organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis(3-meth­oxy­phen­yl)-3-methyl­piperidin-4-one

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 October 2009; accepted 29 October 2009; online 4 November 2009)

In the mol­ecule of the title compound, C20H23NO3, the bulky methoxy­phenyl substituents at the equatorial 2,6-positions crowd the vicinity of the equatorial amino H atom and prevent it from forming inter­molecular hydrogen bonds. The piperidine ring adopts a distorted chair conformation.

Related literature

For the crystal structure of a related piperidinone compound, see: Nithya et al. (2009[Nithya, P., Hathwar, V. R., Kone, S., Malathi, N. & Khan, F. N. (2009). Acta Cryst. E65, o1692-o1693.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23NO3

  • Mr = 325.39

  • Monoclinic, C 2/c

  • a = 28.695 (3) Å

  • b = 10.9717 (12) Å

  • c = 11.3946 (13) Å

  • β = 95.078 (2)°

  • V = 3573.3 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 290 K

  • 0.35 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 12581 measured reflections

  • 3148 independent reflections

  • 1751 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.154

  • S = 1.04

  • 3148 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of a related piperidinone compound, see: Nithya et al. (2009).

Experimental top

Ammonium acetate (1 mmol), m-methoxybenzaldehyde (2 mmol) and ethylmethyl ketone (1 mmol) was heated until the colour of the solution turned yellow. After the completion of the reaction (as monitored by TLC), the product was dissolved in ether (10 ml). The solution was treated with aqueous hydrochloric acid [20 ml, 1:1 (v/v)]. The hydrochloride salt of the piperidin-4-one was collected and washed with ether. The base was liberated from an alcohol solution of the hydrochloride by the addition of a slight excess of aqueous ammonia at 273 K. The product was collected and recrystallized from ethanol.

Refinement top

C-bound H-atoms were placed in calculated positions (C-H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C20H23NO3 at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
2,6-Bis(3-methoxyphenyl)-3-methylpiperidin-4-one top
Crystal data top
C20H23NO3F(000) = 1392
Mr = 325.39Dx = 1.210 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1065 reflections
a = 28.695 (3) Åθ = 2.0–20.8°
b = 10.9717 (12) ŵ = 0.08 mm1
c = 11.3946 (13) ÅT = 290 K
β = 95.078 (2)°Plate, colourless
V = 3573.3 (7) Å30.35 × 0.12 × 0.08 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
1751 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 25.0°, θmin = 1.4°
ϕ and ω scansh = 3334
12581 measured reflectionsk = 1311
3148 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.6442P]
where P = (Fo2 + 2Fc2)/3
3148 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C20H23NO3V = 3573.3 (7) Å3
Mr = 325.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.695 (3) ŵ = 0.08 mm1
b = 10.9717 (12) ÅT = 290 K
c = 11.3946 (13) Å0.35 × 0.12 × 0.08 mm
β = 95.078 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1751 reflections with I > 2σ(I)
12581 measured reflectionsRint = 0.058
3148 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.18 e Å3
3148 reflectionsΔρmin = 0.14 e Å3
224 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58419 (9)0.8518 (2)0.9145 (2)0.1002 (10)
O20.76371 (8)0.5426 (2)0.51929 (18)0.0750 (7)
O30.57121 (8)0.17943 (18)1.10361 (17)0.0647 (6)
N10.65515 (8)0.5548 (2)0.83450 (19)0.0438 (6)
H1N0.6737 (9)0.493 (2)0.850 (2)0.042 (8)*
C10.68070 (10)0.6693 (3)0.8526 (2)0.0460 (7)
H10.69100.67720.93660.055*
C20.64767 (11)0.7743 (3)0.8172 (3)0.0585 (9)
H2A0.66270.85050.84190.070*
H2B0.64200.77600.73200.070*
C30.60185 (12)0.7651 (3)0.8696 (3)0.0588 (9)
C40.57864 (10)0.6416 (3)0.8627 (2)0.0488 (8)
H40.56970.62510.77920.059*
C50.61533 (9)0.5452 (2)0.9056 (2)0.0405 (7)
H50.62620.56300.98780.049*
C60.59593 (9)0.4172 (2)0.8989 (2)0.0392 (7)
C70.59208 (9)0.3507 (2)1.0002 (2)0.0429 (7)
H70.60190.38501.07290.051*
C80.57388 (10)0.2338 (3)0.9957 (2)0.0456 (7)
C90.56020 (11)0.1801 (3)0.8898 (3)0.0573 (8)
H90.54870.10090.88640.069*
C100.56400 (11)0.2471 (3)0.7879 (3)0.0646 (9)
H100.55440.21230.71530.078*
C110.58152 (10)0.3632 (3)0.7912 (2)0.0525 (8)
H110.58380.40610.72160.063*
C120.72330 (10)0.6733 (3)0.7837 (2)0.0445 (7)
C130.72600 (10)0.6065 (3)0.6817 (2)0.0500 (8)
H130.70130.55580.65500.060*
C140.76509 (11)0.6143 (3)0.6189 (3)0.0549 (8)
C150.80184 (12)0.6882 (3)0.6568 (3)0.0686 (10)
H150.82840.69220.61550.082*
C160.79871 (12)0.7568 (3)0.7577 (3)0.0716 (10)
H160.82320.80850.78340.086*
C170.76009 (11)0.7498 (3)0.8206 (3)0.0597 (9)
H170.75870.79670.88820.072*
C180.80099 (13)0.5566 (3)0.4451 (3)0.0848 (12)
H18A0.80210.63960.41890.127*
H18B0.79580.50360.37820.127*
H18C0.83010.53590.48850.127*
C190.55104 (15)0.0625 (3)1.1084 (3)0.0877 (12)
H19A0.51920.06541.07460.132*
H19B0.55180.03651.18900.132*
H19C0.56840.00601.06500.132*
C200.53454 (12)0.6374 (3)0.9252 (3)0.0826 (11)
H20A0.54210.65111.00790.124*
H20B0.52010.55890.91360.124*
H20C0.51340.69940.89390.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.119 (2)0.0536 (16)0.135 (2)0.0140 (15)0.0511 (19)0.0246 (15)
O20.0798 (17)0.0788 (16)0.0713 (14)0.0245 (13)0.0343 (13)0.0180 (13)
O30.0959 (17)0.0445 (13)0.0538 (13)0.0223 (12)0.0074 (11)0.0049 (10)
N10.0422 (15)0.0342 (15)0.0560 (15)0.0009 (13)0.0100 (12)0.0041 (12)
C10.0515 (19)0.0455 (18)0.0403 (15)0.0075 (16)0.0001 (14)0.0005 (13)
C20.069 (2)0.0394 (19)0.068 (2)0.0052 (16)0.0137 (17)0.0052 (15)
C30.071 (2)0.042 (2)0.064 (2)0.0102 (18)0.0113 (17)0.0019 (15)
C40.0485 (19)0.051 (2)0.0485 (17)0.0065 (16)0.0123 (14)0.0005 (14)
C50.0421 (17)0.0418 (17)0.0381 (14)0.0016 (14)0.0074 (12)0.0017 (12)
C60.0373 (16)0.0382 (17)0.0431 (16)0.0028 (13)0.0092 (13)0.0022 (13)
C70.0485 (18)0.0393 (18)0.0410 (16)0.0024 (14)0.0049 (13)0.0036 (13)
C80.0482 (19)0.0446 (19)0.0447 (16)0.0016 (15)0.0075 (13)0.0012 (14)
C90.068 (2)0.0440 (19)0.060 (2)0.0164 (16)0.0096 (16)0.0051 (15)
C100.086 (3)0.060 (2)0.0469 (18)0.019 (2)0.0026 (16)0.0138 (16)
C110.063 (2)0.055 (2)0.0407 (17)0.0082 (17)0.0069 (14)0.0025 (14)
C120.0453 (18)0.0438 (17)0.0438 (16)0.0059 (15)0.0006 (14)0.0074 (13)
C130.0480 (19)0.0487 (19)0.0536 (18)0.0162 (15)0.0067 (15)0.0026 (14)
C140.057 (2)0.053 (2)0.0560 (19)0.0118 (17)0.0130 (16)0.0019 (16)
C150.060 (2)0.077 (2)0.072 (2)0.019 (2)0.0216 (18)0.0035 (19)
C160.062 (2)0.077 (2)0.077 (2)0.032 (2)0.0088 (19)0.002 (2)
C170.061 (2)0.064 (2)0.0535 (18)0.0187 (19)0.0034 (16)0.0029 (16)
C180.089 (3)0.094 (3)0.077 (2)0.020 (2)0.042 (2)0.012 (2)
C190.140 (4)0.054 (2)0.071 (2)0.031 (2)0.021 (2)0.0032 (18)
C200.074 (3)0.076 (3)0.103 (3)0.017 (2)0.039 (2)0.011 (2)
Geometric parameters (Å, º) top
O1—C31.212 (3)C9—C101.388 (4)
O2—C141.379 (3)C9—H90.93
O2—C181.429 (3)C10—C111.368 (4)
O3—C81.375 (3)C10—H100.93
O3—C191.411 (3)C11—H110.93
N1—C11.460 (3)C12—C131.382 (4)
N1—C51.462 (3)C12—C171.384 (4)
N1—H1N0.87 (3)C13—C141.385 (4)
C1—C121.511 (4)C13—H130.93
C1—C21.524 (4)C14—C151.369 (4)
C1—H10.98C15—C161.384 (4)
C2—C31.495 (4)C15—H150.93
C2—H2A0.97C16—C171.374 (4)
C2—H2B0.97C16—H160.93
C3—C41.509 (4)C17—H170.93
C4—C201.507 (4)C18—H18A0.96
C4—C51.541 (4)C18—H18B0.96
C4—H40.98C18—H18C0.96
C5—C61.511 (3)C19—H19A0.96
C5—H50.98C19—H19B0.96
C6—C71.379 (3)C19—H19C0.96
C6—C111.392 (3)C20—H20A0.96
C7—C81.384 (4)C20—H20B0.96
C7—H70.93C20—H20C0.96
C8—C91.368 (4)
C14—O2—C18117.2 (2)C10—C9—H9120.9
C8—O3—C19119.0 (2)C11—C10—C9121.7 (3)
C1—N1—C5113.0 (2)C11—C10—H10119.2
C1—N1—H1N110.2 (17)C9—C10—H10119.2
C5—N1—H1N109.0 (16)C10—C11—C6120.0 (3)
N1—C1—C12111.8 (2)C10—C11—H11120.0
N1—C1—C2108.7 (2)C6—C11—H11120.0
C12—C1—C2110.7 (2)C13—C12—C17118.6 (3)
N1—C1—H1108.5C13—C12—C1122.0 (3)
C12—C1—H1108.5C17—C12—C1119.4 (3)
C2—C1—H1108.5C12—C13—C14120.6 (3)
C3—C2—C1113.0 (2)C12—C13—H13119.7
C3—C2—H2A109.0C14—C13—H13119.7
C1—C2—H2A109.0C15—C14—O2124.2 (3)
C3—C2—H2B109.0C15—C14—C13120.7 (3)
C1—C2—H2B109.0O2—C14—C13115.1 (3)
H2A—C2—H2B107.8C14—C15—C16118.6 (3)
O1—C3—C2122.1 (3)C14—C15—H15120.7
O1—C3—C4121.8 (3)C16—C15—H15120.7
C2—C3—C4116.1 (3)C17—C16—C15121.2 (3)
C20—C4—C3112.9 (3)C17—C16—H16119.4
C20—C4—C5114.0 (2)C15—C16—H16119.4
C3—C4—C5108.3 (2)C16—C17—C12120.3 (3)
C20—C4—H4107.1C16—C17—H17119.9
C3—C4—H4107.1C12—C17—H17119.9
C5—C4—H4107.1O2—C18—H18A109.5
N1—C5—C6110.0 (2)O2—C18—H18B109.5
N1—C5—C4108.7 (2)H18A—C18—H18B109.5
C6—C5—C4112.6 (2)O2—C18—H18C109.5
N1—C5—H5108.5H18A—C18—H18C109.5
C6—C5—H5108.5H18B—C18—H18C109.5
C4—C5—H5108.5O3—C19—H19A109.5
C7—C6—C11118.3 (3)O3—C19—H19B109.5
C7—C6—C5120.4 (2)H19A—C19—H19B109.5
C11—C6—C5121.3 (2)O3—C19—H19C109.5
C6—C7—C8121.1 (3)H19A—C19—H19C109.5
C6—C7—H7119.4H19B—C19—H19C109.5
C8—C7—H7119.4C4—C20—H20A109.5
C9—C8—O3124.5 (3)C4—C20—H20B109.5
C9—C8—C7120.7 (3)H20A—C20—H20B109.5
O3—C8—C7114.8 (2)C4—C20—H20C109.5
C8—C9—C10118.2 (3)H20A—C20—H20C109.5
C8—C9—H9120.9H20B—C20—H20C109.5
C5—N1—C1—C12176.5 (2)C6—C7—C8—C91.5 (4)
C5—N1—C1—C261.0 (3)C6—C7—C8—O3178.7 (2)
N1—C1—C2—C348.7 (3)O3—C8—C9—C10178.6 (3)
C12—C1—C2—C3171.8 (2)C7—C8—C9—C101.6 (4)
C1—C2—C3—O1134.6 (3)C8—C9—C10—C111.0 (5)
C1—C2—C3—C445.8 (4)C9—C10—C11—C60.2 (5)
O1—C3—C4—C204.6 (4)C7—C6—C11—C100.1 (4)
C2—C3—C4—C20175.7 (3)C5—C6—C11—C10179.9 (3)
O1—C3—C4—C5131.9 (3)N1—C1—C12—C1326.1 (4)
C2—C3—C4—C548.5 (3)C2—C1—C12—C1395.1 (3)
C1—N1—C5—C6170.0 (2)N1—C1—C12—C17156.6 (3)
C1—N1—C5—C466.3 (3)C2—C1—C12—C1782.1 (3)
C20—C4—C5—N1177.2 (3)C17—C12—C13—C141.2 (4)
C3—C4—C5—N156.3 (3)C1—C12—C13—C14178.5 (3)
C20—C4—C5—C655.1 (3)C18—O2—C14—C156.7 (5)
C3—C4—C5—C6178.3 (2)C18—O2—C14—C13173.8 (3)
N1—C5—C6—C7124.1 (3)C12—C13—C14—C150.1 (5)
C4—C5—C6—C7114.6 (3)C12—C13—C14—O2179.5 (3)
N1—C5—C6—C1156.0 (3)O2—C14—C15—C16179.3 (3)
C4—C5—C6—C1165.4 (3)C13—C14—C15—C161.3 (5)
C11—C6—C7—C80.7 (4)C14—C15—C16—C171.2 (5)
C5—C6—C7—C8179.2 (2)C15—C16—C17—C120.0 (5)
C19—O3—C8—C93.2 (4)C13—C12—C17—C161.2 (4)
C19—O3—C8—C7177.0 (3)C1—C12—C17—C16178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O3i0.972.453.170 (4)131
C19—H19C···O1ii0.962.483.392 (4)159
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC20H23NO3
Mr325.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)290
a, b, c (Å)28.695 (3), 10.9717 (12), 11.3946 (13)
β (°) 95.078 (2)
V3)3573.3 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12581, 3148, 1751
Rint0.058
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.154, 1.04
No. of reflections3148
No. of parameters224
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

The authors thank the Department of Science and Technology, India, for use of the diffraction facility set up under the IRHPA–DST programme at IISc. FNK thanks the DST for Fast Track Proposal funding. The authors also thank VIT University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNithya, P., Hathwar, V. R., Kone, S., Malathi, N. & Khan, F. N. (2009). Acta Cryst. E65, o1692–o1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds