metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tri­aqua­(μ-butane-1,2,3,4-tetra­carboxyl­ato)dicadmium(II)]

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and bCollege of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China
*Correspondence e-mail: machunhongjlsp@yahoo.com.cn

(Received 19 October 2009; accepted 28 October 2009; online 11 November 2009)

The asymmetric unit of the title CdII coordination polymer, [Cd2(C8H6O8)(H2O)3]n, contains two crystallographically independent CdII cations, one-half each of two independent anionic butane-1,2,3,4-tetra­carboxyl­ate units (L) and three water mol­ecules. Both anionic units lie on inversion centers. One of the CdII ions is six-coordinated by four carboxyl­ate O atoms from four L anions and two water O atoms in a distorted octa­hedral coordination environment. The other CdII ion is eight-coordinated by seven carboxyl­ate O atoms from four L anions and one water O atom. The anionic units bridge neighboring CdII centers, forming a three-dimensional framework. O—H⋯O hydrogen-bonding inter­actions between the water mol­ecules and carboxyl­ate O atoms further stabilize the structure.

Related literature

For coordination polymers with tetra­carboxyl­ate ligands, see: Liu et al. (2008[Liu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Su, Z.-M. (2008). CrystEngComm, 10, 894-904.]); Yang et al. (2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C8H6O8)(H2O)3]

  • Mr = 508.98

  • Triclinic, [P \overline 1]

  • a = 7.499 (4) Å

  • b = 7.928 (4) Å

  • c = 11.982 (5) Å

  • α = 72.886 (4)°

  • β = 85.748 (4)°

  • γ = 65.666 (5)°

  • V = 619.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.49 mm−1

  • T = 293 K

  • 0.27 × 0.22 × 0.20 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.812, Tmax = 0.910

  • 4846 measured reflections

  • 2847 independent reflections

  • 2225 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.053

  • S = 0.92

  • 2847 reflections

  • 208 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—HW11⋯O8i 0.81 (5) 2.08 (5) 2.877 (4) 169 (5)
O1W—HW12⋯O4ii 0.85 (5) 2.04 (5) 2.866 (4) 166 (5)
O2W—HW22⋯O1Wiii 0.83 (5) 2.00 (5) 2.828 (5) 175 (5)
O2W—HW21⋯O4iv 0.83 (2) 2.02 (2) 2.825 (4) 163 (4)
O3W—HW31⋯O2v 0.84 (2) 1.95 (2) 2.736 (4) 156 (4)
O3W—HW32⋯O6vi 0.85 (2) 2.43 (2) 3.260 (5) 165 (4)
Symmetry codes: (i) -x-2, -y+1, -z+1; (ii) -x-1, -y+1, -z+1; (iii) x, y-1, z; (iv) x-1, y, z; (v) x+1, y, z; (vi) -x-2, -y-1, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Over years of intensive studies on tetracarboxylate ligands, transition metals and poly-carboxylates, a vast amount of data have been acquired. As an important family of multidentate O-donor ligands, organic tetracarboxylate ligands, such as 1,2,4,5-benzenetetracarboxylate, have been extensively employed in the preparation of such metal-organic compound (Yang et al., 2008). In this regard, butane-1,2,3,4-tetracarboxylatic acid (H4L) is also a good ligand in coordination chemistry due to its strong coordination ability and versatile coordination modes, so much attention has been paid to it in recent years (Liu et al., 2008). In this contribution, H4L was selected as a bridging ligand, and a new cadmium coordination polymer, namely [Cd2(L)(H2O)3], was obtained.

As shown in Fig. 1, the asymmetric unit of the title CdII coordination polymer, contains two crystallographically independent CdII cations, one-half each of two independent L anions and three water molecules. The L anions lie on inversion centers. One of the CdII ion, Cd1, is six-coordinated by four carboxylate oxygen atoms from L anions and two water oxygen atoms in a distorted octahedral coordination environment. Atom Cd2 is eight-coordinated by seven carboxylate oxygen atoms from L anions and one water oxygen atom. The L anions bridge neighboring CdII centers to form a complicated three-dimensional framework structure (Fig. 2). The hydrogen-bonding interactions between water molecules and carboxylate oxygen atoms further stabilize the three-dimensional framework structure of the title compound.

Related literature top

For coordination polymers with tetracarboxylate ligands, see: Liu et al. (2008); Yang et al. (2008).

Experimental top

A mixture of CdCl2.2H2O (0.10 mmol), H4L (0.05 mmol) and water (12 ml) was sealed in a Teflon reactor (15 ml), which was heated at 413 K for 3 d and then gradually cooled to room temperature. Purple crystals of the title compound were isolated (yield 68% based on Cd).

Refinement top

H atoms bonded to C atoms were positioned geometrically (C-H = 0.97 or 0.98 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier). The water H atoms were located in a difference Fourier map, and were refined with distance restraints of O-H = 0.85 (1) Å and H···H = 1.35 (1) Å; their Uiso values were tied to those of parent atoms by a factor of 1.5.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of CdII cations in the title compound, showing the atom-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) -2-x, -y, 2-z; (ii) -2-x, 1-y, 1-z; (iii) x+1, y, z; (iv) -1-x, 1-y, 1-z); (v) -1-x, -y, 1-z; (vi) -2-x, -1-y, 2-z.
[Figure 2] Fig. 2. View of the three-dimensional framework structure of the title compound.
Poly[triaqua(µ-butane-1,2,3,4-tetracarboxylato)dicadmium(II)] top
Crystal data top
[Cd2(C8H6O8)(H2O)3]Z = 2
Mr = 508.98F(000) = 488
Triclinic, P1Dx = 2.729 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.499 (4) ÅCell parameters from 2847 reflections
b = 7.928 (4) Åθ = 3.0–29.1°
c = 11.982 (5) ŵ = 3.49 mm1
α = 72.886 (4)°T = 293 K
β = 85.748 (4)°Block, colourless
γ = 65.666 (5)°0.27 × 0.22 × 0.20 mm
V = 619.4 (6) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
2847 independent reflections
Radiation source: fine-focus sealed tube2225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 29.1°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 109
Tmin = 0.812, Tmax = 0.910k = 99
4846 measured reflectionsl = 1612
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.024P)2]
where P = (Fo2 + 2Fc2)/3
2847 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.75 e Å3
4 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Cd2(C8H6O8)(H2O)3]γ = 65.666 (5)°
Mr = 508.98V = 619.4 (6) Å3
Triclinic, P1Z = 2
a = 7.499 (4) ÅMo Kα radiation
b = 7.928 (4) ŵ = 3.49 mm1
c = 11.982 (5) ÅT = 293 K
α = 72.886 (4)°0.27 × 0.22 × 0.20 mm
β = 85.748 (4)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2847 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2225 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.910Rint = 0.024
4846 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0264 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.75 e Å3
2847 reflectionsΔρmin = 0.85 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1870 (5)0.0435 (5)0.8775 (3)0.0222 (8)
C21.0228 (5)0.2392 (5)0.9250 (4)0.0242 (9)
H2A0.94980.23480.98680.029*
H2B0.93440.26750.86320.029*
C31.0890 (5)0.4024 (5)0.9729 (3)0.0195 (8)
H31.15140.41540.90870.023*
C41.2362 (5)0.3626 (5)1.0672 (3)0.0180 (8)
C50.5128 (5)0.1885 (5)0.5710 (3)0.0157 (7)
C60.5234 (5)0.1089 (5)0.4728 (3)0.0138 (7)
H60.42370.12220.41750.017*
C70.7242 (5)0.2187 (5)0.4086 (3)0.0198 (8)
H7A0.73130.15580.35180.024*
H7B0.82340.21190.46430.024*
C80.7700 (5)0.4286 (5)0.3463 (3)0.0186 (8)
O11.1495 (4)0.1055 (4)0.8533 (2)0.0254 (6)
O21.3566 (4)0.0238 (4)0.8590 (3)0.0316 (7)
O1W0.7754 (4)0.6162 (4)0.6382 (3)0.0295 (7)
HW110.847 (7)0.565 (7)0.635 (4)0.044*
HW120.721 (7)0.639 (7)0.574 (4)0.044*
O30.6391 (4)0.2043 (4)0.6460 (2)0.0230 (6)
O2W0.9660 (4)0.0105 (5)0.6309 (3)0.0293 (7)
HW220.916 (7)0.104 (7)0.631 (4)0.044*
HW211.084 (3)0.058 (6)0.611 (4)0.044*
O40.3718 (4)0.2352 (4)0.5789 (2)0.0249 (6)
O3W0.6465 (4)0.1422 (4)0.8435 (3)0.0421 (9)
HW310.545 (5)0.136 (6)0.864 (4)0.063*
HW320.628 (7)0.259 (4)0.875 (4)0.063*
O51.2174 (4)0.2778 (4)1.1353 (2)0.0322 (7)
O61.3702 (4)0.4211 (4)1.0774 (2)0.0293 (7)
O70.6349 (4)0.4662 (4)0.2971 (3)0.0450 (9)
O80.9426 (4)0.5479 (4)0.3476 (3)0.0386 (8)
Cd10.89424 (4)0.14635 (4)0.75659 (2)0.01890 (8)
Cd20.48747 (4)0.31540 (4)0.76500 (2)0.01614 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.019 (2)0.0184 (19)0.021 (2)0.0033 (16)0.0030 (16)0.0005 (16)
C20.0179 (19)0.0178 (19)0.032 (2)0.0057 (16)0.0038 (17)0.0031 (17)
C30.0173 (19)0.0170 (19)0.020 (2)0.0034 (16)0.0041 (16)0.0056 (16)
C40.0171 (18)0.0115 (17)0.0177 (19)0.0006 (15)0.0044 (15)0.0020 (15)
C50.0149 (18)0.0066 (15)0.0194 (19)0.0002 (14)0.0035 (15)0.0002 (14)
C60.0117 (17)0.0137 (17)0.0149 (18)0.0045 (14)0.0010 (14)0.0037 (14)
C70.0176 (19)0.0157 (18)0.022 (2)0.0057 (15)0.0049 (16)0.0001 (15)
C80.020 (2)0.0136 (18)0.020 (2)0.0054 (16)0.0048 (16)0.0029 (15)
O10.0239 (14)0.0194 (14)0.0319 (16)0.0115 (12)0.0077 (13)0.0038 (12)
O20.0195 (15)0.0229 (15)0.0472 (19)0.0093 (12)0.0054 (13)0.0002 (14)
O1W0.0262 (16)0.0263 (16)0.0362 (18)0.0125 (13)0.0027 (14)0.0068 (14)
O30.0205 (14)0.0247 (14)0.0276 (15)0.0101 (12)0.0100 (12)0.0139 (12)
O2W0.0237 (15)0.0300 (16)0.0406 (18)0.0120 (14)0.0021 (14)0.0177 (15)
O40.0241 (14)0.0297 (15)0.0276 (15)0.0160 (13)0.0017 (12)0.0104 (12)
O3W0.0237 (17)0.0224 (16)0.073 (3)0.0105 (14)0.0142 (16)0.0028 (16)
O50.0320 (16)0.0449 (18)0.0316 (17)0.0197 (14)0.0097 (13)0.0241 (15)
O60.0237 (15)0.0331 (16)0.0367 (17)0.0155 (13)0.0118 (13)0.0150 (14)
O70.0289 (17)0.0218 (16)0.075 (3)0.0138 (14)0.0029 (17)0.0039 (16)
O80.0228 (16)0.0213 (15)0.052 (2)0.0002 (13)0.0038 (15)0.0030 (14)
Cd10.01652 (15)0.01605 (14)0.02473 (16)0.00788 (11)0.00187 (12)0.00519 (12)
Cd20.01470 (14)0.01407 (14)0.01976 (15)0.00613 (11)0.00438 (11)0.00553 (11)
Geometric parameters (Å, º) top
C1—O21.245 (4)O1W—Cd22.601 (3)
C1—O11.272 (4)O1W—HW110.81 (5)
C1—C21.502 (5)O1W—HW120.85 (5)
C2—C31.517 (5)O3—Cd12.370 (3)
C2—H2A0.97O3—Cd22.430 (3)
C2—H2B0.97O2W—Cd12.295 (3)
C3—C41.528 (5)O2W—HW220.83 (5)
C3—C3i1.560 (7)O2W—HW210.831 (19)
C3—H30.98O4—Cd22.495 (3)
C4—O51.247 (4)O3W—Cd12.270 (3)
C4—O61.254 (4)O3W—HW310.842 (19)
C5—O31.251 (4)O3W—HW320.849 (19)
C5—O41.274 (4)O5—Cd1iv2.267 (3)
C5—C61.511 (5)O5—Cd2iv2.521 (3)
C6—C71.522 (5)O6—Cd2iv2.303 (3)
C6—C6ii1.549 (7)O7—Cd2v2.201 (3)
C6—H60.98O8—Cd1vi2.221 (3)
C7—C81.510 (5)Cd1—O8vi2.221 (3)
C7—H7A0.97Cd1—O5iv2.267 (3)
C7—H7B0.97Cd2—O7v2.201 (3)
C8—O71.232 (5)Cd2—O6iv2.303 (3)
C8—O81.252 (4)Cd2—O2vii2.381 (3)
O1—Cd12.252 (3)Cd2—O1vii2.490 (3)
O1—Cd2iii2.490 (3)Cd2—O5iv2.521 (3)
O2—Cd2iii2.381 (3)
O2—C1—O1119.4 (3)Cd1—O3W—HW32139 (3)
O2—C1—C2121.9 (3)HW31—O3W—HW32104 (3)
O1—C1—C2118.7 (3)C4—O5—Cd1iv165.6 (2)
C1—C2—C3114.3 (3)C4—O5—Cd2iv87.7 (2)
C1—C2—H2A108.7Cd1iv—O5—Cd2iv105.79 (11)
C3—C2—H2A108.7C4—O6—Cd2iv97.8 (2)
C1—C2—H2B108.7C8—O7—Cd2v146.3 (3)
C3—C2—H2B108.7C8—O8—Cd1vi132.2 (3)
H2A—C2—H2B107.6O8vi—Cd1—O197.13 (10)
C2—C3—C4111.4 (3)O8vi—Cd1—O5iv83.82 (13)
C2—C3—C3i110.8 (4)O1—Cd1—O5iv104.20 (10)
C4—C3—C3i108.2 (4)O8vi—Cd1—O3W161.95 (11)
C2—C3—H3108.8O1—Cd1—O3W100.36 (11)
C4—C3—H3108.8O5iv—Cd1—O3W87.57 (13)
C3i—C3—H3108.8O8vi—Cd1—O2W96.30 (13)
O5—C4—O6121.1 (3)O1—Cd1—O2W84.45 (11)
O5—C4—C3119.4 (3)O5iv—Cd1—O2W171.28 (10)
O6—C4—C3119.5 (3)O3W—Cd1—O2W89.84 (13)
O3—C5—O4119.9 (3)O8vi—Cd1—O379.76 (10)
O3—C5—C6120.3 (3)O1—Cd1—O3176.60 (9)
O4—C5—C6119.8 (3)O5iv—Cd1—O376.92 (10)
C5—C6—C7110.8 (3)O3W—Cd1—O382.86 (11)
C5—C6—C6ii107.5 (3)O2W—Cd1—O394.50 (10)
C7—C6—C6ii111.7 (3)O7v—Cd2—O6iv94.65 (12)
C5—C6—H6108.9O7v—Cd2—O2vii135.30 (11)
C7—C6—H6108.9O6iv—Cd2—O2vii98.61 (10)
C6ii—C6—H6108.9O7v—Cd2—O3127.03 (11)
C8—C7—C6113.6 (3)O6iv—Cd2—O3123.75 (9)
C8—C7—H7A108.8O2vii—Cd2—O378.14 (10)
C6—C7—H7A108.8O7v—Cd2—O1vii82.94 (11)
C8—C7—H7B108.8O6iv—Cd2—O1vii98.91 (10)
C6—C7—H7B108.8O2vii—Cd2—O1vii52.95 (8)
H7A—C7—H7B107.7O3—Cd2—O1vii119.71 (9)
O7—C8—O8126.0 (3)O7v—Cd2—O484.40 (11)
O7—C8—C7117.0 (3)O6iv—Cd2—O4172.55 (9)
O8—C8—C7116.9 (3)O2vii—Cd2—O487.15 (10)
C1—O1—Cd1127.2 (2)O3—Cd2—O452.67 (8)
C1—O1—Cd2iii90.8 (2)O1vii—Cd2—O488.32 (9)
Cd1—O1—Cd2iii118.95 (12)O7v—Cd2—O5iv140.00 (11)
C1—O2—Cd2iii96.6 (2)O6iv—Cd2—O5iv53.43 (9)
Cd2—O1W—HW1199 (3)O2vii—Cd2—O5iv78.81 (10)
Cd2—O1W—HW12101 (3)O3—Cd2—O5iv71.26 (9)
HW11—O1W—HW12111 (5)O1vii—Cd2—O5iv121.41 (10)
C5—O3—Cd1157.2 (2)O4—Cd2—O5iv123.88 (8)
C5—O3—Cd295.5 (2)O7v—Cd2—O1W76.29 (11)
Cd1—O3—Cd2105.53 (10)O6iv—Cd2—O1W86.09 (11)
Cd1—O2W—HW22128 (3)O2vii—Cd2—O1W146.80 (9)
Cd1—O2W—HW21114 (3)O3—Cd2—O1W72.16 (10)
HW22—O2W—HW21109 (5)O1vii—Cd2—O1W158.98 (9)
C5—O4—Cd291.9 (2)O4—Cd2—O1W86.51 (10)
Cd1—O3W—HW31116 (3)O5iv—Cd2—O1W77.91 (11)
Symmetry codes: (i) x2, y1, z+2; (ii) x1, y, z+1; (iii) x1, y, z; (iv) x2, y, z+2; (v) x1, y+1, z+1; (vi) x2, y+1, z+1; (vii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW11···O8vi0.81 (5)2.08 (5)2.877 (4)169 (5)
O1W—HW12···O4v0.85 (5)2.04 (5)2.866 (4)166 (5)
O2W—HW22···O1Wviii0.83 (5)2.00 (5)2.828 (5)175 (5)
O2W—HW21···O4iii0.83 (2)2.02 (2)2.825 (4)163 (4)
O3W—HW31···O2vii0.84 (2)1.95 (2)2.736 (4)156 (4)
O3W—HW32···O6i0.85 (2)2.43 (2)3.260 (5)165 (4)
Symmetry codes: (i) x2, y1, z+2; (iii) x1, y, z; (v) x1, y+1, z+1; (vi) x2, y+1, z+1; (vii) x+1, y, z; (viii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C8H6O8)(H2O)3]
Mr508.98
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.499 (4), 7.928 (4), 11.982 (5)
α, β, γ (°)72.886 (4), 85.748 (4), 65.666 (5)
V3)619.4 (6)
Z2
Radiation typeMo Kα
µ (mm1)3.49
Crystal size (mm)0.27 × 0.22 × 0.20
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.812, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
4846, 2847, 2225
Rint0.024
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.053, 0.92
No. of reflections2847
No. of parameters208
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.85

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW11···O8i0.81 (5)2.08 (5)2.877 (4)169 (5)
O1W—HW12···O4ii0.85 (5)2.04 (5)2.866 (4)166 (5)
O2W—HW22···O1Wiii0.83 (5)2.00 (5)2.828 (5)175 (5)
O2W—HW21···O4iv0.83 (2)2.02 (2)2.825 (4)163 (4)
O3W—HW31···O2v0.84 (2)1.95 (2)2.736 (4)156 (4)
O3W—HW32···O6vi0.85 (2)2.43 (2)3.260 (5)165 (4)
Symmetry codes: (i) x2, y+1, z+1; (ii) x1, y+1, z+1; (iii) x, y1, z; (iv) x1, y, z; (v) x+1, y, z; (vi) x2, y1, z+2.
 

Acknowledgements

The authors thank Jiangsu University and Jilin Normal University for support.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Su, Z.-M. (2008). CrystEngComm, 10, 894–904.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds