organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[(4-Di­ethyl­amino-2-hy­droxy­benzyl­­idene)amino]benzo­nitrile

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China, and bJiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China
*Correspondence e-mail: jczhou@seu.edu.cn

(Received 15 November 2009; accepted 21 November 2009; online 28 November 2009)

The mol­ecule of the title compound, C18H19N3O, displays a trans configuration with respect to the C=N double bond. There is a strong intra­molecular O—H⋯N hydrogen-bonding inter­action between the hydr­oxy group and imine N atom. The dihedral angle between the aromatic rings is 30.35 (8)°. The crystal packing is stabilized by O—H⋯N links.

Related literature

For the properties of Schiff bases compounds, see: Zhou et al. (2000[Zhou, Y.-S., Zhang, L.-J., Zeng, X.-R., Vittal, J. J. & You, X.-Z. (2000). J. Mol. Struct. 524, 241-250.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H19N3O

  • Mr = 293.36

  • Triclinic, [P \overline 1]

  • a = 8.411 (6) Å

  • b = 8.519 (6) Å

  • c = 12.906 (9) Å

  • α = 74.17 (4)°

  • β = 79.00 (4)°

  • γ = 64.65 (2)°

  • V = 801.1 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.092, Tmax = 0.182

  • 8686 measured reflections

  • 3620 independent reflections

  • 2592 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.159

  • S = 1.09

  • 3620 reflections

  • 203 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2 0.98 (3) 1.70 (3) 2.607 (3) 153 (2)
C16—H16A⋯O1i 0.93 2.60 3.504 (3) 164
Symmetry code: (i) x+1, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases compounds attract great interest in many fields of chemistry and biochemistry, primarily due to significant pharmacological activities, e.g. anticancer (Zhou et al., 2000), anti-HIV (Sriram et al., 2006). In addition, Schiff base compounds play important role in the development of coordination chemistry related to magnetism and catalysis. As a continue of my works, we here report the synthesis and crystal structure of the title compound, (I).

The molecular structure of (I) of the title compound is shown in Fig. 1. All the bond lengths and angles in the molecules are in the range of normal values (Allen et al., 1987). The molecule displays a trans configuration about the central C11=N2 bond and adopts the phenol-imine tautomeric form, with a strong intramolecular O—H···N hydrogen bonding interaction (Table 1). The dihedral angle between the mean planes of the two aromatic rings is 30.35 (8) ° indicating that the Schiff-base ligand adopts a non-planar conformation. In addition, two methyl groups are positioned to the opposite direction respectively relative to the plane of the adjacent benzene ring. The crystal packing is stabilized by van der Waals interactions.

Related literature top

For the properties of Schiff bases compounds, see: Zhou et al. (2000); Sriram et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

(E)-3-(4-(diethylamino)-2-hydroxybenzylideneamino)benzonitrile was prepared by reflux of a solution mixture containing 4-(diethylamino)-2-hydroxybenzaldehyde (0.996 g, 5 mmol) in ethanol (20 ml) and a solution containing 3-aminobenzonitrile (0.590 g, 5 mmol) in methanol (20 ml). The reaction mixture was stirred for 6 h under reflux, and then cooled to room temperature slowly. The resulting yellow precipitate was filtered off and the crystals of the title compound suitable for X-ray analysis were obtained from acetonitrile solution by slow evaporation

Refinement top

H atoms (for OH) were located in a difference Fourier map and refined isotropically. The remailing H atoms were located geometrically and treated as riding atoms with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) for aromatic H atoms or 1.5 Ueq (C) for methyl H atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
(E)-3-[(4-Diethylamino-2-hydroxybenzylidene)amino]benzonitrile top
Crystal data top
C18H19N3OZ = 2
Mr = 293.36F(000) = 312
Triclinic, P1Dx = 1.216 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.411 (6) ÅCell parameters from 2426 reflections
b = 8.519 (6) Åθ = 2.3–27.5°
c = 12.906 (9) ŵ = 0.08 mm1
α = 74.17 (4)°T = 293 K
β = 79.00 (4)°Block, yellow
γ = 64.65 (2)°0.20 × 0.20 × 0.10 mm
V = 801.1 (9) Å3
Data collection top
Rigaku SCXmini
diffractometer
3620 independent reflections
Radiation source: fine-focus sealed tube2592 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.092, Tmax = 0.182l = 1616
8686 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0841P)2]
where P = (Fo2 + 2Fc2)/3
3620 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C18H19N3Oγ = 64.65 (2)°
Mr = 293.36V = 801.1 (9) Å3
Triclinic, P1Z = 2
a = 8.411 (6) ÅMo Kα radiation
b = 8.519 (6) ŵ = 0.08 mm1
c = 12.906 (9) ÅT = 293 K
α = 74.17 (4)°0.20 × 0.20 × 0.10 mm
β = 79.00 (4)°
Data collection top
Rigaku SCXmini
diffractometer
3620 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2592 reflections with I > 2σ(I)
Tmin = 0.092, Tmax = 0.182Rint = 0.030
8686 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.20 e Å3
3620 reflectionsΔρmin = 0.17 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.2014 (2)1.0630 (2)0.37779 (12)0.0428 (4)
H3A0.08141.11440.39880.051*
O10.24337 (15)0.87525 (17)0.55059 (9)0.0544 (3)
N20.56035 (17)0.63888 (18)0.59125 (10)0.0456 (3)
C10.4976 (2)0.8526 (2)0.42381 (12)0.0417 (4)
C40.2656 (2)1.1212 (2)0.27203 (12)0.0415 (4)
C130.6447 (2)0.4627 (2)0.76732 (12)0.0455 (4)
H13A0.54540.54520.79740.055*
N10.15321 (18)1.24256 (19)0.19656 (10)0.0503 (4)
C20.31405 (19)0.9308 (2)0.45073 (11)0.0396 (4)
C110.6144 (2)0.7100 (2)0.49704 (12)0.0458 (4)
H11A0.73480.66620.47610.055*
C60.5599 (2)0.9187 (2)0.31953 (12)0.0485 (4)
H6A0.68080.87290.30030.058*
C120.6806 (2)0.4883 (2)0.65573 (12)0.0424 (4)
C90.2167 (2)1.3062 (2)0.08716 (13)0.0547 (4)
H9A0.32861.31240.08910.066*
H9B0.13331.42550.05940.066*
C170.8278 (2)0.3586 (2)0.61325 (13)0.0493 (4)
H17A0.85120.37160.53870.059*
C50.4508 (2)1.0469 (2)0.24531 (13)0.0490 (4)
H5A0.49791.08580.17690.059*
C180.7203 (2)0.2892 (2)0.95013 (14)0.0548 (4)
C140.7571 (2)0.3138 (2)0.83397 (12)0.0465 (4)
C150.9066 (2)0.1876 (2)0.79080 (14)0.0511 (4)
H15A0.98280.08950.83580.061*
C70.0392 (2)1.3053 (2)0.21951 (13)0.0533 (4)
H7A0.06771.20980.26780.064*
H7B0.09281.33570.15270.064*
C160.9387 (2)0.2118 (2)0.68022 (14)0.0524 (4)
H16A1.03660.12780.65020.063*
N30.6938 (2)0.2678 (3)1.04170 (13)0.0772 (5)
C100.2415 (3)1.1884 (3)0.01095 (15)0.0798 (7)
H10A0.28331.23640.05980.120*
H10B0.13071.18370.00740.120*
H10C0.32611.07070.03700.120*
C80.1160 (3)1.4645 (3)0.27007 (17)0.0716 (6)
H8A0.24151.49990.28420.107*
H8B0.09121.56060.22170.107*
H8C0.06441.43480.33670.107*
H1A0.342 (3)0.773 (4)0.5846 (19)0.109 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0344 (8)0.0488 (9)0.0402 (8)0.0142 (7)0.0010 (6)0.0073 (7)
O10.0396 (6)0.0676 (8)0.0374 (6)0.0133 (6)0.0027 (5)0.0001 (5)
N20.0419 (8)0.0490 (8)0.0392 (7)0.0114 (6)0.0061 (6)0.0083 (6)
C10.0373 (8)0.0466 (9)0.0390 (8)0.0149 (7)0.0021 (6)0.0094 (7)
C40.0416 (9)0.0429 (9)0.0383 (8)0.0158 (7)0.0052 (6)0.0064 (6)
C130.0448 (9)0.0481 (9)0.0412 (8)0.0157 (7)0.0031 (7)0.0110 (7)
N10.0456 (7)0.0564 (9)0.0376 (7)0.0148 (6)0.0043 (6)0.0010 (6)
C20.0368 (8)0.0470 (9)0.0343 (7)0.0168 (7)0.0004 (6)0.0098 (6)
C110.0369 (8)0.0526 (10)0.0441 (9)0.0137 (7)0.0029 (6)0.0117 (7)
C60.0345 (8)0.0561 (10)0.0461 (9)0.0145 (7)0.0030 (7)0.0076 (7)
C120.0408 (8)0.0466 (9)0.0394 (8)0.0157 (7)0.0053 (6)0.0099 (7)
C90.0568 (11)0.0526 (10)0.0429 (9)0.0192 (8)0.0063 (7)0.0051 (7)
C170.0516 (10)0.0518 (10)0.0418 (9)0.0161 (8)0.0019 (7)0.0146 (7)
C50.0442 (9)0.0556 (10)0.0408 (8)0.0203 (8)0.0046 (7)0.0053 (7)
C180.0590 (11)0.0590 (11)0.0458 (10)0.0276 (9)0.0059 (8)0.0023 (8)
C140.0513 (9)0.0497 (9)0.0415 (8)0.0251 (8)0.0050 (7)0.0056 (7)
C150.0520 (10)0.0435 (9)0.0543 (10)0.0166 (8)0.0121 (8)0.0039 (7)
C70.0477 (8)0.0562 (11)0.0507 (10)0.0176 (8)0.0121 (7)0.0029 (8)
C160.0491 (10)0.0446 (10)0.0585 (11)0.0124 (8)0.0015 (8)0.0159 (8)
N30.0913 (13)0.0963 (14)0.0452 (9)0.0474 (11)0.0026 (8)0.0027 (8)
C100.0944 (17)0.0927 (16)0.0488 (11)0.0326 (13)0.0029 (10)0.0197 (11)
C80.0696 (13)0.0594 (12)0.0721 (13)0.0158 (10)0.0011 (10)0.0126 (10)
Geometric parameters (Å, º) top
C3—C21.379 (2)C9—C101.516 (3)
C3—C41.407 (2)C9—H9A0.9700
C3—H3A0.9300C9—H9B0.9700
O1—C21.3616 (19)C17—C161.379 (2)
O1—H1A0.98 (3)C17—H17A0.9300
N2—C111.294 (2)C5—H5A0.9300
N2—C121.410 (2)C18—N31.139 (2)
C1—C61.404 (2)C18—C141.447 (2)
C1—C21.410 (2)C14—C151.396 (2)
C1—C111.428 (2)C15—C161.376 (2)
C4—N11.370 (2)C15—H15A0.9300
C4—C51.420 (2)C7—C81.502 (3)
C13—C141.390 (2)C7—H7A0.9700
C13—C121.390 (2)C7—H7B0.9700
C13—H13A0.9300C16—H16A0.9300
N1—C91.454 (2)C10—H10A0.9600
N1—C71.468 (2)C10—H10B0.9600
C11—H11A0.9300C10—H10C0.9600
C6—C51.363 (2)C8—H8A0.9600
C6—H6A0.9300C8—H8B0.9600
C12—C171.398 (2)C8—H8C0.9600
C2—C3—C4120.82 (15)C16—C17—C12120.98 (15)
C2—C3—H3A119.6C16—C17—H17A119.5
C4—C3—H3A119.6C12—C17—H17A119.5
C2—O1—H1A104.4 (14)C6—C5—C4120.24 (15)
C11—N2—C12120.13 (14)C6—C5—H5A119.9
C6—C1—C2116.50 (14)C4—C5—H5A119.9
C6—C1—C11121.36 (15)N3—C18—C14179.0 (2)
C2—C1—C11122.11 (14)C13—C14—C15121.09 (15)
N1—C4—C3121.23 (15)C13—C14—C18119.75 (16)
N1—C4—C5121.00 (14)C15—C14—C18119.16 (16)
C3—C4—C5117.75 (15)C16—C15—C14118.49 (16)
C14—C13—C12120.03 (15)C16—C15—H15A120.8
C14—C13—H13A120.0C14—C15—H15A120.8
C12—C13—H13A120.0N1—C7—C8112.48 (16)
C4—N1—C9122.17 (15)N1—C7—H7A109.1
C4—N1—C7121.48 (14)C8—C7—H7A109.1
C9—N1—C7116.19 (13)N1—C7—H7B109.1
O1—C2—C3118.17 (14)C8—C7—H7B109.1
O1—C2—C1120.13 (14)H7A—C7—H7B107.8
C3—C2—C1121.70 (14)C15—C16—C17120.95 (16)
N2—C11—C1123.02 (15)C15—C16—H16A119.5
N2—C11—H11A118.5C17—C16—H16A119.5
C1—C11—H11A118.5C9—C10—H10A109.5
C5—C6—C1122.87 (15)C9—C10—H10B109.5
C5—C6—H6A118.6H10A—C10—H10B109.5
C1—C6—H6A118.6C9—C10—H10C109.5
C13—C12—C17118.42 (15)H10A—C10—H10C109.5
C13—C12—N2118.03 (14)H10B—C10—H10C109.5
C17—C12—N2123.44 (14)C7—C8—H8A109.5
N1—C9—C10112.94 (17)C7—C8—H8B109.5
N1—C9—H9A109.0H8A—C8—H8B109.5
C10—C9—H9A109.0C7—C8—H8C109.5
N1—C9—H9B109.0H8A—C8—H8C109.5
C10—C9—H9B109.0H8B—C8—H8C109.5
H9A—C9—H9B107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.98 (3)1.70 (3)2.607 (3)153 (2)
C16—H16A···O1i0.932.603.504 (3)164
Symmetry code: (i) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC18H19N3O
Mr293.36
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.411 (6), 8.519 (6), 12.906 (9)
α, β, γ (°)74.17 (4), 79.00 (4), 64.65 (2)
V3)801.1 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.092, 0.182
No. of measured, independent and
observed [I > 2σ(I)] reflections
8686, 3620, 2592
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.159, 1.09
No. of reflections3620
No. of parameters203
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N20.98 (3)1.70 (3)2.607 (3)153 (2)
C16—H16A···O1i0.932.603.504 (3)164
Symmetry code: (i) x+1, y1, z.
 

Acknowledgements

This work was supported financially by the Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology Foundation (No. 200813).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, Y.-S., Zhang, L.-J., Zeng, X.-R., Vittal, J. J. & You, X.-Z. (2000). J. Mol. Struct. 524, 241–250.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds