metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1572-m1573

Tetra­kis(μ-6-hydr­­oxy-1-naphthoato)bis­­[(6-hydr­­oxy-1-naphthoato)(1,10-phenanthroline)europium(III)] dihydrate

aZhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface & Interface Science, Henan, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: chunsenliu@zzuli.edu.cn

(Received 19 October 2009; accepted 2 November 2009; online 14 November 2009)

The title complex, [Eu2(C11H7O3)6(C12H8N2)2]·2H2O, has a centrosymmetric binuclear cage structure in which the two EuIII ions are both nine-coordinated and bridged by 6-hy­droxy-1-naphthoate (L) ligands, with an Eu⋯ Eu separation of 4.1594 (4) Å. The remaining coordination sites are occupied by two N atoms from one 1,10-phenanthroline (phen) and two O atoms from an L ligand. The six 6-hydr­oxy-1-naphthoate groups coordinate each EuIII atom in three different ways, namely μ2-η1:η1-bridging, μ1-η1:η1-chelating, and μ2-η1:η2-chelating/bridging modes. Adjacent discrete dinuclear units are linked into a two-dimensional sheet parallel to (011) by inter­molecular O—H⋯O hydrogen-bonding inter­actions. The sheets are cross-linked by water mol­ecules, forming a three-dimensional network. In addition, ππ stacking inter­actions, with a centroid–centroid separation of 3.547 (2) Å are observed.

Related literature

For general background to functional rare-earth coordination complexes, see: Bünzli (2006[Bünzli, J.-C. G. (2006). Acc. Chem. Res. 39, 53-61.]); Edelmann (2009[Edelmann, F. T. (2009). Coord. Chem. Rev. 253, 2515-2587.]); Fang et al. (2006[Fang, J., You, H., Chen, J., Lin, J. & Ma, D. (2006). Inorg. Chem. 45, 3701-3704.]); Li & Yan (2009[Li, Y.-J. & Yan, B. (2009). Inorg. Chem. 48, 8276-8285.]); Xu et al. (2009[Xu, J.-X., Ma, Y., Liao, D.-Z., Xu, G.-F., Tang, J., Wang, C., Zhou, N., Yan, S.-P., Cheng, P. & Li, L.-C. (2009). Inorg. Chem. 48, 8890-8896.]). For related structures, see: Bettencourt-Dias (2005[Bettencourt-Dias, A. (2005). Inorg. Chem. 44, 2734-2741.]); Bettencourt-Dias & Viswanathan (2006[Bettencourt-Dias, A. & Viswanathan, S. (2006). Dalton Trans. pp. 4093-4103.]); Qu et al. (2005[Qu, Y. L., Ke, Y. X., Lu, S. M., Fan, R., Pan, G. Q. & Li, J. M. (2005). J. Mol. Struct. 734, 7-13.]); Serre & Férey (2002[Serre, C. & Férey, G. (2002). J. Mater. Chem. 12, 3053-3057.]); Wan et al. (2002[Wan, Y., Jin, L., Wang, K., Zhang, L., Zheng, X. & Lu, S. (2002). New J. Chem. 26, 1590-1596.]); Yang et al. (2006[Yang, J., Yue, Q., Li, G.-D., Cao, J.-J., Li, G.-H. & Chen, J.-S. (2006). Inorg. Chem. 45, 2857-2865.]); Ye et al. (2005[Ye, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545-565.]); Zheng et al. (2005[Zheng, X.-J., Jin, L.-P., Gao, S. & Lu, S.-Z. (2005). New J. Chem. 29, 798-804.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu2(C11H7O3)6(C12H8N2)2]·2H2O

  • Mr = 1823.36

  • Triclinic, [P \overline 1]

  • a = 11.7132 (9) Å

  • b = 12.7143 (10) Å

  • c = 14.8822 (12) Å

  • α = 65.790 (1)°

  • β = 88.276 (1)°

  • γ = 70.437 (1)°

  • V = 1889.8 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.73 mm−1

  • T = 296 K

  • 0.30 × 0.21 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.626, Tmax = 0.758

  • 13943 measured reflections

  • 6615 independent reflections

  • 5910 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.057

  • S = 1.04

  • 6615 reflections

  • 526 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—O5i 2.334 (2)
Eu1—O4 2.351 (2)
Eu1—O6 2.3680 (19)
Eu1—O2 2.411 (2)
Eu1—O1 2.464 (2)
Eu1—O3 2.471 (2)
Eu1—N1 2.591 (2)
Eu1—N2 2.593 (2)
Eu1—O4i 2.925 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O9ii 0.85 2.05 2.799 (4) 147
O1W—H2W⋯O8iii 0.85 2.28 3.050 (4) 150
O7—H7⋯O1W 0.82 1.89 2.670 (5) 159
O8—H8⋯O7iv 0.82 1.88 2.664 (5) 160
O9—H9⋯O3v 0.82 1.84 2.642 (3) 165
Symmetry codes: (ii) x, y+1, z; (iii) -x+1, -y+2, -z+1; (iv) x-1, y+1, z-1; (v) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, the rational design and synthesis of functional rare-earth (RE) coordination complexes with various N– and/or O-donor ligands has attracted great interest because of not only their fascinating structural diversities but also their potential applications as functional materials, for example, optical materials, electronic materials, catalytic materials, and molecular-based magnets (Bünzli, 2006; Edelmann, 2009; Fang et al., 2006; Li & Yan, 2009; Xu et al., 2009). In this field, the choice of suitable organic ligands favoring structure-specific self-assembly is crucial for the construction of prospective coordination structures with relevant properties and functions. Among various ligands, the versatile carboxylic acid ligands, especially the benzene- and naphthalene-based di- and multi-carboxylic acids, have been well used in the preparation of various rare-earth (RE) complexes owing to their rich coordination modes (Bettencourt-Dias, 2005; Bettencourt-Dias & Viswanathan, 2006; Qu et al., 2005; Serre & Férey, 2002; Yang et al., 2006). However, far less common has been the use of naphthalene-based monocarboxylic acids, such as the acid used herein, 6-hydroxy-1-naphthoic acid (HL). Besides, the introduction of 2,2'-bipyridyl-like bidentate chelating molecules (2,2'-bipyridine or 1,10-phenanthroline) into the reaction systems including various carboxylic acid ligands, as auxiliary ligands, can generate some interesting coordination architectures (Ye et al., 2005). We report here the crystal structure of the title complex (I), a EuIII complex with mixed 6-hydroxy-1-naphthoic acid (L) and chelating 1,10-phenanthroline (phen) ligands.

The structure of complex (I) consists of a centrosymmetric dinuclear unit [Eu2(L)6(phen)2] and two free water molecules. The EuIII ion is nine-coordinated by two N-atom donors from one chelating phen ligand and seven O atoms from five distinct L ligands (Fig. 1). The Eu—O distances are in the range of 2.334 (2)–2.925 (2) Å, which are normal and in agreement with those found in other carboxylato-containing EuIII complexes (Zheng et al., 2005; Wan et al., 2002). The phen ligand acts as a typical chelating ligand coordinating to the EuIII ion with Eu—N bond distances of 2.591 (2) and 2.593 (2) Å, and an N—Eu—N angle of 63.57 (8)°. For L, there exists three different kinds of carboxylate coordination modes with the EuIII center, namely syn-syn bridging (µ2-η1:η1-bridging), symmetric bidentate chelate (µ1-η1:η1-chelating), and tridentate chelating/bridging (µ2-η1:η2-chelating/bridging). In this case two EuIII ions are connected to form an eight-membered ring [Eu1/O6/C23/O5/Eu1A/O6A/C23A/O5A], as well as a four-membered ring [Eu1/O4/Eu1A/O4A]. The non-bonding Eu1···Eu1A separation is 4.1594 (4) Å (symmetry operation A = 1 - x, 1 - y, 1 - z).

Adjacent dinuclear [Eu2(L)6(phen)2] units are linked into two different chains running along the [011] (Fig.2) and [111] (Fig. 3) and thus generating a two-dimensional sheet parallel to the (011) by intermolecular O—H···O hydrogen-bonding interactions (Table 1) between different L ligands (Fig. 4). The sheets are cross-linked via O—H···O hydrogen bonds involving the water molecules. In addition, intermolecular ππ stacking interactions are observed between the N2/C43/C42/C41/C40/C44 pyridine rings of the phen ligands at (x, y, z) and (1-x, -y, 1-z), with a centroid-to-centroid separation of 3.547 (2) Å.

Related literature top

For general background to functional rare-earth

coordination complexes, see: Bünzli (2006); Edelmann (2009); Fang et al. (2006); Li et al. (2009); Xu et al. (2009). For related structures, see: Bettencourt-Dias (2005); Bettencourt-Dias & Viswanathan (2006); Qu et al. (2005); Serre & Férey (2002); Wan et al. (2002); Yang et al. (2006); Ye et al. (2005); Zheng et al. (2005).

Experimental top

A mixed solution of 6-hydroxy-1-naphthoic acid (0.05 mmol) and 1,10-phenanthroline (0.05 mmol) in CH3OH (10 ml) in the presence of excess 2,6-dimethylpyridine (ca 0.05 ml for adjusting the pH value to basic condition) was carefully layered on top of a H2O solution (15 ml) of Eu(ClO4)3 (0.1 mmol) in a test tube. Yellow single crystals suitable for X-ray analysis of the title complex (I) appeared at the tube wall after ca two weeks at room temperature. Yield: ~40% based on 6-hydroxy-1-naphthoic acid. Elemental analysis calculated for C45H31EuN2O10: C 59.28, H 3.43, N 3.07%; found: C 59.36, H 3.50, N 3.03%.

Refinement top

The water H atoms were located in a difference Fourier map and treated as riding on their parent atoms, with O-H = 0.85 Å and Uiso(H) = 1.2Ueq(O). C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 Å with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. Atom-labelled with the suffix A are generated by the symmetry operation (1 – x, 1 – y, 1 – z). Free water molecules have been omitted for clarity.
[Figure 2] Fig. 2. A view of a chain running along the [011], formed by O—H···O hydrogen-bonding interactions. For clarity, only H atoms involved in the interactions are shown.
[Figure 3] Fig. 3. A view of a chain running along the [111], formed by O—H···O hydrogen-bonding interactions. For clarity, only H atoms involved in the interactions are shown.
[Figure 4] Fig. 4. A view of the two-dimensional network of dinuclear complex, formed by O—H···O hydrogen-bonding interactions (solid dashed lines). For clarity, only H atoms involved in the interactions are shown.
Tetrakis(µ-6-hydroxy-1-naphthoato)bis[(6-hydroxy-1-naphthoato)(1,10- phenanthroline)europium(III)] dihydrate top
Crystal data top
[Eu2(C11H7O3)6(C12H8N2)2]·2H2OZ = 1
Mr = 1823.36F(000) = 916
Triclinic, P1Dx = 1.602 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.7132 (9) ÅCell parameters from 6015 reflections
b = 12.7143 (10) Åθ = 2.5–25.6°
c = 14.8822 (12) ŵ = 1.73 mm1
α = 65.790 (1)°T = 296 K
β = 88.276 (1)°Block, yellow
γ = 70.437 (1)°0.30 × 0.21 × 0.17 mm
V = 1889.8 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6615 independent reflections
Radiation source: fine-focus sealed tube5910 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.626, Tmax = 0.758k = 1514
13943 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.306P]
where P = (Fo2 + 2Fc2)/3
6615 reflections(Δ/σ)max = 0.002
526 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Eu2(C11H7O3)6(C12H8N2)2]·2H2Oγ = 70.437 (1)°
Mr = 1823.36V = 1889.8 (3) Å3
Triclinic, P1Z = 1
a = 11.7132 (9) ÅMo Kα radiation
b = 12.7143 (10) ŵ = 1.73 mm1
c = 14.8822 (12) ÅT = 296 K
α = 65.790 (1)°0.30 × 0.21 × 0.17 mm
β = 88.276 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6615 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5910 reflections with I > 2σ(I)
Tmin = 0.626, Tmax = 0.758Rint = 0.024
13943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.04Δρmax = 0.66 e Å3
6615 reflectionsΔρmin = 0.56 e Å3
526 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.415191 (13)0.370163 (13)0.555623 (10)0.02734 (6)
C10.3329 (3)0.2031 (3)0.7084 (2)0.0355 (7)
C20.2925 (3)0.1144 (3)0.7940 (2)0.0411 (8)
C30.1694 (3)0.1376 (4)0.7937 (3)0.0572 (10)
H3A0.11520.20700.74240.069*
C40.1236 (4)0.0577 (4)0.8698 (3)0.0668 (12)
H4A0.04010.07300.86710.080*
C50.2004 (4)0.0405 (4)0.9465 (3)0.0622 (11)
H5A0.16820.09090.99680.075*
C60.3281 (3)0.0695 (3)0.9532 (2)0.0439 (8)
C70.4075 (3)0.1704 (3)1.0349 (2)0.0472 (9)
H7A0.37570.21951.08650.057*
C80.5305 (3)0.1969 (3)1.0391 (2)0.0420 (8)
C90.5790 (3)0.1237 (3)0.9611 (2)0.0472 (8)
H9A0.66310.14350.96360.057*
C100.5050 (3)0.0246 (3)0.8822 (2)0.0412 (8)
H10A0.53960.02330.83220.049*
C110.3765 (3)0.0082 (3)0.8737 (2)0.0390 (7)
C120.4939 (3)0.4799 (3)0.6816 (2)0.0386 (7)
C130.4849 (3)0.5442 (3)0.7483 (2)0.0381 (7)
C140.5856 (3)0.5138 (3)0.8151 (2)0.0364 (7)
C150.7022 (3)0.4254 (3)0.8225 (2)0.0456 (8)
H15A0.71490.38560.78080.055*
C160.7955 (3)0.3983 (3)0.8900 (3)0.0537 (9)
H16A0.87120.33990.89440.064*
C170.7784 (3)0.4578 (3)0.9528 (3)0.0560 (10)
C180.6692 (3)0.5442 (3)0.9478 (3)0.0540 (9)
H18A0.65950.58360.98960.065*
C190.5706 (3)0.5740 (3)0.8790 (2)0.0425 (8)
C200.4563 (3)0.6639 (3)0.8721 (3)0.0534 (9)
H20A0.44610.70460.91300.064*
C210.3608 (3)0.6917 (4)0.8058 (3)0.0613 (10)
H21A0.28610.75140.80150.074*
C220.3753 (3)0.6300 (3)0.7442 (3)0.0534 (9)
H22A0.30950.64800.70020.064*
C230.2781 (3)0.6807 (3)0.4551 (2)0.0356 (7)
C240.1583 (3)0.7857 (3)0.4238 (2)0.0413 (8)
C250.0743 (3)0.7802 (4)0.4887 (3)0.0709 (13)
H25A0.08880.70860.54680.085*
C260.0343 (4)0.8810 (4)0.4695 (4)0.108 (2)
H26A0.09070.87610.51500.130*
C270.0572 (4)0.9860 (4)0.3841 (4)0.0933 (17)
H27A0.12881.05260.37250.112*
C280.0259 (3)0.9956 (3)0.3128 (3)0.0559 (10)
C290.0020 (3)1.1045 (3)0.2234 (3)0.0591 (10)
H29A0.06781.17280.21240.071*
C300.0798 (3)1.1095 (3)0.1540 (3)0.0504 (9)
C310.1842 (3)1.0078 (3)0.1691 (2)0.0487 (9)
H31A0.23541.01120.11980.058*
C320.2123 (3)0.9030 (3)0.2558 (2)0.0439 (8)
H32A0.28350.83680.26510.053*
C330.1358 (3)0.8934 (3)0.3311 (2)0.0399 (8)
C340.1302 (3)0.4750 (3)0.4221 (3)0.0511 (9)
H34A0.11390.52240.45790.061*
C350.0351 (3)0.4935 (4)0.3564 (3)0.0626 (11)
H35A0.04240.55080.34920.075*
C360.0593 (4)0.4255 (4)0.3035 (3)0.0680 (12)
H36A0.00220.43680.25860.082*
C370.1750 (4)0.3386 (4)0.3153 (3)0.0560 (10)
C380.2077 (5)0.2633 (5)0.2623 (3)0.0789 (14)
H38A0.14890.27190.21660.095*
C390.3197 (5)0.1811 (5)0.2764 (3)0.0818 (14)
H39A0.33770.13440.23990.098*
C400.4123 (4)0.1636 (3)0.3465 (3)0.0573 (10)
C410.5305 (4)0.0754 (4)0.3656 (3)0.0681 (12)
H41A0.55220.02690.33070.082*
C420.6124 (4)0.0618 (3)0.4354 (3)0.0650 (12)
H42A0.69090.00390.44860.078*
C430.5789 (3)0.1348 (3)0.4875 (3)0.0520 (9)
H43A0.63600.12270.53630.062*
C440.3857 (3)0.2351 (3)0.4011 (2)0.0389 (8)
C450.2655 (3)0.3247 (3)0.3845 (2)0.0390 (8)
N10.2417 (2)0.3944 (2)0.43657 (18)0.0380 (6)
N20.4692 (2)0.2208 (2)0.47064 (19)0.0378 (6)
O10.25998 (19)0.3115 (2)0.66020 (16)0.0501 (6)
O20.4394 (2)0.16976 (18)0.68524 (16)0.0471 (6)
O30.4570 (2)0.3902 (2)0.70848 (15)0.0518 (6)
O40.4683 (2)0.48225 (19)0.40107 (15)0.0448 (5)
O50.37166 (18)0.70586 (18)0.42525 (16)0.0418 (5)
O60.27937 (18)0.57429 (18)0.51237 (15)0.0395 (5)
O70.8780 (3)0.4249 (3)1.0199 (2)0.0842 (10)
H70.85990.46751.05090.126*
O80.0629 (2)1.2126 (2)0.06669 (19)0.0710 (8)
H80.00061.26820.06490.106*
O90.6148 (2)0.2937 (2)1.11577 (16)0.0572 (7)
H90.58050.31851.16480.086*
O1W0.8555 (2)0.5914 (3)1.0912 (2)0.0806 (9)
H1W0.79330.60131.12200.097*
H2W0.87540.65501.06500.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02963 (9)0.02244 (8)0.02384 (8)0.00843 (6)0.00206 (6)0.00460 (6)
C10.0463 (19)0.0347 (18)0.0319 (17)0.0226 (16)0.0079 (15)0.0139 (15)
C20.052 (2)0.0419 (19)0.0371 (18)0.0274 (17)0.0127 (16)0.0157 (16)
C30.056 (2)0.062 (2)0.046 (2)0.033 (2)0.0063 (18)0.0076 (18)
C40.055 (2)0.080 (3)0.058 (3)0.042 (2)0.011 (2)0.008 (2)
C50.070 (3)0.075 (3)0.048 (2)0.050 (2)0.020 (2)0.014 (2)
C60.063 (2)0.043 (2)0.0358 (18)0.0323 (18)0.0151 (17)0.0160 (16)
C70.076 (3)0.042 (2)0.0326 (18)0.0370 (19)0.0170 (18)0.0117 (16)
C80.064 (2)0.0336 (18)0.0280 (17)0.0199 (17)0.0107 (16)0.0112 (15)
C90.055 (2)0.045 (2)0.0357 (19)0.0189 (18)0.0137 (16)0.0118 (16)
C100.057 (2)0.0357 (18)0.0314 (17)0.0225 (16)0.0160 (16)0.0109 (15)
C110.058 (2)0.0370 (18)0.0314 (17)0.0280 (16)0.0149 (15)0.0149 (15)
C120.0442 (19)0.0394 (19)0.0265 (16)0.0155 (16)0.0006 (14)0.0079 (14)
C130.0463 (19)0.0374 (18)0.0307 (17)0.0208 (16)0.0065 (14)0.0101 (14)
C140.0437 (19)0.0288 (17)0.0323 (17)0.0149 (15)0.0043 (14)0.0073 (14)
C150.050 (2)0.0366 (19)0.046 (2)0.0151 (16)0.0074 (17)0.0129 (16)
C160.046 (2)0.042 (2)0.061 (2)0.0050 (17)0.0003 (18)0.0172 (19)
C170.055 (2)0.043 (2)0.056 (2)0.0090 (19)0.0157 (19)0.0140 (19)
C180.055 (2)0.051 (2)0.055 (2)0.0113 (19)0.0063 (18)0.0257 (19)
C190.045 (2)0.0405 (19)0.0389 (18)0.0144 (16)0.0036 (15)0.0145 (16)
C200.054 (2)0.057 (2)0.055 (2)0.0115 (19)0.0031 (18)0.034 (2)
C210.041 (2)0.068 (3)0.068 (3)0.0015 (19)0.0005 (19)0.036 (2)
C220.044 (2)0.063 (2)0.053 (2)0.0135 (19)0.0047 (17)0.029 (2)
C230.0345 (17)0.0280 (17)0.0356 (17)0.0064 (14)0.0008 (14)0.0087 (14)
C240.0289 (16)0.0310 (17)0.052 (2)0.0073 (14)0.0054 (15)0.0094 (15)
C250.047 (2)0.048 (2)0.072 (3)0.0024 (19)0.018 (2)0.006 (2)
C260.063 (3)0.073 (3)0.107 (4)0.010 (3)0.047 (3)0.009 (3)
C270.054 (3)0.055 (3)0.105 (4)0.012 (2)0.033 (3)0.001 (3)
C280.0325 (19)0.041 (2)0.065 (2)0.0042 (16)0.0066 (17)0.0018 (18)
C290.037 (2)0.037 (2)0.070 (3)0.0006 (16)0.0014 (19)0.0016 (19)
C300.043 (2)0.042 (2)0.047 (2)0.0131 (17)0.0076 (17)0.0019 (17)
C310.0405 (19)0.050 (2)0.042 (2)0.0127 (17)0.0030 (16)0.0095 (17)
C320.0358 (18)0.0393 (19)0.046 (2)0.0074 (15)0.0023 (16)0.0129 (16)
C330.0280 (16)0.0324 (18)0.050 (2)0.0062 (14)0.0017 (15)0.0116 (15)
C340.0355 (19)0.052 (2)0.059 (2)0.0102 (17)0.0020 (17)0.0201 (19)
C350.040 (2)0.064 (3)0.066 (3)0.0164 (19)0.0068 (19)0.011 (2)
C360.070 (3)0.074 (3)0.051 (2)0.039 (3)0.018 (2)0.005 (2)
C370.076 (3)0.059 (2)0.038 (2)0.042 (2)0.0043 (19)0.0102 (18)
C380.108 (4)0.101 (4)0.058 (3)0.060 (3)0.003 (3)0.043 (3)
C390.131 (4)0.090 (4)0.068 (3)0.063 (4)0.024 (3)0.056 (3)
C400.088 (3)0.049 (2)0.053 (2)0.039 (2)0.031 (2)0.0292 (19)
C410.100 (4)0.052 (3)0.078 (3)0.039 (3)0.049 (3)0.045 (2)
C420.065 (3)0.039 (2)0.094 (3)0.018 (2)0.040 (2)0.034 (2)
C430.051 (2)0.0339 (19)0.071 (3)0.0171 (17)0.0185 (19)0.0210 (18)
C440.059 (2)0.0321 (18)0.0330 (17)0.0274 (17)0.0149 (16)0.0129 (14)
C450.053 (2)0.0360 (18)0.0305 (17)0.0260 (16)0.0038 (15)0.0087 (14)
N10.0382 (15)0.0372 (15)0.0362 (15)0.0144 (13)0.0014 (12)0.0124 (12)
N20.0421 (15)0.0268 (14)0.0415 (15)0.0131 (12)0.0091 (13)0.0112 (12)
O10.0372 (13)0.0429 (14)0.0467 (14)0.0121 (11)0.0042 (11)0.0014 (11)
O20.0591 (15)0.0282 (12)0.0416 (13)0.0132 (11)0.0227 (12)0.0062 (10)
O30.0864 (18)0.0552 (15)0.0287 (12)0.0477 (14)0.0125 (12)0.0144 (11)
O40.0575 (14)0.0386 (13)0.0289 (12)0.0168 (11)0.0123 (11)0.0062 (10)
O50.0313 (12)0.0288 (12)0.0507 (14)0.0079 (10)0.0008 (10)0.0051 (10)
O60.0363 (12)0.0281 (12)0.0441 (13)0.0094 (10)0.0057 (10)0.0076 (10)
O70.0682 (18)0.066 (2)0.096 (2)0.0060 (15)0.0412 (17)0.0339 (17)
O80.0625 (18)0.0504 (17)0.0587 (17)0.0106 (14)0.0044 (14)0.0091 (14)
O90.0728 (17)0.0471 (15)0.0338 (13)0.0192 (13)0.0120 (12)0.0022 (12)
O1W0.0645 (18)0.088 (2)0.083 (2)0.0247 (17)0.0049 (16)0.0317 (18)
Geometric parameters (Å, º) top
Eu1—O5i2.334 (2)C23—O51.260 (3)
Eu1—O42.351 (2)C23—O61.265 (3)
Eu1—O62.3680 (19)C23—C241.497 (4)
Eu1—O22.411 (2)C24—C251.356 (5)
Eu1—O12.464 (2)C24—C331.442 (4)
Eu1—O32.471 (2)C25—C261.404 (5)
Eu1—N12.591 (2)C25—H25A0.93
Eu1—N22.593 (2)C26—C271.363 (6)
Eu1—C12.809 (3)C26—H26A0.93
Eu1—O4i2.925 (2)C27—C281.414 (5)
Eu1—C123.070 (3)C27—H27A0.93
Eu1—Eu1i4.1594 (4)C28—C291.420 (5)
C1—O11.257 (4)C28—C331.425 (4)
C1—O21.263 (4)C29—C301.352 (5)
C1—C21.503 (4)C29—H29A0.93
C2—C31.372 (5)C30—O81.375 (4)
C2—C111.437 (4)C30—C311.392 (4)
C3—C41.409 (5)C31—C321.367 (4)
C3—H3A0.93C31—H31A0.93
C4—C51.346 (5)C32—C331.406 (4)
C4—H4A0.93C32—H32A0.93
C5—C61.412 (5)C34—N11.320 (4)
C5—H5A0.93C34—C351.399 (5)
C6—C71.406 (5)C34—H34A0.93
C6—C111.439 (4)C35—C361.352 (6)
C7—C81.362 (5)C35—H35A0.93
C7—H7A0.93C36—C371.393 (6)
C8—O91.376 (4)C36—H36A0.93
C8—C91.402 (4)C37—C451.416 (4)
C9—C101.354 (4)C37—C381.429 (6)
C9—H9A0.93C38—C391.333 (6)
C10—C111.415 (4)C38—H38A0.93
C10—H10A0.93C39—C401.424 (6)
C12—O4i1.252 (3)C39—H39A0.93
C12—O31.261 (4)C40—C411.406 (5)
C12—C131.506 (4)C40—C441.410 (5)
C13—C221.361 (4)C41—C421.353 (6)
C13—C141.406 (4)C41—H41A0.93
C14—C191.420 (4)C42—C431.395 (5)
C14—C151.422 (4)C42—H42A0.93
C15—C161.361 (5)C43—N21.327 (4)
C15—H15A0.93C43—H43A0.93
C16—C171.398 (5)C44—N21.359 (4)
C16—H16A0.93C44—C451.434 (4)
C17—C181.359 (5)C45—N11.360 (4)
C17—O71.390 (4)O4—C12i1.252 (3)
C18—C191.409 (4)O4—Eu1i2.925 (2)
C18—H18A0.93O5—Eu1i2.334 (2)
C19—C201.413 (4)O7—H70.82
C20—C211.366 (5)O8—H80.82
C20—H20A0.93O9—H90.82
C21—C221.405 (5)O1W—H1W0.85
C21—H21A0.93O1W—H2W0.85
C22—H22A0.93
O5i—Eu1—O474.98 (7)C19—C14—C15117.9 (3)
O5i—Eu1—O6129.05 (7)C16—C15—C14120.8 (3)
O4—Eu1—O677.08 (7)C16—C15—H15A119.6
O5i—Eu1—O284.06 (7)C14—C15—H15A119.6
O4—Eu1—O2146.76 (8)C15—C16—C17120.4 (3)
O6—Eu1—O2135.53 (7)C15—C16—H16A119.8
O5i—Eu1—O1134.24 (7)C17—C16—H16A119.8
O4—Eu1—O1150.25 (8)C18—C17—O7121.9 (3)
O6—Eu1—O184.24 (7)C18—C17—C16121.1 (3)
O2—Eu1—O153.17 (7)O7—C17—C16117.0 (3)
O5i—Eu1—O380.21 (8)C17—C18—C19119.9 (3)
O4—Eu1—O3123.18 (7)C17—C18—H18A120.1
O6—Eu1—O380.71 (8)C19—C18—H18A120.1
O2—Eu1—O376.85 (7)C18—C19—C20120.8 (3)
O1—Eu1—O375.27 (8)C18—C19—C14120.0 (3)
O5i—Eu1—N1136.29 (8)C20—C19—C14119.2 (3)
O4—Eu1—N179.35 (8)C21—C20—C19120.6 (3)
O6—Eu1—N176.81 (8)C21—C20—H20A119.7
O2—Eu1—N199.70 (8)C19—C20—H20A119.7
O1—Eu1—N173.93 (8)C20—C21—C22120.0 (3)
O3—Eu1—N1143.30 (8)C20—C21—H21A120.0
O5i—Eu1—N276.11 (8)C22—C21—H21A120.0
O4—Eu1—N275.88 (7)C13—C22—C21120.6 (3)
O6—Eu1—N2135.20 (8)C13—C22—H22A119.7
O2—Eu1—N274.18 (7)C21—C22—H22A119.7
O1—Eu1—N2102.94 (8)O5—C23—O6124.5 (3)
O3—Eu1—N2144.07 (8)O5—C23—C24117.3 (3)
N1—Eu1—N263.57 (8)O6—C23—C24118.1 (3)
O5i—Eu1—C1109.21 (8)C25—C24—C33120.7 (3)
O4—Eu1—C1163.08 (8)C25—C24—C23117.8 (3)
O6—Eu1—C1109.84 (8)C33—C24—C23121.4 (3)
O2—Eu1—C126.63 (8)C24—C25—C26121.0 (3)
O1—Eu1—C126.56 (8)C24—C25—H25A119.5
O3—Eu1—C173.66 (8)C26—C25—H25A119.5
N1—Eu1—C187.13 (8)C27—C26—C25120.0 (4)
N2—Eu1—C189.05 (8)C27—C26—H26A120.0
O5i—Eu1—O4i64.62 (7)C25—C26—H26A120.0
O4—Eu1—O4i76.48 (7)C26—C27—C28121.3 (4)
O6—Eu1—O4i67.92 (7)C26—C27—H27A119.3
O2—Eu1—O4i117.37 (7)C28—C27—H27A119.3
O1—Eu1—O4i117.53 (7)C27—C28—C29121.5 (3)
O3—Eu1—O4i46.70 (6)C27—C28—C33119.0 (3)
N1—Eu1—O4i140.72 (7)C29—C28—C33119.4 (3)
N2—Eu1—O4i136.47 (7)C30—C29—C28120.5 (3)
C1—Eu1—O4i120.32 (7)C30—C29—H29A119.8
O5i—Eu1—C1274.44 (8)C28—C29—H29A119.8
O4—Eu1—C12100.14 (8)C29—C30—O8123.3 (3)
O6—Eu1—C1269.68 (8)C29—C30—C31120.5 (3)
O2—Eu1—C1298.67 (8)O8—C30—C31116.2 (3)
O1—Eu1—C1294.69 (8)C32—C31—C30120.6 (3)
O3—Eu1—C1223.25 (7)C32—C31—H31A119.7
N1—Eu1—C12145.58 (8)C30—C31—H31A119.7
N2—Eu1—C12150.26 (8)C31—C32—C33121.3 (3)
C1—Eu1—C1296.76 (8)C31—C32—H32A119.3
O4i—Eu1—C1223.95 (7)C33—C32—H32A119.3
O5i—Eu1—Eu1i63.39 (5)C32—C33—C28117.5 (3)
O4—Eu1—Eu1i43.14 (5)C32—C33—C24124.6 (3)
O6—Eu1—Eu1i67.00 (5)C28—C33—C24117.8 (3)
O2—Eu1—Eu1i142.76 (6)N1—C34—C35124.1 (4)
O1—Eu1—Eu1i144.67 (6)N1—C34—H34A118.0
O3—Eu1—Eu1i80.04 (5)C35—C34—H34A118.0
N1—Eu1—Eu1i116.10 (5)C36—C35—C34117.9 (4)
N2—Eu1—Eu1i111.84 (5)C36—C35—H35A121.0
C1—Eu1—Eu1i153.62 (6)C34—C35—H35A121.0
O4i—Eu1—Eu1i33.34 (4)C35—C36—C37120.9 (4)
C12—Eu1—Eu1i57.10 (6)C35—C36—H36A119.6
O1—C1—O2120.0 (3)C37—C36—H36A119.6
O1—C1—C2119.5 (3)C36—C37—C45117.5 (4)
O2—C1—C2120.5 (3)C36—C37—C38124.2 (4)
O1—C1—Eu161.21 (15)C45—C37—C38118.3 (4)
O2—C1—Eu158.82 (15)C39—C38—C37122.0 (4)
C2—C1—Eu1177.1 (2)C39—C38—H38A119.0
C3—C2—C11119.7 (3)C37—C38—H38A119.0
C3—C2—C1117.2 (3)C38—C39—C40121.0 (4)
C11—C2—C1123.1 (3)C38—C39—H39A119.5
C2—C3—C4121.0 (3)C40—C39—H39A119.5
C2—C3—H3A119.5C41—C40—C44117.5 (4)
C4—C3—H3A119.5C41—C40—C39122.8 (4)
C5—C4—C3120.2 (3)C44—C40—C39119.6 (4)
C5—C4—H4A119.9C42—C41—C40119.3 (4)
C3—C4—H4A119.9C42—C41—H41A120.3
C4—C5—C6122.2 (3)C40—C41—H41A120.3
C4—C5—H5A118.9C41—C42—C43119.9 (4)
C6—C5—H5A118.9C41—C42—H42A120.1
C7—C6—C5121.9 (3)C43—C42—H42A120.1
C7—C6—C11120.0 (3)N2—C43—C42122.9 (4)
C5—C6—C11118.1 (3)N2—C43—H43A118.6
C8—C7—C6120.7 (3)C42—C43—H43A118.6
C8—C7—H7A119.6N2—C44—C40122.4 (3)
C6—C7—H7A119.6N2—C44—C45118.6 (3)
C7—C8—O9124.7 (3)C40—C44—C45119.0 (3)
C7—C8—C9119.9 (3)N1—C45—C37121.7 (3)
O9—C8—C9115.4 (3)N1—C45—C44118.4 (3)
C10—C9—C8120.9 (3)C37—C45—C44120.0 (3)
C10—C9—H9A119.5C34—N1—C45118.0 (3)
C8—C9—H9A119.5C34—N1—Eu1122.3 (2)
C9—C10—C11121.9 (3)C45—N1—Eu1119.7 (2)
C9—C10—H10A119.1C43—N2—C44117.9 (3)
C11—C10—H10A119.1C43—N2—Eu1122.5 (2)
C10—C11—C2124.8 (3)C44—N2—Eu1119.4 (2)
C10—C11—C6116.6 (3)C1—O1—Eu192.23 (18)
C2—C11—C6118.6 (3)C1—O2—Eu194.56 (18)
O4i—C12—O3120.2 (3)C12—O3—Eu1106.07 (18)
O4i—C12—C13120.9 (3)C12i—O4—Eu1167.9 (2)
O3—C12—C13118.7 (3)C12i—O4—Eu1i84.49 (18)
O4i—C12—Eu171.56 (17)Eu1—O4—Eu1i103.52 (7)
O3—C12—Eu150.68 (15)C23—O5—Eu1i144.72 (19)
C13—C12—Eu1159.4 (2)C23—O6—Eu1135.27 (19)
C22—C13—C14121.0 (3)C17—O7—H7109.5
C22—C13—C12117.9 (3)C30—O8—H8109.5
C14—C13—C12121.0 (3)C8—O9—H9109.5
C13—C14—C19118.6 (3)H1W—O1W—H2W113.7
C13—C14—C15123.5 (3)
O5i—Eu1—C1—O1162.80 (17)C39—C40—C41—C42178.1 (4)
O4—Eu1—C1—O195.5 (3)C40—C41—C42—C430.1 (6)
O6—Eu1—C1—O116.2 (2)C41—C42—C43—N21.5 (6)
O2—Eu1—C1—O1177.2 (3)C41—C40—C44—N20.5 (5)
O3—Eu1—C1—O189.65 (19)C39—C40—C44—N2178.4 (3)
N1—Eu1—C1—O158.69 (18)C41—C40—C44—C45179.1 (3)
N2—Eu1—C1—O1122.27 (18)C39—C40—C44—C450.2 (5)
O4i—Eu1—C1—O191.59 (19)C36—C37—C45—N11.0 (5)
C12—Eu1—C1—O186.97 (19)C38—C37—C45—N1179.0 (3)
Eu1i—Eu1—C1—O194.2 (2)C36—C37—C45—C44178.9 (3)
O5i—Eu1—C1—O220.0 (2)C38—C37—C45—C441.1 (5)
O4—Eu1—C1—O281.7 (3)N2—C44—C45—N12.3 (4)
O6—Eu1—C1—O2166.67 (17)C40—C44—C45—N1179.0 (3)
O1—Eu1—C1—O2177.2 (3)N2—C44—C45—C37177.6 (3)
O3—Eu1—C1—O293.20 (19)C40—C44—C45—C371.1 (4)
N1—Eu1—C1—O2118.46 (18)C35—C34—N1—C450.2 (5)
N2—Eu1—C1—O254.88 (18)C35—C34—N1—Eu1178.0 (3)
O4i—Eu1—C1—O291.26 (19)C37—C45—N1—C341.1 (4)
C12—Eu1—C1—O295.88 (18)C44—C45—N1—C34178.8 (3)
Eu1i—Eu1—C1—O288.6 (2)C37—C45—N1—Eu1177.2 (2)
O1—C1—C2—C323.8 (4)C44—C45—N1—Eu13.0 (3)
O2—C1—C2—C3156.6 (3)O5i—Eu1—N1—C34157.7 (2)
O1—C1—C2—C11156.7 (3)O4—Eu1—N1—C34103.0 (2)
O2—C1—C2—C1122.8 (5)O6—Eu1—N1—C3423.9 (2)
C11—C2—C3—C40.9 (5)O2—Eu1—N1—C34110.8 (2)
C1—C2—C3—C4178.6 (3)O1—Eu1—N1—C3463.8 (2)
C2—C3—C4—C52.6 (6)O3—Eu1—N1—C3429.8 (3)
C3—C4—C5—C61.5 (7)N2—Eu1—N1—C34177.6 (3)
C4—C5—C6—C7178.2 (4)C1—Eu1—N1—C3487.2 (2)
C4—C5—C6—C111.3 (6)O4i—Eu1—N1—C3450.3 (3)
C5—C6—C7—C8179.5 (3)C12—Eu1—N1—C3410.6 (3)
C11—C6—C7—C81.0 (5)Eu1i—Eu1—N1—C3479.8 (2)
C6—C7—C8—O9179.7 (3)O5i—Eu1—N1—C4520.5 (3)
C6—C7—C8—C90.5 (5)O4—Eu1—N1—C4575.2 (2)
C7—C8—C9—C101.7 (5)O6—Eu1—N1—C45154.2 (2)
O9—C8—C9—C10179.0 (3)O2—Eu1—N1—C4571.0 (2)
C8—C9—C10—C111.3 (5)O1—Eu1—N1—C45118.0 (2)
C9—C10—C11—C2177.6 (3)O3—Eu1—N1—C45152.02 (19)
C9—C10—C11—C60.2 (5)N2—Eu1—N1—C454.2 (2)
C3—C2—C11—C10179.6 (3)C1—Eu1—N1—C4594.6 (2)
C1—C2—C11—C100.9 (5)O4i—Eu1—N1—C45127.9 (2)
C3—C2—C11—C61.8 (5)C12—Eu1—N1—C45167.61 (19)
C1—C2—C11—C6178.7 (3)Eu1i—Eu1—N1—C4598.4 (2)
C7—C6—C11—C101.3 (4)C42—C43—N2—C441.8 (5)
C5—C6—C11—C10179.2 (3)C42—C43—N2—Eu1173.8 (3)
C7—C6—C11—C2176.6 (3)C40—C44—N2—C430.8 (4)
C5—C6—C11—C22.9 (5)C45—C44—N2—C43177.9 (3)
O5i—Eu1—C12—O4i62.03 (17)C40—C44—N2—Eu1174.9 (2)
O4—Eu1—C12—O4i9.1 (2)C45—C44—N2—Eu16.4 (3)
O6—Eu1—C12—O4i81.16 (18)O5i—Eu1—N2—C4318.3 (2)
O2—Eu1—C12—O4i143.34 (17)O4—Eu1—N2—C4396.0 (2)
O1—Eu1—C12—O4i163.24 (17)O6—Eu1—N2—C43150.5 (2)
O3—Eu1—C12—O4i163.6 (3)O2—Eu1—N2—C4369.4 (2)
N1—Eu1—C12—O4i95.0 (2)O1—Eu1—N2—C43114.6 (2)
N2—Eu1—C12—O4i70.1 (2)O3—Eu1—N2—C4331.9 (3)
C1—Eu1—C12—O4i170.14 (18)N1—Eu1—N2—C43179.0 (3)
Eu1i—Eu1—C12—O4i6.04 (14)C1—Eu1—N2—C4391.8 (2)
O5i—Eu1—C12—O3101.6 (2)O4i—Eu1—N2—C4343.9 (3)
O4—Eu1—C12—O3172.7 (2)C12—Eu1—N2—C4310.3 (3)
O6—Eu1—C12—O3115.2 (2)Eu1i—Eu1—N2—C4371.7 (2)
O2—Eu1—C12—O320.3 (2)O5i—Eu1—N2—C44157.2 (2)
O1—Eu1—C12—O333.1 (2)O4—Eu1—N2—C4479.5 (2)
N1—Eu1—C12—O3101.3 (2)O6—Eu1—N2—C4425.0 (2)
N2—Eu1—C12—O393.5 (3)O2—Eu1—N2—C44115.1 (2)
C1—Eu1—C12—O36.5 (2)O1—Eu1—N2—C4469.9 (2)
O4i—Eu1—C12—O3163.6 (3)O3—Eu1—N2—C44152.55 (19)
Eu1i—Eu1—C12—O3169.7 (2)N1—Eu1—N2—C445.44 (19)
O5i—Eu1—C12—C13167.1 (6)C1—Eu1—N2—C4492.7 (2)
O4—Eu1—C12—C13121.7 (6)O4i—Eu1—N2—C44131.59 (19)
O6—Eu1—C12—C1349.7 (6)C12—Eu1—N2—C44165.26 (19)
O2—Eu1—C12—C1385.8 (6)Eu1i—Eu1—N2—C44103.8 (2)
O1—Eu1—C12—C1332.4 (6)O2—C1—O1—Eu12.8 (3)
O3—Eu1—C12—C1365.5 (6)C2—C1—O1—Eu1176.7 (2)
N1—Eu1—C12—C1335.8 (6)O5i—Eu1—O1—C122.9 (2)
N2—Eu1—C12—C13159.0 (5)O4—Eu1—O1—C1144.29 (18)
C1—Eu1—C12—C1359.0 (6)O6—Eu1—O1—C1164.72 (19)
O4i—Eu1—C12—C13130.8 (7)O2—Eu1—O1—C11.60 (17)
Eu1i—Eu1—C12—C13124.8 (6)O3—Eu1—O1—C182.84 (18)
O4i—C12—C13—C2295.3 (4)N1—Eu1—O1—C1117.37 (19)
O3—C12—C13—C2281.4 (4)N2—Eu1—O1—C160.16 (19)
Eu1—C12—C13—C2228.0 (7)O4i—Eu1—O1—C1103.32 (18)
O4i—C12—C13—C1486.8 (4)C12—Eu1—O1—C195.73 (18)
O3—C12—C13—C1496.6 (4)Eu1i—Eu1—O1—C1129.97 (16)
Eu1—C12—C13—C14150.0 (5)O1—C1—O2—Eu12.9 (3)
C22—C13—C14—C190.4 (5)C2—C1—O2—Eu1176.7 (2)
C12—C13—C14—C19177.5 (3)O5i—Eu1—O2—C1161.01 (19)
C22—C13—C14—C15179.8 (3)O4—Eu1—O2—C1148.32 (17)
C12—C13—C14—C152.3 (5)O6—Eu1—O2—C118.0 (2)
C13—C14—C15—C16178.8 (3)O1—Eu1—O2—C11.59 (17)
C19—C14—C15—C161.0 (5)O3—Eu1—O2—C179.71 (18)
C14—C15—C16—C170.5 (5)N1—Eu1—O2—C162.98 (19)
C15—C16—C17—C180.4 (6)N2—Eu1—O2—C1121.79 (19)
C15—C16—C17—O7179.8 (3)O4i—Eu1—O2—C1103.63 (18)
O7—C17—C18—C19179.6 (3)C12—Eu1—O2—C187.79 (18)
C16—C17—C18—C190.7 (6)Eu1i—Eu1—O2—C1132.77 (16)
C17—C18—C19—C20179.7 (3)O4i—C12—O3—Eu118.0 (4)
C17—C18—C19—C140.1 (5)C13—C12—O3—Eu1158.6 (2)
C13—C14—C19—C18179.1 (3)O5i—Eu1—O3—C1273.3 (2)
C15—C14—C19—C180.7 (5)O4—Eu1—O3—C128.5 (2)
C13—C14—C19—C201.4 (5)O6—Eu1—O3—C1259.3 (2)
C15—C14—C19—C20178.8 (3)O2—Eu1—O3—C12159.4 (2)
C18—C19—C20—C21179.5 (4)O1—Eu1—O3—C12145.7 (2)
C14—C19—C20—C211.0 (5)N1—Eu1—O3—C12112.0 (2)
C19—C20—C21—C220.4 (6)N2—Eu1—O3—C12122.5 (2)
C14—C13—C22—C210.9 (5)C1—Eu1—O3—C12173.3 (2)
C12—C13—C22—C21178.9 (3)O4i—Eu1—O3—C129.05 (19)
C20—C21—C22—C131.4 (6)Eu1i—Eu1—O3—C128.8 (2)
O5—C23—C24—C25145.8 (3)O5i—Eu1—O4—C12i63.5 (10)
O6—C23—C24—C2531.7 (5)O6—Eu1—O4—C12i159.5 (10)
O5—C23—C24—C3329.7 (4)O2—Eu1—O4—C12i10.7 (11)
O6—C23—C24—C33152.9 (3)O1—Eu1—O4—C12i107.0 (10)
C33—C24—C25—C262.8 (7)O3—Eu1—O4—C12i130.8 (10)
C23—C24—C25—C26172.7 (4)N1—Eu1—O4—C12i80.8 (10)
C24—C25—C26—C270.7 (8)N2—Eu1—O4—C12i15.6 (10)
C25—C26—C27—C280.9 (9)C1—Eu1—O4—C12i43.3 (12)
C26—C27—C28—C29179.5 (5)O4i—Eu1—O4—C12i130.4 (11)
C26—C27—C28—C330.3 (8)C12—Eu1—O4—C12i134.2 (10)
C27—C28—C29—C30176.8 (4)Eu1i—Eu1—O4—C12i130.4 (11)
C33—C28—C29—C303.0 (6)O5i—Eu1—O4—Eu1i66.92 (8)
C28—C29—C30—O8179.0 (3)O6—Eu1—O4—Eu1i70.03 (7)
C28—C29—C30—C310.3 (6)O2—Eu1—O4—Eu1i119.73 (13)
C29—C30—C31—C322.5 (5)O1—Eu1—O4—Eu1i122.51 (14)
O8—C30—C31—C32176.8 (3)O3—Eu1—O4—Eu1i0.38 (12)
C30—C31—C32—C331.5 (5)N1—Eu1—O4—Eu1i148.79 (9)
C31—C32—C33—C281.8 (5)N2—Eu1—O4—Eu1i146.04 (9)
C31—C32—C33—C24179.2 (3)C1—Eu1—O4—Eu1i173.7 (3)
C27—C28—C33—C32175.8 (4)O4i—Eu1—O4—Eu1i0.0
C29—C28—C33—C323.9 (5)C12—Eu1—O4—Eu1i3.80 (9)
C27—C28—C33—C241.8 (6)O6—C23—O5—Eu1i9.4 (6)
C29—C28—C33—C24178.4 (3)C24—C23—O5—Eu1i167.9 (2)
C25—C24—C33—C32174.1 (4)O5—C23—O6—Eu121.9 (5)
C23—C24—C33—C3210.6 (5)C24—C23—O6—Eu1160.9 (2)
C25—C24—C33—C283.3 (5)O5i—Eu1—O6—C2336.2 (3)
C23—C24—C33—C28172.0 (3)O4—Eu1—O6—C2321.9 (3)
N1—C34—C35—C360.8 (6)O2—Eu1—O6—C23165.7 (3)
C34—C35—C36—C370.8 (6)O1—Eu1—O6—C23178.6 (3)
C35—C36—C37—C450.0 (5)O3—Eu1—O6—C23105.4 (3)
C35—C36—C37—C38180.0 (4)N1—Eu1—O6—C23103.8 (3)
C36—C37—C38—C39179.8 (4)N2—Eu1—O6—C2376.0 (3)
C45—C37—C38—C390.1 (6)C1—Eu1—O6—C23174.2 (3)
C37—C38—C39—C400.8 (7)O4i—Eu1—O6—C2358.5 (3)
C38—C39—C40—C41178.1 (4)C12—Eu1—O6—C2384.2 (3)
C38—C39—C40—C440.7 (6)Eu1i—Eu1—O6—C2322.4 (3)
C44—C40—C41—C420.8 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O9ii0.852.052.799 (4)147
O1W—H2W···O8iii0.852.283.050 (4)150
O7—H7···O1W0.821.892.670 (5)159
O8—H8···O7iv0.821.882.664 (5)160
O9—H9···O3v0.821.842.642 (3)165
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x1, y+1, z1; (v) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[Eu2(C11H7O3)6(C12H8N2)2]·2H2O
Mr1823.36
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.7132 (9), 12.7143 (10), 14.8822 (12)
α, β, γ (°)65.790 (1), 88.276 (1), 70.437 (1)
V3)1889.8 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.30 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.626, 0.758
No. of measured, independent and
observed [I > 2σ(I)] reflections
13943, 6615, 5910
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.057, 1.04
No. of reflections6615
No. of parameters526
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.56

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Eu1—O5i2.334 (2)Eu1—O32.471 (2)
Eu1—O42.351 (2)Eu1—N12.591 (2)
Eu1—O62.3680 (19)Eu1—N22.593 (2)
Eu1—O22.411 (2)Eu1—O4i2.925 (2)
Eu1—O12.464 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O9ii0.852.052.799 (4)147
O1W—H2W···O8iii0.852.283.050 (4)150
O7—H7···O1W0.821.892.670 (5)159
O8—H8···O7iv0.821.882.664 (5)160
O9—H9···O3v0.821.842.642 (3)165
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y+2, z+1; (iv) x1, y+1, z1; (v) x+1, y, z+2.
 

Acknowledgements

This work was supported by the start-up fund for PhDs of the Natural Scientific Research of Zhengzhou University of Light Industry (Nos. 2007BSJJ001 and 20801049).

References

First citationBettencourt-Dias, A. (2005). Inorg. Chem. 44, 2734–2741.  Web of Science PubMed Google Scholar
First citationBettencourt-Dias, A. & Viswanathan, S. (2006). Dalton Trans. pp. 4093–4103.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBünzli, J.-C. G. (2006). Acc. Chem. Res. 39, 53–61.  Web of Science PubMed Google Scholar
First citationEdelmann, F. T. (2009). Coord. Chem. Rev. 253, 2515–2587.  Web of Science CrossRef CAS Google Scholar
First citationFang, J., You, H., Chen, J., Lin, J. & Ma, D. (2006). Inorg. Chem. 45, 3701–3704.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, Y.-J. & Yan, B. (2009). Inorg. Chem. 48, 8276–8285.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQu, Y. L., Ke, Y. X., Lu, S. M., Fan, R., Pan, G. Q. & Li, J. M. (2005). J. Mol. Struct. 734, 7–13.  Web of Science CSD CrossRef CAS Google Scholar
First citationSerre, C. & Férey, G. (2002). J. Mater. Chem. 12, 3053–3057.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, Y., Jin, L., Wang, K., Zhang, L., Zheng, X. & Lu, S. (2002). New J. Chem. 26, 1590–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, J.-X., Ma, Y., Liao, D.-Z., Xu, G.-F., Tang, J., Wang, C., Zhou, N., Yan, S.-P., Cheng, P. & Li, L.-C. (2009). Inorg. Chem. 48, 8890–8896.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, J., Yue, Q., Li, G.-D., Cao, J.-J., Li, G.-H. & Chen, J.-S. (2006). Inorg. Chem. 45, 2857–2865.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYe, B. H., Tong, M. L. & Chen, X. M. (2005). Coord. Chem. Rev. 249, 545–565.  Web of Science CrossRef CAS Google Scholar
First citationZheng, X.-J., Jin, L.-P., Gao, S. & Lu, S.-Z. (2005). New J. Chem. 29, 798–804.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1572-m1573
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds