organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2,6-di­chloro-4-phenyl­quinoline-3-carboxyl­ate

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 October 2009; accepted 29 October 2009; online 4 November 2009)

In the title compound, C18H13Cl2NO2, the quinoline ring system is almost planar (r.m.s. deviation 0.009 Å), and the phenyl and carboxyl­ate planes are twisted away from it by 59.2 (1) and 65.9 (2)°, respectively.

Related literature

The title compound is a 6-chloro analouge of ethyl 2-chloro-4-phenyl­quinoline-3-carboxyl­ate, which has been examined for endothelin binding affinity; for details, see: Anzini et al. (1991[Anzini, M., Cappelli, A., Vomero, S., Campiani, G., Cagnotto, A. & Skorupska, M. (1991). Il Farm. 46, 1435-1447.], 1992[Anzini, M., Cappelli, A., Vomero, S., Cagnotto, A. & Skorupska, M. (1992). Il Farm. 47, 191-202.], 2001[Anzini, M., Cappelli, A., Vomero, S., Seeber, M., Menziani, M. C., Langer, T., Hagen, B., Manzoni, C. & Bourguignon, J.-J. (2001). J. Med. Chem. 44, 1134-1150.]); Cappelli et al. (2008[Cappelli, A., Giuliani, G., Anzini, M., Riitano, D., Giorgi, G. & Vomero, S. (2008). Bioorg. Med. Chem. 16, 6850-6859.]); Pittala et al. (2008[Pittala, V., Modica, M., Salerno, L., Siracusa, M. A., Guerrera, F., Mereghetti, I., Cagnotto, A., Mennini, T. & Romeo, G. (2008). Med. Chem. 4, 129-137.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13Cl2NO2

  • Mr = 346.19

  • Triclinic, [P \overline 1]

  • a = 8.3553 (3) Å

  • b = 10.1861 (5) Å

  • c = 10.6731 (6) Å

  • α = 110.537 (5)°

  • β = 101.421 (4)°

  • γ = 95.980 (4)°

  • V = 818.73 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 295 K

  • 0.34 × 0.26 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.875, Tmax = 0.906

  • 18102 measured reflections

  • 3700 independent reflections

  • 2537 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.144

  • S = 1.02

  • 3700 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The title compound is a 6-chloro analouge of ethyl 2-chloro-4-phenylquinoline-3-carboxylate, which has been examined for endothelin binding affinity; for details, see: Anzini et al. (1991, 1992, 2001); Cappelli et al. (2008); Pittala et al. (2008).

Experimental top

An excess of phosphorus oxychloride (0.9 ml, 10 mmol) and 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate (0.33 g, 1 mmol) were heated for 1 h. The mixture was then added to crushed ice. The solid that formed was collected and recrystallized from methanol.

Refinement top

C-bound H-atoms were placed in calculated positions (C-H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The C—C distance of the ethyl chain was tightly restrained to 1.500 (2) Å.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C18H13Cl2NO2 at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
Ethyl 2,6-dichloro-4-phenylquinoline-3-carboxylate top
Crystal data top
C18H13Cl2NO2Z = 2
Mr = 346.19F(000) = 356
Triclinic, P1Dx = 1.404 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3553 (3) ÅCell parameters from 1235 reflections
b = 10.1861 (5) Åθ = 1.7–21.3°
c = 10.6731 (6) ŵ = 0.40 mm1
α = 110.537 (5)°T = 295 K
β = 101.421 (4)°Block, colourless
γ = 95.980 (4)°0.34 × 0.26 × 0.25 mm
V = 818.73 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3700 independent reflections
Radiation source: fine-focus sealed tube2537 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.875, Tmax = 0.906k = 1312
18102 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.07P)2 + 0.2927P]
where P = (Fo2 + 2Fc2)/3
3700 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C18H13Cl2NO2γ = 95.980 (4)°
Mr = 346.19V = 818.73 (7) Å3
Triclinic, P1Z = 2
a = 8.3553 (3) ÅMo Kα radiation
b = 10.1861 (5) ŵ = 0.40 mm1
c = 10.6731 (6) ÅT = 295 K
α = 110.537 (5)°0.34 × 0.26 × 0.25 mm
β = 101.421 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3700 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2537 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.906Rint = 0.031
18102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.144H-atom parameters constrained
S = 1.02Δρmax = 0.41 e Å3
3700 reflectionsΔρmin = 0.36 e Å3
209 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38082 (9)0.27696 (7)0.20007 (7)0.0656 (2)
Cl20.09541 (10)0.80809 (9)0.87358 (6)0.0737 (3)
N10.2968 (2)0.38235 (19)0.42803 (19)0.0464 (4)
O10.4425 (2)0.66274 (18)0.20689 (15)0.0522 (4)
O20.2357 (2)0.48698 (19)0.05569 (16)0.0651 (5)
C10.3141 (3)0.4086 (2)0.3210 (2)0.0432 (5)
C20.2874 (3)0.5342 (2)0.2978 (2)0.0394 (5)
C30.2357 (3)0.6384 (2)0.3963 (2)0.0372 (5)
C40.2145 (3)0.6144 (2)0.5166 (2)0.0381 (5)
C50.1637 (3)0.7137 (2)0.6250 (2)0.0436 (5)
H50.13970.79890.61950.052*
C60.1503 (3)0.6832 (3)0.7373 (2)0.0479 (5)
C70.1808 (3)0.5550 (3)0.7485 (2)0.0534 (6)
H70.16950.53680.82610.064*
C80.2271 (3)0.4575 (3)0.6448 (2)0.0509 (6)
H80.24590.37140.65120.061*
C90.2472 (3)0.4845 (2)0.5278 (2)0.0421 (5)
C100.2017 (3)0.7710 (2)0.3758 (2)0.0399 (5)
C110.0839 (3)0.7647 (3)0.2608 (2)0.0479 (5)
H110.02350.67690.19630.057*
C120.0565 (3)0.8896 (3)0.2421 (3)0.0607 (7)
H120.02350.88550.16590.073*
C130.1478 (4)1.0192 (3)0.3363 (3)0.0650 (7)
H130.13011.10240.32270.078*
C140.2633 (4)1.0268 (3)0.4490 (3)0.0641 (7)
H140.32401.11510.51230.077*
C150.2910 (3)0.9030 (2)0.4697 (2)0.0506 (6)
H150.37010.90880.54720.061*
C160.3163 (3)0.5558 (2)0.1716 (2)0.0443 (5)
C170.4740 (4)0.7060 (3)0.0971 (3)0.0749 (9)
H17A0.37130.68520.02670.090*
H17B0.55220.65330.05470.090*
C180.5432 (6)0.8615 (3)0.1550 (4)0.1137 (15)
H18A0.55720.89160.08150.170*
H18B0.64900.88060.21950.170*
H18C0.46830.91290.20160.170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0792 (5)0.0546 (4)0.0702 (4)0.0224 (3)0.0354 (4)0.0209 (3)
Cl20.0878 (5)0.1001 (6)0.0420 (3)0.0331 (4)0.0288 (3)0.0264 (3)
N10.0512 (11)0.0404 (10)0.0507 (11)0.0064 (8)0.0109 (9)0.0226 (8)
O10.0616 (10)0.0593 (10)0.0393 (8)0.0039 (8)0.0178 (7)0.0223 (7)
O20.0851 (13)0.0648 (11)0.0359 (9)0.0015 (10)0.0110 (9)0.0135 (8)
C10.0424 (12)0.0393 (11)0.0472 (12)0.0081 (9)0.0125 (9)0.0148 (9)
C20.0419 (12)0.0405 (11)0.0377 (10)0.0071 (9)0.0108 (9)0.0170 (8)
C30.0372 (11)0.0390 (11)0.0361 (10)0.0051 (9)0.0072 (8)0.0167 (8)
C40.0366 (11)0.0431 (11)0.0348 (10)0.0053 (9)0.0062 (8)0.0171 (8)
C50.0448 (12)0.0528 (13)0.0375 (11)0.0119 (10)0.0111 (9)0.0210 (9)
C60.0428 (12)0.0664 (15)0.0338 (11)0.0074 (11)0.0098 (9)0.0189 (10)
C70.0545 (14)0.0694 (16)0.0382 (12)0.0051 (12)0.0054 (10)0.0309 (11)
C80.0577 (15)0.0511 (13)0.0479 (13)0.0015 (11)0.0063 (11)0.0298 (11)
C90.0406 (12)0.0441 (11)0.0423 (11)0.0017 (9)0.0065 (9)0.0212 (9)
C100.0461 (12)0.0414 (11)0.0398 (11)0.0128 (9)0.0176 (9)0.0193 (9)
C110.0505 (14)0.0519 (13)0.0484 (12)0.0093 (10)0.0132 (10)0.0272 (10)
C120.0577 (16)0.0768 (19)0.0698 (16)0.0248 (14)0.0205 (13)0.0486 (15)
C130.0747 (19)0.0517 (15)0.091 (2)0.0255 (14)0.0355 (16)0.0417 (15)
C140.0769 (19)0.0414 (13)0.0749 (18)0.0124 (13)0.0264 (15)0.0191 (12)
C150.0595 (15)0.0447 (12)0.0461 (12)0.0109 (11)0.0142 (11)0.0148 (10)
C160.0535 (14)0.0451 (12)0.0397 (12)0.0166 (11)0.0175 (10)0.0173 (9)
C170.115 (2)0.0674 (17)0.0481 (14)0.0004 (16)0.0374 (15)0.0240 (13)
C180.189 (4)0.082 (2)0.075 (2)0.008 (3)0.052 (3)0.0349 (18)
Geometric parameters (Å, º) top
Cl1—C11.732 (2)C8—C91.407 (3)
Cl2—C61.742 (2)C8—H80.93
N1—C11.292 (3)C10—C151.385 (3)
N1—C91.369 (3)C10—C111.390 (3)
O1—C161.325 (3)C11—C121.389 (3)
O1—C171.448 (3)C11—H110.93
O2—C161.199 (3)C12—C131.375 (4)
C1—C21.417 (3)C12—H120.93
C2—C31.382 (3)C13—C141.358 (4)
C2—C161.499 (3)C13—H130.93
C3—C41.429 (3)C14—C151.389 (4)
C3—C101.488 (3)C14—H140.93
C4—C51.416 (3)C15—H150.93
C4—C91.419 (3)C17—C181.485 (2)
C5—C61.361 (3)C17—H17A0.97
C5—H50.93C17—H17B0.97
C6—C71.397 (4)C18—H18A0.96
C7—C81.356 (4)C18—H18B0.96
C7—H70.93C18—H18C0.96
C1—N1—C9117.23 (18)C11—C10—C3120.90 (19)
C16—O1—C17116.36 (18)C12—C11—C10120.0 (2)
N1—C1—C2125.8 (2)C12—C11—H11120.0
N1—C1—Cl1115.05 (16)C10—C11—H11120.0
C2—C1—Cl1119.09 (17)C13—C12—C11120.0 (2)
C3—C2—C1118.10 (19)C13—C12—H12120.0
C3—C2—C16120.40 (18)C11—C12—H12120.0
C1—C2—C16121.50 (19)C14—C13—C12120.6 (2)
C2—C3—C4118.21 (18)C14—C13—H13119.7
C2—C3—C10120.49 (18)C12—C13—H13119.7
C4—C3—C10121.30 (18)C13—C14—C15120.1 (3)
C5—C4—C9118.57 (19)C13—C14—H14120.0
C5—C4—C3123.39 (19)C15—C14—H14120.0
C9—C4—C3118.04 (19)C10—C15—C14120.5 (2)
C6—C5—C4119.4 (2)C10—C15—H15119.8
C6—C5—H5120.3C14—C15—H15119.8
C4—C5—H5120.3O2—C16—O1125.1 (2)
C5—C6—C7122.4 (2)O2—C16—C2124.8 (2)
C5—C6—Cl2119.40 (19)O1—C16—C2110.14 (18)
C7—C6—Cl2118.20 (17)O1—C17—C18109.4 (2)
C8—C7—C6119.2 (2)O1—C17—H17A109.8
C8—C7—H7120.4C18—C17—H17A109.8
C6—C7—H7120.4O1—C17—H17B109.8
C7—C8—C9121.1 (2)C18—C17—H17B109.8
C7—C8—H8119.5H17A—C17—H17B108.2
C9—C8—H8119.5C17—C18—H18A109.5
N1—C9—C8118.0 (2)C17—C18—H18B109.5
N1—C9—C4122.57 (19)H18A—C18—H18B109.5
C8—C9—C4119.4 (2)C17—C18—H18C109.5
C15—C10—C11118.9 (2)H18A—C18—H18C109.5
C15—C10—C3120.20 (19)H18B—C18—H18C109.5
C9—N1—C1—C20.5 (3)C7—C8—C9—C41.6 (3)
C9—N1—C1—Cl1178.84 (15)C5—C4—C9—N1179.98 (19)
N1—C1—C2—C31.1 (3)C3—C4—C9—N10.4 (3)
Cl1—C1—C2—C3179.37 (16)C5—C4—C9—C80.5 (3)
N1—C1—C2—C16178.0 (2)C3—C4—C9—C8179.88 (19)
Cl1—C1—C2—C160.3 (3)C2—C3—C10—C15119.8 (2)
C1—C2—C3—C40.8 (3)C4—C3—C10—C1560.9 (3)
C16—C2—C3—C4178.25 (19)C2—C3—C10—C1158.2 (3)
C1—C2—C3—C10178.5 (2)C4—C3—C10—C11121.1 (2)
C16—C2—C3—C102.4 (3)C15—C10—C11—C120.5 (3)
C2—C3—C4—C5179.40 (19)C3—C10—C11—C12178.6 (2)
C10—C3—C4—C51.3 (3)C10—C11—C12—C131.0 (4)
C2—C3—C4—C90.2 (3)C11—C12—C13—C140.9 (4)
C10—C3—C4—C9179.14 (19)C12—C13—C14—C150.3 (4)
C9—C4—C5—C61.1 (3)C11—C10—C15—C140.1 (4)
C3—C4—C5—C6178.5 (2)C3—C10—C15—C14178.0 (2)
C4—C5—C6—C71.7 (3)C13—C14—C15—C100.2 (4)
C4—C5—C6—Cl2177.61 (16)C17—O1—C16—O25.6 (3)
C5—C6—C7—C80.7 (4)C17—O1—C16—C2173.7 (2)
Cl2—C6—C7—C8178.63 (18)C3—C2—C16—O2114.0 (3)
C6—C7—C8—C91.0 (4)C1—C2—C16—O266.9 (3)
C1—N1—C9—C8179.8 (2)C3—C2—C16—O165.3 (3)
C1—N1—C9—C40.3 (3)C1—C2—C16—O1113.8 (2)
C7—C8—C9—N1179.0 (2)C16—O1—C17—C18148.7 (3)

Experimental details

Crystal data
Chemical formulaC18H13Cl2NO2
Mr346.19
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.3553 (3), 10.1861 (5), 10.6731 (6)
α, β, γ (°)110.537 (5), 101.421 (4), 95.980 (4)
V3)818.73 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.34 × 0.26 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.875, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
18102, 3700, 2537
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.144, 1.02
No. of reflections3700
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.36

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

The authors thank the Department of Science and Technology, India, for use of the diffraction facility set up under the IRHPA–DST programme at IISc. FNK thanks the DST for Fast Track Proposal funding. The authors also thank VIT University and the University of Malaya for supporting this study.

References

First citationAnzini, M., Cappelli, A., Vomero, S., Cagnotto, A. & Skorupska, M. (1992). Il Farm. 47, 191–202.  CAS Google Scholar
First citationAnzini, M., Cappelli, A., Vomero, S., Campiani, G., Cagnotto, A. & Skorupska, M. (1991). Il Farm. 46, 1435–1447.  CAS Google Scholar
First citationAnzini, M., Cappelli, A., Vomero, S., Seeber, M., Menziani, M. C., Langer, T., Hagen, B., Manzoni, C. & Bourguignon, J.-J. (2001). J. Med. Chem. 44, 1134–1150.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCappelli, A., Giuliani, G., Anzini, M., Riitano, D., Giorgi, G. & Vomero, S. (2008). Bioorg. Med. Chem. 16, 6850–6859.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPittala, V., Modica, M., Salerno, L., Siracusa, M. A., Guerrera, F., Mereghetti, I., Cagnotto, A., Mennini, T. & Romeo, G. (2008). Med. Chem. 4, 129–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds