organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-chloro-2-oxo-4-phenyl-1,2-di­hydro­quinoline-3-carboxyl­ate

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 October 2009; accepted 29 October 2009; online 4 November 2009)

In the title compound, C18H14ClNO3, the dihydro­quinolin-2-one ring system is almost planar (r.m.s. deviation = 0.033 Å). The carboxyl­ate plane and the phenyl group are twisted away from the dihydro­quinolin-2-one ring system by 50.3 (1) and 64.9 (1)°, respectively. In the crystal structure, inversion-related mol­ecules form R22(8) dimers via pairs of N—H⋯O hydrogen bonds.

Related literature

For crystal structures of related compounds, see: Baumer et al. (2001[Baumer, V. N., Shishkin, O. V., Ukrainets, I. V., Taran, S. G. & Amin, J. N. (2001). Acta Cryst. E57, o254-o255.]); Subashini et al. (2009[Subashini, R., Hathwar, V. R., Manivel, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o370.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14ClNO3

  • Mr = 327.75

  • Monoclinic, P 21 /c

  • a = 10.176 (1) Å

  • b = 15.629 (2) Å

  • c = 11.282 (1) Å

  • β = 115.463 (1)°

  • V = 1619.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 290 K

  • 0.35 × 0.31 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.918, Tmax = 0.945

  • 13600 measured reflections

  • 3699 independent reflections

  • 2906 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.00

  • 3699 reflections

  • 213 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 (2) 1.89 (2) 2.763 (2) 178 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For crystal structures of related compounds, see: Baumer et al. (2001); Subashini et al. (2009).

Experimental top

(2-Amino-5-chlorophenyl)(phenyl)methanone (1 mmol) and diethyl malonate (1.2 mmol) along with a catalytic amount of piperidine were heated at 453 K; the reaction was monitored by TLC. After completion, the reaction mixture was poured into the water. The organic product was extracted with ethyl acetate. The crude product was then purified by silica-gel column chromatography, with petroleum ether and ethyl acetate as eluant. Single crystals were obtained by recrystallization from ethyl acetate.

Refinement top

C-bound H-atoms were placed in calculated positions (C-H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The amino H-atom was located in a difference Fourier map, and was freely refined without any restraint.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C18H14ClNO3 at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
Ethyl 6-chloro-2-oxo-4-phenyl-1,2-dihydroquinoline-3-carboxylate top
Crystal data top
C18H14ClNO3F(000) = 680
Mr = 327.75Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1123 reflections
a = 10.176 (1) Åθ = 2.9–20.7°
b = 15.629 (2) ŵ = 0.25 mm1
c = 11.282 (1) ÅT = 290 K
β = 115.463 (1)°Block, colourless
V = 1619.9 (3) Å30.35 × 0.31 × 0.23 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3699 independent reflections
Radiation source: fine-focus sealed tube2906 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.918, Tmax = 0.945k = 2019
13600 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.4015P]
where P = (Fo2 + 2Fc2)/3
3699 reflections(Δ/σ)max = 0.001
213 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H14ClNO3V = 1619.9 (3) Å3
Mr = 327.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.176 (1) ŵ = 0.25 mm1
b = 15.629 (2) ÅT = 290 K
c = 11.282 (1) Å0.35 × 0.31 × 0.23 mm
β = 115.463 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3699 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2906 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.945Rint = 0.022
13600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.23 e Å3
3699 reflectionsΔρmin = 0.20 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.54343 (6)0.02895 (3)0.68514 (6)0.0743 (2)
N10.46268 (16)0.38491 (9)0.50054 (15)0.0526 (4)
H10.527 (2)0.4235 (14)0.546 (2)0.066 (6)*
O10.33674 (13)0.49099 (7)0.36051 (13)0.0569 (3)
O20.13633 (14)0.40486 (9)0.08985 (13)0.0605 (4)
O30.00732 (12)0.38779 (8)0.20662 (11)0.0487 (3)
C10.35167 (17)0.41406 (10)0.38896 (17)0.0454 (4)
C20.25139 (17)0.34892 (10)0.30798 (15)0.0404 (3)
C30.26581 (16)0.26477 (10)0.34062 (15)0.0384 (3)
C40.38454 (16)0.23795 (10)0.46323 (16)0.0405 (4)
C50.40613 (18)0.15305 (11)0.50898 (16)0.0450 (4)
H50.34520.10980.45800.054*
C60.5166 (2)0.13411 (12)0.62836 (19)0.0530 (4)
C70.6110 (2)0.19671 (14)0.7067 (2)0.0648 (5)
H70.68530.18260.78800.078*
C80.5932 (2)0.27920 (13)0.6629 (2)0.0634 (5)
H80.65660.32130.71440.076*
C90.48116 (18)0.30096 (11)0.54190 (17)0.0465 (4)
C100.12728 (17)0.38317 (10)0.18746 (15)0.0411 (4)
C110.1227 (2)0.42135 (14)0.09932 (19)0.0620 (5)
H11A0.09610.46810.05730.074*
H11B0.18820.44370.13380.074*
C120.1985 (2)0.3536 (2)0.0004 (2)0.0894 (8)
H12A0.29070.37490.06250.134*
H12B0.21400.30440.04380.134*
H12C0.13980.33780.04370.134*
C130.15864 (17)0.20196 (10)0.25160 (15)0.0400 (3)
C140.1482 (2)0.18833 (13)0.12633 (19)0.0605 (5)
H140.21260.21560.10010.073*
C150.0423 (3)0.13422 (15)0.0401 (2)0.0782 (7)
H150.03580.12540.04380.094*
C160.0525 (3)0.09389 (13)0.0781 (2)0.0717 (6)
H160.12310.05740.02020.086*
C170.0437 (2)0.10699 (12)0.2011 (2)0.0619 (5)
H170.10870.07960.22640.074*
C180.06135 (19)0.16075 (11)0.28790 (17)0.0499 (4)
H180.06670.16930.37140.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0758 (4)0.0599 (3)0.0810 (4)0.0093 (2)0.0277 (3)0.0260 (3)
N10.0408 (8)0.0370 (8)0.0583 (9)0.0040 (6)0.0007 (7)0.0097 (7)
O10.0437 (7)0.0348 (6)0.0701 (8)0.0018 (5)0.0034 (6)0.0062 (6)
O20.0600 (8)0.0724 (9)0.0500 (7)0.0001 (7)0.0246 (6)0.0108 (6)
O30.0396 (6)0.0591 (7)0.0424 (6)0.0039 (5)0.0127 (5)0.0059 (5)
C10.0350 (8)0.0384 (9)0.0528 (9)0.0012 (6)0.0095 (7)0.0072 (7)
C20.0370 (8)0.0392 (8)0.0407 (8)0.0041 (6)0.0126 (7)0.0051 (6)
C30.0355 (8)0.0392 (8)0.0395 (8)0.0040 (6)0.0152 (7)0.0057 (6)
C40.0362 (8)0.0400 (8)0.0427 (8)0.0010 (6)0.0145 (7)0.0050 (7)
C50.0426 (9)0.0419 (9)0.0486 (9)0.0011 (7)0.0178 (7)0.0018 (7)
C60.0515 (10)0.0491 (10)0.0568 (10)0.0070 (8)0.0218 (9)0.0085 (8)
C70.0559 (11)0.0654 (13)0.0508 (10)0.0066 (9)0.0018 (9)0.0056 (9)
C80.0521 (11)0.0556 (11)0.0571 (11)0.0020 (9)0.0007 (9)0.0076 (9)
C90.0382 (8)0.0423 (9)0.0477 (9)0.0008 (7)0.0079 (7)0.0049 (7)
C100.0413 (8)0.0349 (8)0.0405 (8)0.0062 (6)0.0115 (7)0.0048 (6)
C110.0442 (10)0.0760 (14)0.0559 (11)0.0132 (9)0.0121 (9)0.0111 (10)
C120.0518 (13)0.133 (2)0.0645 (14)0.0043 (14)0.0072 (11)0.0217 (15)
C130.0406 (8)0.0347 (8)0.0398 (8)0.0046 (6)0.0127 (7)0.0029 (6)
C140.0770 (13)0.0589 (12)0.0531 (10)0.0188 (10)0.0352 (10)0.0146 (9)
C150.1034 (18)0.0738 (15)0.0521 (12)0.0204 (13)0.0283 (12)0.0255 (10)
C160.0731 (14)0.0518 (12)0.0663 (13)0.0210 (10)0.0073 (11)0.0175 (10)
C170.0506 (11)0.0514 (11)0.0736 (13)0.0162 (8)0.0171 (10)0.0005 (9)
C180.0511 (10)0.0508 (10)0.0450 (9)0.0105 (8)0.0181 (8)0.0008 (7)
Geometric parameters (Å, º) top
Cl1—C61.7424 (19)C8—C91.393 (2)
N1—C11.359 (2)C8—H80.93
N1—C91.378 (2)C11—C121.490 (3)
N1—H10.88 (2)C11—H11A0.97
O1—C11.237 (2)C11—H11B0.97
O2—C101.193 (2)C12—H12A0.96
O3—C101.330 (2)C12—H12B0.96
O3—C111.454 (2)C12—H12C0.96
C1—C21.453 (2)C13—C181.382 (2)
C2—C31.357 (2)C13—C141.388 (2)
C2—C101.501 (2)C14—C151.386 (3)
C3—C41.453 (2)C14—H140.93
C3—C131.490 (2)C15—C161.367 (3)
C4—C91.405 (2)C15—H150.93
C4—C51.406 (2)C16—C171.367 (3)
C5—C61.365 (2)C16—H160.93
C5—H50.93C17—C181.381 (3)
C6—C71.389 (3)C17—H170.93
C7—C81.365 (3)C18—H180.93
C7—H70.93
C1—N1—C9124.83 (14)O2—C10—C2124.65 (15)
C1—N1—H1115.4 (14)O3—C10—C2110.23 (13)
C9—N1—H1119.8 (14)O3—C11—C12111.10 (18)
C10—O3—C11117.05 (13)O3—C11—H11A109.4
O1—C1—N1121.80 (15)C12—C11—H11A109.4
O1—C1—C2122.91 (15)O3—C11—H11B109.4
N1—C1—C2115.28 (15)C12—C11—H11B109.4
C3—C2—C1122.95 (15)H11A—C11—H11B108.0
C3—C2—C10122.83 (14)C11—C12—H12A109.5
C1—C2—C10114.18 (14)C11—C12—H12B109.5
C2—C3—C4119.12 (14)H12A—C12—H12B109.5
C2—C3—C13119.56 (14)C11—C12—H12C109.5
C4—C3—C13121.31 (14)H12A—C12—H12C109.5
C9—C4—C5118.23 (15)H12B—C12—H12C109.5
C9—C4—C3117.95 (14)C18—C13—C14118.65 (15)
C5—C4—C3123.80 (14)C18—C13—C3121.14 (14)
C6—C5—C4119.94 (16)C14—C13—C3120.06 (14)
C6—C5—H5120.0C15—C14—C13120.29 (18)
C4—C5—H5120.0C15—C14—H14119.9
C5—C6—C7121.72 (17)C13—C14—H14119.9
C5—C6—Cl1119.97 (15)C16—C15—C14120.11 (19)
C7—C6—Cl1118.31 (15)C16—C15—H15119.9
C8—C7—C6119.16 (18)C14—C15—H15119.9
C8—C7—H7120.4C15—C16—C17120.18 (18)
C6—C7—H7120.4C15—C16—H16119.9
C7—C8—C9120.70 (18)C17—C16—H16119.9
C7—C8—H8119.6C16—C17—C18120.24 (19)
C9—C8—H8119.6C16—C17—H17119.9
N1—C9—C8119.95 (16)C18—C17—H17119.9
N1—C9—C4119.80 (15)C17—C18—C13120.53 (17)
C8—C9—C4120.24 (16)C17—C18—H18119.7
O2—C10—O3125.10 (15)C13—C18—H18119.7
C9—N1—C1—O1176.16 (17)C7—C8—C9—C40.1 (3)
C9—N1—C1—C22.6 (3)C5—C4—C9—N1179.57 (16)
O1—C1—C2—C3178.45 (16)C3—C4—C9—N11.1 (2)
N1—C1—C2—C30.3 (2)C5—C4—C9—C81.2 (3)
O1—C1—C2—C100.6 (2)C3—C4—C9—C8177.35 (16)
N1—C1—C2—C10178.23 (15)C11—O3—C10—O20.5 (2)
C1—C2—C3—C41.4 (2)C11—O3—C10—C2178.93 (14)
C10—C2—C3—C4176.30 (14)C3—C2—C10—O2104.7 (2)
C1—C2—C3—C13179.62 (14)C1—C2—C10—O277.4 (2)
C10—C2—C3—C132.7 (2)C3—C2—C10—O376.87 (19)
C2—C3—C4—C91.0 (2)C1—C2—C10—O3101.02 (16)
C13—C3—C4—C9179.99 (14)C10—O3—C11—C1282.5 (2)
C2—C3—C4—C5177.38 (15)C2—C3—C13—C18111.20 (19)
C13—C3—C4—C51.6 (2)C4—C3—C13—C1867.7 (2)
C9—C4—C5—C61.5 (2)C2—C3—C13—C1464.3 (2)
C3—C4—C5—C6176.91 (15)C4—C3—C13—C14116.78 (19)
C4—C5—C6—C70.8 (3)C18—C13—C14—C150.2 (3)
C4—C5—C6—Cl1179.98 (13)C3—C13—C14—C15175.75 (19)
C5—C6—C7—C80.4 (3)C13—C14—C15—C160.1 (4)
Cl1—C6—C7—C8178.89 (17)C14—C15—C16—C170.3 (4)
C6—C7—C8—C90.7 (3)C15—C16—C17—C180.3 (4)
C1—N1—C9—C8175.35 (18)C16—C17—C18—C130.1 (3)
C1—N1—C9—C43.1 (3)C14—C13—C18—C170.2 (3)
C7—C8—C9—N1178.5 (2)C3—C13—C18—C17175.69 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)1.89 (2)2.763 (2)178 (2)
C11—H11A···O2ii0.972.513.420 (3)157
C17—H17···O1iii0.932.513.299 (3)143
C18—H18···O2iv0.932.533.317 (2)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H14ClNO3
Mr327.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)10.176 (1), 15.629 (2), 11.282 (1)
β (°) 115.463 (1)
V3)1619.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.35 × 0.31 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.918, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
13600, 3699, 2906
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.00
No. of reflections3699
No. of parameters213
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.88 (2)1.89 (2)2.763 (2)178 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Department of Science and Technology, India, for use of the diffraction facility set up under the IRHPA–DST programme at IISc. FNK thanks the DST for Fast Track Proposal funding. The authors also thank VIT University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBaumer, V. N., Shishkin, O. V., Ukrainets, I. V., Taran, S. G. & Amin, J. N. (2001). Acta Cryst. E57, o254–o255.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubashini, R., Hathwar, V. R., Manivel, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o370.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds