metal-organic compounds
Tetraguanidinium bis[citrato(3−)]cuprate(II) dihydrate
aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: nornisah@usm.my, hkfun@usm.my
The 6N3)4[Cu(C6H5O7)2]·2H2O, contains one-half of a centrosymmetric CuII complex anion, two guanidinium cations and a water molecule. The CuII ion, lying on a crystallographic inversion center, is hexacoordinated with two citrate anions in a distorted octahedral geometry. An intramolecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the molecules are linked into a three-dimensional framework by intermolecular N—H⋯O and O—H⋯O hydrogen bonds.
of the title compound, (CHRelated literature
For general background to citric acid and guanidine, see: Raczyńska et al. (2003); Yamada et al. (2009); Sigman et al. (1993). For a related structure with a guanidinium cation, see: Al-Dajani et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809046170/ci2960sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809046170/ci2960Isup2.hkl
Citric acid (anhydrous) (0.02 mol, 3.85 g) was dissolved in THF in a flat bottom flask with magnetic stirrer. In a separating funnel, guanidine carbonate (0.02 mol, 3.6 g), 99% [H2NC(NH)NH2].2H2CO3 was dissolved in THF. The guanidine solution was added in small portions to the flask of citric acid with stirring. The reaction mixture was refluxed for 1 h. After cooling the reaction mixture to room temperature, CuCl2 (0.01 mol, 1.45 g) was added with stirring for 3 h. Blue crystals formed were washed with N,N-dimethylformamide followed by methanol and dried at 353 K.
O-bound H atoms were located in a difference Fourier map and refined as riding on their parent atom, with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically [C–H = 0.97 Å and N–H = 0.86 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound with atom labels and 30% probability ellipsoids for non-H atoms. Molecules/atoms with suffix A are generated by the symmetry operation (1-x, 2-y, 1-z). Intramolecular hydrogen bonds are shown as dashed lines. | |
Fig. 2. The crystal packing of title compound, viewed down the a axis, showing hydrogen-bonded (dashed lines) three-dimensional framework. |
(CH6N3)4[Cu(C6H5O7)2]·2H2O | Z = 1 |
Mr = 718.12 | F(000) = 375 |
Triclinic, P1 | Dx = 1.508 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.0426 (1) Å | Cell parameters from 9680 reflections |
b = 9.7763 (2) Å | θ = 2.3–34.9° |
c = 10.3366 (2) Å | µ = 0.78 mm−1 |
α = 96.503 (1)° | T = 296 K |
β = 105.441 (1)° | Block, blue |
γ = 112.306 (1)° | 0.60 × 0.39 × 0.32 mm |
V = 791.01 (2) Å3 |
Bruker SMART APEXII CCD area-detector diffractometer | 7051 independent reflections |
Radiation source: fine-focus sealed tube | 6306 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ϕ and ω scans | θmax = 35.3°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −14→14 |
Tmin = 0.653, Tmax = 0.787 | k = −15→15 |
37237 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0533P)2 + 0.108P] where P = (Fo2 + 2Fc2)/3 |
7051 reflections | (Δ/σ)max < 0.001 |
206 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
(CH6N3)4[Cu(C6H5O7)2]·2H2O | γ = 112.306 (1)° |
Mr = 718.12 | V = 791.01 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.0426 (1) Å | Mo Kα radiation |
b = 9.7763 (2) Å | µ = 0.78 mm−1 |
c = 10.3366 (2) Å | T = 296 K |
α = 96.503 (1)° | 0.60 × 0.39 × 0.32 mm |
β = 105.441 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 7051 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 6306 reflections with I > 2σ(I) |
Tmin = 0.653, Tmax = 0.787 | Rint = 0.024 |
37237 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.44 e Å−3 |
7051 reflections | Δρmin = −0.49 e Å−3 |
206 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 1.0000 | 0.5000 | 0.02544 (5) | |
O1 | 0.66219 (12) | 0.89568 (10) | 0.55711 (9) | 0.04046 (18) | |
O2 | 0.55673 (11) | 1.02356 (8) | 0.33541 (8) | 0.03511 (15) | |
O3 | 0.32813 (9) | 0.77094 (8) | 0.36675 (7) | 0.02790 (12) | |
H1O3 | 0.2276 | 0.7661 | 0.3035 | 0.042* | |
O4 | 0.76260 (15) | 0.72314 (13) | 0.55564 (10) | 0.0536 (3) | |
O5 | 0.57936 (15) | 0.90234 (12) | 0.15326 (10) | 0.0506 (2) | |
O7 | 0.09687 (12) | 0.65390 (12) | −0.05629 (9) | 0.04401 (19) | |
O6 | 0.10222 (13) | 0.74648 (13) | 0.15156 (9) | 0.0480 (2) | |
C1 | 0.66253 (14) | 0.77440 (12) | 0.49850 (10) | 0.03244 (18) | |
C2 | 0.53925 (14) | 0.68374 (11) | 0.35373 (10) | 0.03180 (18) | |
H2A | 0.4699 | 0.5826 | 0.3601 | 0.038* | |
H2B | 0.6052 | 0.6721 | 0.2966 | 0.038* | |
C3 | 0.42059 (12) | 0.74833 (10) | 0.27880 (9) | 0.02586 (14) | |
C4 | 0.52711 (13) | 0.90199 (11) | 0.25150 (10) | 0.02936 (16) | |
C5 | 0.29501 (13) | 0.63732 (12) | 0.14090 (10) | 0.03315 (18) | |
H5A | 0.3568 | 0.6313 | 0.0784 | 0.040* | |
H5B | 0.2432 | 0.5367 | 0.1567 | 0.040* | |
C6 | 0.15557 (13) | 0.68329 (13) | 0.07232 (11) | 0.03335 (18) | |
N1 | 0.33925 (19) | 0.13097 (19) | 0.12541 (16) | 0.0627 (4) | |
H1N1 | 0.3944 | 0.1103 | 0.0759 | 0.075* | |
H2N1 | 0.3625 | 0.1237 | 0.2099 | 0.075* | |
N2 | 0.13528 (17) | 0.20918 (16) | 0.14703 (11) | 0.0503 (3) | |
H1N2 | 0.0587 | 0.2390 | 0.1118 | 0.060* | |
H2N2 | 0.1577 | 0.2022 | 0.2316 | 0.060* | |
N3 | 0.18333 (18) | 0.18500 (18) | −0.05808 (13) | 0.0548 (3) | |
H1N3 | 0.1067 | 0.2149 | −0.0929 | 0.066* | |
H2N3 | 0.2372 | 0.1622 | −0.1078 | 0.066* | |
C7 | 0.21821 (16) | 0.17412 (15) | 0.07130 (13) | 0.0409 (2) | |
N4 | 0.86185 (16) | 0.53693 (13) | 0.28012 (13) | 0.0475 (2) | |
H1N4 | 0.8743 | 0.6260 | 0.3163 | 0.057* | |
H2N4 | 0.8867 | 0.5223 | 0.2066 | 0.057* | |
N5 | 0.78586 (17) | 0.28597 (12) | 0.28065 (14) | 0.0506 (3) | |
H1N5 | 0.7486 | 0.2106 | 0.3171 | 0.061* | |
H2N5 | 0.8111 | 0.2727 | 0.2071 | 0.061* | |
N6 | 0.76591 (17) | 0.44356 (13) | 0.45058 (12) | 0.0469 (2) | |
H1N6 | 0.7286 | 0.3687 | 0.4875 | 0.056* | |
H2N6 | 0.7782 | 0.5324 | 0.4872 | 0.056* | |
C8 | 0.80435 (14) | 0.42221 (12) | 0.33777 (12) | 0.03575 (19) | |
O1W | 0.9973 (2) | 0.13741 (17) | 0.59833 (19) | 0.0955 (6) | |
H1W1 | 0.9976 | 0.1225 | 0.5223 | 0.143* | |
H2W1 | 0.8945 | 0.0656 | 0.5902 | 0.143* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03201 (8) | 0.02210 (7) | 0.02568 (7) | 0.01325 (6) | 0.01258 (6) | 0.00553 (5) |
O1 | 0.0452 (4) | 0.0371 (4) | 0.0360 (4) | 0.0230 (3) | 0.0056 (3) | −0.0025 (3) |
O2 | 0.0494 (4) | 0.0258 (3) | 0.0361 (3) | 0.0148 (3) | 0.0244 (3) | 0.0102 (3) |
O3 | 0.0326 (3) | 0.0312 (3) | 0.0270 (3) | 0.0169 (3) | 0.0150 (2) | 0.0095 (2) |
O4 | 0.0671 (6) | 0.0638 (6) | 0.0356 (4) | 0.0484 (5) | 0.0001 (4) | 0.0013 (4) |
O5 | 0.0680 (6) | 0.0506 (5) | 0.0475 (5) | 0.0245 (5) | 0.0415 (5) | 0.0142 (4) |
O7 | 0.0438 (4) | 0.0615 (5) | 0.0297 (3) | 0.0260 (4) | 0.0114 (3) | 0.0117 (3) |
O6 | 0.0495 (5) | 0.0745 (6) | 0.0368 (4) | 0.0434 (5) | 0.0156 (4) | 0.0118 (4) |
C1 | 0.0374 (5) | 0.0347 (4) | 0.0283 (4) | 0.0200 (4) | 0.0097 (3) | 0.0055 (3) |
C2 | 0.0381 (5) | 0.0299 (4) | 0.0298 (4) | 0.0209 (4) | 0.0075 (3) | 0.0030 (3) |
C3 | 0.0307 (4) | 0.0259 (3) | 0.0257 (3) | 0.0156 (3) | 0.0118 (3) | 0.0055 (3) |
C4 | 0.0349 (4) | 0.0310 (4) | 0.0297 (4) | 0.0173 (3) | 0.0166 (3) | 0.0097 (3) |
C5 | 0.0345 (4) | 0.0344 (4) | 0.0302 (4) | 0.0184 (4) | 0.0081 (3) | 0.0007 (3) |
C6 | 0.0317 (4) | 0.0402 (5) | 0.0306 (4) | 0.0168 (4) | 0.0118 (3) | 0.0095 (4) |
N1 | 0.0661 (8) | 0.0851 (10) | 0.0603 (7) | 0.0545 (8) | 0.0185 (6) | 0.0314 (7) |
N2 | 0.0583 (7) | 0.0732 (8) | 0.0362 (5) | 0.0412 (6) | 0.0187 (5) | 0.0210 (5) |
N3 | 0.0626 (7) | 0.0884 (9) | 0.0431 (5) | 0.0535 (7) | 0.0265 (5) | 0.0286 (6) |
C7 | 0.0425 (6) | 0.0463 (6) | 0.0403 (5) | 0.0248 (5) | 0.0127 (4) | 0.0160 (4) |
N4 | 0.0615 (7) | 0.0363 (5) | 0.0504 (6) | 0.0167 (5) | 0.0300 (5) | 0.0196 (4) |
N5 | 0.0674 (7) | 0.0337 (4) | 0.0606 (7) | 0.0170 (5) | 0.0423 (6) | 0.0136 (4) |
N6 | 0.0701 (7) | 0.0422 (5) | 0.0486 (6) | 0.0307 (5) | 0.0365 (5) | 0.0214 (4) |
C8 | 0.0382 (5) | 0.0329 (4) | 0.0413 (5) | 0.0146 (4) | 0.0197 (4) | 0.0144 (4) |
O1W | 0.0812 (9) | 0.0655 (8) | 0.1106 (12) | −0.0041 (7) | 0.0578 (9) | −0.0212 (8) |
Cu1—O2i | 1.9169 (7) | C5—H5B | 0.97 |
Cu1—O2 | 1.9169 (7) | N1—C7 | 1.3292 (16) |
Cu1—O1 | 2.0857 (8) | N1—H1N1 | 0.86 |
Cu1—O1i | 2.0857 (8) | N1—H2N1 | 0.86 |
Cu1—O3i | 2.2015 (7) | N2—C7 | 1.3189 (17) |
Cu1—O3 | 2.2016 (7) | N2—H1N2 | 0.86 |
O1—C1 | 1.2704 (12) | N2—H2N2 | 0.86 |
O2—C4 | 1.2798 (12) | N3—C7 | 1.3162 (16) |
O3—C3 | 1.4401 (11) | N3—H1N3 | 0.86 |
O3—H1O3 | 0.95 | N3—H2N3 | 0.86 |
O4—C1 | 1.2432 (13) | N4—C8 | 1.3255 (14) |
O5—C4 | 1.2286 (12) | N4—H1N4 | 0.86 |
O7—C6 | 1.2464 (13) | N4—H2N4 | 0.86 |
O6—C6 | 1.2678 (13) | N5—C8 | 1.3232 (15) |
C1—C2 | 1.5261 (14) | N5—H1N5 | 0.86 |
C2—C3 | 1.5273 (13) | N5—H2N5 | 0.86 |
C2—H2A | 0.97 | N6—C8 | 1.3191 (15) |
C2—H2B | 0.97 | N6—H1N6 | 0.86 |
C3—C5 | 1.5334 (13) | N6—H2N6 | 0.86 |
C3—C4 | 1.5513 (13) | O1W—H1W1 | 0.78 |
C5—C6 | 1.5234 (14) | O1W—H2W1 | 0.90 |
C5—H5A | 0.97 | ||
O2i—Cu1—O2 | 179.999 (1) | O5—C4—C3 | 119.72 (9) |
O2i—Cu1—O1 | 89.36 (4) | O2—C4—C3 | 116.95 (8) |
O2—Cu1—O1 | 90.64 (4) | C6—C5—C3 | 113.23 (8) |
O2i—Cu1—O1i | 90.64 (4) | C6—C5—H5A | 108.9 |
O2—Cu1—O1i | 89.36 (4) | C3—C5—H5A | 108.9 |
O1—Cu1—O1i | 180.00 (3) | C6—C5—H5B | 108.9 |
O2i—Cu1—O3i | 80.58 (3) | C3—C5—H5B | 108.9 |
O2—Cu1—O3i | 99.42 (3) | H5A—C5—H5B | 107.7 |
O1—Cu1—O3i | 97.62 (3) | O7—C6—O6 | 123.57 (10) |
O1i—Cu1—O3i | 82.38 (3) | O7—C6—C5 | 119.46 (10) |
O2i—Cu1—O3 | 99.42 (3) | O6—C6—C5 | 116.94 (9) |
O2—Cu1—O3 | 80.58 (3) | C7—N1—H1N1 | 120.0 |
O1—Cu1—O3 | 82.38 (3) | C7—N1—H2N1 | 120.0 |
O1i—Cu1—O3 | 97.62 (3) | H1N1—N1—H2N1 | 120.0 |
O3i—Cu1—O3 | 180.0 | C7—N2—H1N2 | 120.0 |
C1—O1—Cu1 | 131.70 (7) | C7—N2—H2N2 | 120.0 |
C4—O2—Cu1 | 116.90 (6) | H1N2—N2—H2N2 | 120.0 |
C3—O3—Cu1 | 102.63 (5) | C7—N3—H1N3 | 120.0 |
C3—O3—H1O3 | 103.2 | C7—N3—H2N3 | 120.0 |
Cu1—O3—H1O3 | 113.8 | H1N3—N3—H2N3 | 120.0 |
O4—C1—O1 | 122.02 (10) | N3—C7—N2 | 119.75 (11) |
O4—C1—C2 | 116.47 (9) | N3—C7—N1 | 119.69 (13) |
O1—C1—C2 | 121.51 (9) | N2—C7—N1 | 120.54 (12) |
C1—C2—C3 | 117.43 (7) | C8—N4—H1N4 | 120.0 |
C1—C2—H2A | 107.9 | C8—N4—H2N4 | 120.0 |
C3—C2—H2A | 107.9 | H1N4—N4—H2N4 | 120.0 |
C1—C2—H2B | 107.9 | C8—N5—H1N5 | 120.0 |
C3—C2—H2B | 107.9 | C8—N5—H2N5 | 120.0 |
H2A—C2—H2B | 107.2 | H1N5—N5—H2N5 | 120.0 |
O3—C3—C2 | 107.59 (7) | C8—N6—H1N6 | 120.0 |
O3—C3—C5 | 109.31 (8) | C8—N6—H2N6 | 120.0 |
C2—C3—C5 | 110.83 (7) | H1N6—N6—H2N6 | 120.0 |
O3—C3—C4 | 110.36 (7) | N6—C8—N5 | 120.42 (10) |
C2—C3—C4 | 109.34 (8) | N6—C8—N4 | 120.42 (11) |
C5—C3—C4 | 109.39 (8) | N5—C8—N4 | 119.15 (11) |
O5—C4—O2 | 123.33 (10) | H1W1—O1W—H2W1 | 101.6 |
O2i—Cu1—O1—C1 | 118.93 (11) | Cu1—O3—C3—C4 | −32.73 (8) |
O2—Cu1—O1—C1 | −61.07 (11) | C1—C2—C3—O3 | −55.52 (11) |
O3i—Cu1—O1—C1 | −160.66 (11) | C1—C2—C3—C5 | −174.99 (9) |
O3—Cu1—O1—C1 | 19.33 (11) | C1—C2—C3—C4 | 64.35 (11) |
O1—Cu1—O2—C4 | 58.64 (8) | Cu1—O2—C4—O5 | −169.11 (10) |
O1i—Cu1—O2—C4 | −121.36 (8) | Cu1—O2—C4—C3 | 10.43 (12) |
O3i—Cu1—O2—C4 | 156.47 (8) | O3—C3—C4—O5 | −161.50 (10) |
O3—Cu1—O2—C4 | −23.53 (8) | C2—C3—C4—O5 | 80.34 (12) |
O2i—Cu1—O3—C3 | −149.08 (5) | C5—C3—C4—O5 | −41.19 (13) |
O2—Cu1—O3—C3 | 30.92 (5) | O3—C3—C4—O2 | 18.95 (12) |
O1—Cu1—O3—C3 | −61.01 (5) | C2—C3—C4—O2 | −99.21 (10) |
O1i—Cu1—O3—C3 | 118.99 (5) | C5—C3—C4—O2 | 139.26 (9) |
Cu1—O1—C1—O4 | −173.35 (10) | O3—C3—C5—C6 | 52.33 (11) |
Cu1—O1—C1—C2 | 6.55 (17) | C2—C3—C5—C6 | 170.76 (9) |
O4—C1—C2—C3 | −177.27 (11) | C4—C3—C5—C6 | −68.62 (10) |
O1—C1—C2—C3 | 2.83 (16) | C3—C5—C6—O7 | 147.04 (11) |
Cu1—O3—C3—C2 | 86.49 (7) | C3—C5—C6—O6 | −34.97 (14) |
Cu1—O3—C3—C5 | −153.08 (6) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O6 | 0.95 | 1.61 | 2.5034 (13) | 154 |
N1—H1N1···O5ii | 0.86 | 2.44 | 3.169 (2) | 143 |
N1—H2N1···O2iii | 0.86 | 2.47 | 3.0810 (19) | 129 |
N1—H2N1···O1iv | 0.86 | 2.50 | 3.3243 (18) | 161 |
N2—H1N2···O7v | 0.86 | 2.06 | 2.906 (2) | 169 |
N2—H2N2···O4iv | 0.86 | 2.07 | 2.8811 (14) | 157 |
N3—H1N3···O6v | 0.86 | 2.02 | 2.860 (2) | 167 |
N3—H2N3···O5ii | 0.86 | 2.12 | 2.937 (2) | 157 |
N4—H1N4···O1Wvi | 0.86 | 2.10 | 2.916 (2) | 157 |
N4—H2N4···O6vii | 0.86 | 2.56 | 3.0760 (18) | 119 |
N4—H2N4···O7ii | 0.86 | 2.26 | 2.9973 (17) | 144 |
N5—H1N5···O2iii | 0.86 | 2.06 | 2.8484 (15) | 152 |
N5—H2N5···O7ii | 0.86 | 2.03 | 2.8273 (17) | 153 |
N6—H1N6···O3iv | 0.86 | 2.18 | 3.0140 (14) | 164 |
N6—H2N6···O4 | 0.86 | 1.99 | 2.8387 (18) | 170 |
O1W—H1W1···O4vi | 0.78 | 2.52 | 3.032 (2) | 124 |
O1W—H2W1···O1iii | 0.90 | 2.03 | 2.932 (2) | 175 |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z; (vi) −x+2, −y+1, −z+1; (vii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | (CH6N3)4[Cu(C6H5O7)2]·2H2O |
Mr | 718.12 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 9.0426 (1), 9.7763 (2), 10.3366 (2) |
α, β, γ (°) | 96.503 (1), 105.441 (1), 112.306 (1) |
V (Å3) | 791.01 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.78 |
Crystal size (mm) | 0.60 × 0.39 × 0.32 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.653, 0.787 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 37237, 7051, 6306 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.812 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.094, 1.05 |
No. of reflections | 7051 |
No. of parameters | 206 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.49 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008 and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1O3···O6 | 0.95 | 1.61 | 2.5034 (13) | 154 |
N1—H1N1···O5i | 0.86 | 2.44 | 3.169 (2) | 143 |
N1—H2N1···O2ii | 0.86 | 2.47 | 3.0810 (19) | 129 |
N1—H2N1···O1iii | 0.86 | 2.50 | 3.3243 (18) | 161 |
N2—H1N2···O7iv | 0.86 | 2.06 | 2.906 (2) | 169 |
N2—H2N2···O4iii | 0.86 | 2.07 | 2.8811 (14) | 157 |
N3—H1N3···O6iv | 0.86 | 2.02 | 2.860 (2) | 167 |
N3—H2N3···O5i | 0.86 | 2.12 | 2.937 (2) | 157 |
N4—H1N4···O1Wv | 0.86 | 2.10 | 2.916 (2) | 157 |
N4—H2N4···O6vi | 0.86 | 2.56 | 3.0760 (18) | 119 |
N4—H2N4···O7i | 0.86 | 2.26 | 2.9973 (17) | 144 |
N5—H1N5···O2ii | 0.86 | 2.06 | 2.8484 (15) | 152 |
N5—H2N5···O7i | 0.86 | 2.03 | 2.8273 (17) | 153 |
N6—H1N6···O3iii | 0.86 | 2.18 | 3.0140 (14) | 164 |
N6—H2N6···O4 | 0.86 | 1.99 | 2.8387 (18) | 170 |
O1W—H1W1···O4v | 0.78 | 2.52 | 3.032 (2) | 124 |
O1W—H2W1···O1ii | 0.90 | 2.03 | 2.932 (2) | 175 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y−1, z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z; (v) −x+2, −y+1, −z+1; (vi) x+1, y, z. |
Acknowledgements
NM gratefully acknowledges funding from Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PFARMASI/815025). HKF thanks USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks USM for the award of a USM Fellowship.
References
Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2508–o2509. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Raczyńska, E. D., Cyrański, M. K., Gutowski, M., Rak, J., Gal, J.-F., Maria, P.-C., Darowska, M. & Duczmal, K. (2003). J. Phys. Org. Chem. 16, 91–106. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sigman, D. S., Mazumder, A. & Perrin, D. M. (1993). Chem. Rev. 93, 2295–2316. CrossRef CAS Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamada, T., Liu, X., Englert, U., Darowska, M. & Duczmal, K. (2009). Chem. Eur. J. 15, 5651–5655. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid contains three carboxyl groups. It is an intermediate in the citric acid cycle in living organisms. It can be added to the food and soft drinks to add a sour or an acidic taste. Guanidine can be formed by the oxidation of guanine as a final product of the protein metabolism. The copper(II) ion in this crystal is coordinated to two citrate ions by the oxygen atoms and the four guanidinium ions neutralize the complex charge (Raczyńska et al., 2003; Yamada et al., 2009; Sigman et al., 1993).
The asymmetric unit of title compound contains half of a CuII complex anion, two guanidinium cations and a water solvent molecule, the other half is symmetry generated [symmetry code: -x + 1, -y + 2, -z + 1] (Fig. 1). The CuII ion lies on a crystallographic inversion center and is coordinated to six O atoms from two citrate anions to form an octahedral geometry. Four protons are deprotonated from two citric acid molecules to four guanidine molecules resulting in the formation of ions. The geometrical parameters of guanidinium cations agree with those previously reported (Al-Dajani et al., 2009). An intramolecular O3—H1O3···O6 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995).
In crystal structure (Fig. 2), all guanidinium N–H groups participate in the formation of a three-dimensional framework through N—H···O hydrogen bonds (Table 2). The structure are also stabilized by intermolecular O1W—H1W1···O4 and O1W—H2W1···O1 hydrogen bonds.