0349 (19)0.0285 (17)0.0329 (17)0.0058 (14)0.0038 (14)0.0015 (13)
C150.0307 (18)0.0284 (17)0.0311 (15)0.0043 (15)0.0005 (13)0.0027 (14)
C160.0245 (16)0.0279 (17)0.0382 (17)0.0013 (14)0.0028 (13)0.0002 (14)
C170.0251 (16)0.0282 (17)0.0304 (16)0.0037 (13)0.0003 (13)0.0002 (13)
C180.0256 (16)0.0201 (15)0.0373 (16)0.0053 (13)0.0006 (13)0.0041 (13)
C190.0212 (15)0.0159 (14)0.0408 (16)0.0056 (12)0.0040 (12)0.0036 (12)
C200.0296 (17)0.0255 (16)0.0380 (17)0.0054 (14)0.0006 (13)0.0045 (13)
C210.0290 (18)0.0323 (19)0.0452 (19)0.0071 (15)0.0062 (15)0.0105 (15)
C220.0233 (17)0.0250 (17)0.060 (2)0.0008 (14)0.0023 (15)0.0122 (15)
C230.0255 (17)0.0242 (17)0.052 (2)0.0040 (14)0.0048 (14)0.0017 (14)
C240.0233 (16)0.0233 (16)0.0373 (17)0.0049 (13)0.0017 (13)0.0023 (12)
C250.0278 (17)0.0238 (16)0.0424 (18)0.0029 (14)0.0029 (14)0.0014 (13)
C260.045 (2)0.042 (2)0.0335 (17)0.0040 (17)0.0003 (15)0.0002 (16)
Geometric parameters (Å, º) top
F1—C261.344 (4)C11—H110.9500
F2—C261.337 (4)C12—C131.387 (4)
F3—C261.342 (4)C12—C171.396 (4)
O1—C11.205 (3)C13—C141.390 (4)
O2—C21.213 (4)C13—H130.9500
N1—C21.381 (4)C14—C151.385 (5)
N1—C11.397 (4)C14—H140.9500
N1—C181.487 (4)C15—C161.379 (4)
N2—N31.381 (3)C15—C261.494 (4)
N2—C61.412 (4)C16—C171.389 (4)
N2—C31.477 (4)C16—H160.9500
N3—C51.292 (4)C17—H170.9500
C1—C41.525 (4)C18—C251.519 (4)
C2—C31.532 (4)C18—C191.523 (4)
C3—C41.532 (4)C18—H181.0000
C3—H31.0000C19—C201.393 (4)
C4—C51.514 (4)C19—C241.400 (4)
C4—H41.0000C20—C211.386 (4)
C5—C121.469 (4)C20—H200.9500
C6—C111.392 (4)C21—C221.385 (4)
C6—C71.401 (4)C21—H210.9500
C7—C81.388 (4)C22—C231.391 (4)
C7—H70.9500C22—H220.9500
C8—C91.386 (4)C23—C241.392 (4)
C8—H80.9500C23—H230.9500
C9—C101.386 (4)C24—H240.9500
C9—H90.9500C25—H25A0.9800
C10—C111.391 (4)C25—H25B0.9800
C10—H100.9500C25—H25C0.9800
C2—N1—C1113.4 (2)C12—C13—H13119.7
C2—N1—C18126.2 (2)C14—C13—H13119.7
C1—N1—C18120.4 (2)C15—C14—C13119.4 (3)
N3—N2—C6117.5 (2)C15—C14—H14120.3
N3—N2—C3111.3 (2)C13—C14—H14120.3
C6—N2—C3123.5 (2)C16—C15—C14120.4 (3)
C5—N3—N2110.2 (2)C16—C15—C26118.1 (3)
O1—C1—N1125.1 (3)C14—C15—C26121.3 (3)
O1—C1—C4126.7 (3)C15—C16—C17120.2 (3)
N1—C1—C4108.1 (2)C15—C16—H16119.9
O2—C2—N1126.0 (3)C17—C16—H16119.9
O2—C2—C3125.8 (3)C16—C17—C12119.8 (3)
N1—C2—C3108.3 (3)C16—C17—H17120.1
N2—C3—C2110.5 (2)C12—C17—H17120.1
N2—C3—C4103.2 (2)N1—C18—C25110.7 (2)
C2—C3—C4105.0 (2)N1—C18—C19110.2 (2)
N2—C3—H3112.5C25—C18—C19115.7 (2)
C2—C3—H3112.5N1—C18—H18106.6
C4—C3—H3112.5C25—C18—H18106.6
C5—C4—C1112.3 (2)C19—C18—H18106.6
C5—C4—C3102.2 (2)C20—C19—C24118.6 (3)
C1—C4—C3105.0 (2)C20—C19—C18119.2 (3)
C5—C4—H4112.2C24—C19—C18122.2 (3)
C1—C4—H4112.2C21—C20—C19121.4 (3)
C3—C4—H4112.2C21—C20—H20119.3
N3—C5—C12119.9 (3)C19—C20—H20119.3
N3—C5—C4112.9 (3)C22—C21—C20119.7 (3)
C12—C5—C4127.0 (3)C22—C21—H21120.2
C11—C6—C7120.0 (3)C20—C21—H21120.2
C11—C6—N2119.2 (3)C21—C22—C23119.9 (3)
C7—C6—N2120.8 (3)C21—C22—H22120.0
C8—C7—C6119.5 (3)C23—C22—H22120.0
C8—C7—H7120.2C22—C23—C24120.3 (3)
C6—C7—H7120.2C22—C23—H23119.9
C9—C8—C7120.8 (3)C24—C23—H23119.9
C9—C8—H8119.6C23—C24—C19120.1 (3)
C7—C8—H8119.6C23—C24—H24119.9
C8—C9—C10119.2 (3)C19—C24—H24119.9
C8—C9—H9120.4C18—C25—H25A109.5
C10—C9—H9120.4C18—C25—H25B109.5
C9—C10—C11121.1 (3)H25A—C25—H25B109.5
C9—C10—H10119.5C18—C25—H25C109.5
C11—C10—H10119.5H25A—C25—H25C109.5
C10—C11—C6119.3 (3)H25B—C25—H25C109.5
C10—C11—H11120.3F2—C26—F3106.4 (3)
C6—C11—H11120.3F2—C26—F1106.1 (3)
C13—C12—C17119.3 (3)F3—C26—F1105.8 (3)
C13—C12—C5121.8 (3)F2—C26—C15112.8 (3)
C17—C12—C5118.7 (3)F3—C26—C15113.2 (3)
C12—C13—C14120.6 (3)F1—C26—C15111.9 (3)
C6—N2—N3—C5154.5 (3)C8—C9—C10—C110.4 (5)
C3—N2—N3—C53.9 (3)C9—C10—C11—C61.0 (5)
C2—N1—C1—O1176.3 (3)C7—C6—C11—C101.9 (4)
C18—N1—C1—O12.8 (4)N2—C6—C11—C10179.1 (3)
C2—N1—C1—C45.3 (3)N3—C5—C12—C13162.7 (3)
C18—N1—C1—C4175.6 (2)C4—C5—C12—C1312.0 (5)
C1—N1—C2—O2175.9 (3)N3—C5—C12—C1712.5 (4)
C18—N1—C2—O23.1 (5)C4—C5—C12—C17172.8 (3)
C1—N1—C2—C35.2 (3)C17—C12—C13—C145.6 (4)
C18—N1—C2—C3175.8 (3)C5—C12—C13—C14169.6 (3)
N3—N2—C3—C2115.0 (3)C12—C13—C14—C151.5 (5)
C6—N2—C3—C296.5 (3)C13—C14—C15—C162.5 (5)
N3—N2—C3—C43.1 (3)C13—C14—C15—C26172.8 (3)
C6—N2—C3—C4151.7 (2)C14—C15—C16—C172.5 (5)
O2—C2—C3—N271.1 (4)C26—C15—C16—C17173.0 (3)
N1—C2—C3—N2107.8 (3)C15—C16—C17—C121.6 (4)
O2—C2—C3—C4178.2 (3)C13—C12—C17—C165.6 (4)
N1—C2—C3—C42.9 (3)C5—C12—C17—C16169.7 (3)
O1—C1—C4—C571.2 (4)C2—N1—C18—C2543.8 (4)
N1—C1—C4—C5107.2 (3)C1—N1—C18—C25137.3 (3)
O1—C1—C4—C3178.5 (3)C2—N1—C18—C1985.4 (3)
N1—C1—C4—C33.1 (3)C1—N1—C18—C1993.5 (3)
N2—C3—C4—C51.4 (3)N1—C18—C19—C2088.0 (3)
C2—C3—C4—C5117.2 (2)C25—C18—C19—C20145.5 (3)
N2—C3—C4—C1116.0 (2)N1—C18—C19—C2492.7 (3)
C2—C3—C4—C10.2 (3)C25—C18—C19—C2433.8 (4)
N2—N3—C5—C12178.4 (2)C24—C19—C20—C211.3 (4)
N2—N3—C5—C42.9 (3)C18—C19—C20—C21178.0 (3)
C1—C4—C5—N3112.9 (3)C19—C20—C21—C220.4 (4)
C3—C4—C5—N30.9 (3)C20—C21—C22—C230.7 (5)
C1—C4—C5—C1272.1 (4)C21—C22—C23—C240.9 (5)
C3—C4—C5—C12175.9 (3)C22—C23—C24—C190.1 (4)
N3—N2—C6—C11175.5 (3)C20—C19—C24—C231.2 (4)
C3—N2—C6—C1128.7 (4)C18—C19—C24—C23178.1 (3)
N3—N2—C6—C77.4 (4)C16—C15—C26—F250.1 (4)
C3—N2—C6—C7154.2 (3)C14—C15—C26—F2134.5 (3)
C11—C6—C7—C81.4 (4)C16—C15—C26—F3171.0 (3)
N2—C6—C7—C8178.5 (3)C14—C15—C26—F313.6 (5)
C6—C7—C8—C90.0 (4)C16—C15—C26—F169.5 (4)
C7—C8—C9—C100.9 (5)C14—C15—C26—F1105.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O11.002.472.859 (4)103
C8—H8···Cg1i0.952.583.491 (3)161
Symmetry code: (i) x1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC26H20F3N3O2
Mr463.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)8.7982 (15), 9.3064 (15), 25.992 (4)
V3)2128.2 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.93
Crystal size (mm)0.30 × 0.18 × 0.03
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.767, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
20719, 3822, 2959
Rint0.069
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 1.03
No. of reflections3822
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.18
Absolute structureFlack (1983), 1590 Friedel pairs
Absolute structure parameter0.2 (2)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O11.002.472.859 (4)103
C8—H8···Cg1i0.952.583.491 (3)161
Symmetry code: (i) x1, y+1/2, z+3/2.
 

Acknowledgements

Abant Izzet Baysal University, Directorate of Research Projects Commission (BAP grant 2007.03.03.260) and TÜBITAK (The Scientific and Technological Research Council of Turkey, grant 106 T645) are gratefully acknowledged for financial support. We also thank Rosalind Segesta for financial assistance with the open-access fee.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBienayme, H. (1997). Angew. Chem. Int. Ed. 36, 2670–2673.  CAS Google Scholar
First citationBlanarikova, I., Dugovic, B., Fisera, L., Hametner, C. & Pronayova, N. (2001). Arkivoc, 2, 1091–1103.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChihab-Eddine, A., Daich, A., Jilale, A. & Decroix, B. (2001). Tetrahedron Lett. 42, 573–576.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFronczek, C. F., Dürüst, Y., Yildirim, M. & Fronczek, F. R. (2009). Acta Cryst. E65, o3069.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHursthouse, M. B., Light, M. E. & Jones, R. C. F. (2003). Private communication to the Cambridge Structural Database (refcode WIQBIH). CCDC, Cambridge, England.  Google Scholar
First citationOishi, T., Gao, H. J., Nakamura, T., Isobe, Y. & Onimura, K. (2007). Polymer J. 39, 1047–1059.  Web of Science CrossRef CAS Google Scholar
First citationOishi, T., Kagawa, K. & Fujimoto, M. (1993). Polymer, 34, 2644–2649.  CrossRef CAS Web of Science Google Scholar
First citationOishi, T., Onimura, K., Tanaka, K., Horimoto, W. & Tsutsumi, H. (1999). J. Polym. Sci. Part A Polym. Chem. 37, 473–482.  CrossRef Google Scholar
First citationOndrus, V. & Fisera, L. (1997). Molecules, 2, 49–56.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkof, M., Svete, J., Stanovnik, B., Golic, L., Golic-Grdadolnik, S. & Selic, L. (1998). Helv. Chim. Acta, 81, 2332–2340.  CrossRef CAS Google Scholar
First citationTokioka, K., Masuda, S., Fujii, T., Hata, Y. & Yamamoto, Y. (1997). Tetrahedron Asymmetry, 8, 101–107.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3196-o3197
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds