organic compounds
3,3,6,6-Tetrakis(hydroxymethyl)-1,2,4,5-tetrazinane tetrahydrate
aDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand, bDepartment of Physics, Faculty of Science and Technology, Thammasart University, Pathum Thani 12121, Thailand, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my
In the title compound, C6H16N4O4·4H2O, the tetrazinane molecule lies across an inversion centre. The tetrazinane ring adopts a chair conformation, and all imino H atoms occupy axial positions. In the crystal, adjacent molecules are linked through O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds with water molecules generating a three-dimensional network.
Related literature
For the synthesis of hexahydro-1,2,4,5-tetrazine derivatives by condensing ). For the synthesis of the 3,6-dimethyl homolog, see: Sun et al. (2003); Zhou et al. (1999).
with hydrazine, see: Skorianetz & Kovats (1970Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809045590/ci2961sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809045590/ci2961Isup2.hkl
Dihydroxyacetone (0.90 g, 10 mmol) and hydrazine hydrate (0.49 ml, 10 mmol) in ethanol (50 ml) were heated for 12 h. Slow evaporation of the solvent gave colourless crystals in 80% yield. The formulation of the organic molecule was established by 1H and 13C NMR as well as by mass spectroscopies.
The amino and water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N-H = O-H = 0.85 (1) Å; their Uiso parameters were freely refined. Carbon-bound H-atoms were placed in calculated positions (C-H = 0.97 Å) and were included in the
in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). The highest peak and the deepest hole are located 0.73 and 0.58 Å from O1W. Although the displacement parameters of atom O1W are relatively large, no disorder is expected as its H-atoms could be located and refined.Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of C6H16N4O4.4H2O at the 50% probability level. H atoms are drawn as spheres of arbitrary radius. Unlabelled atoms in the tetrazinane derivative are related to labelled atoms by the symmetry operation (1-x, -y, 2-z). Two symmetry related water molecules are not shown. |
C6H16N4O4·4H2O | Z = 1 |
Mr = 280.29 | F(000) = 152 |
Triclinic, P1 | Dx = 1.371 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.3067 (1) Å | Cell parameters from 6318 reflections |
b = 7.0317 (2) Å | θ = 3.1–40.2° |
c = 8.4015 (2) Å | µ = 0.12 mm−1 |
α = 71.010 (1)° | T = 296 K |
β = 74.424 (1)° | Cube, colourless |
γ = 85.055 (1)° | 0.40 × 0.40 × 0.40 mm |
V = 339.36 (1) Å3 |
Bruker SMART APEXII diffractometer | 3630 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.018 |
Graphite monochromator | θmax = 40.2°, θmin = 3.1° |
ϕ and ω scans | h = −11→11 |
10198 measured reflections | k = −12→12 |
4231 independent reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.137 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0853P)2 + 0.0377P] where P = (Fo2 + 2Fc2)/3 |
4231 reflections | (Δ/σ)max = 0.001 |
114 parameters | Δρmax = 0.93 e Å−3 |
8 restraints | Δρmin = −0.63 e Å−3 |
C6H16N4O4·4H2O | γ = 85.055 (1)° |
Mr = 280.29 | V = 339.36 (1) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.3067 (1) Å | Mo Kα radiation |
b = 7.0317 (2) Å | µ = 0.12 mm−1 |
c = 8.4015 (2) Å | T = 296 K |
α = 71.010 (1)° | 0.40 × 0.40 × 0.40 mm |
β = 74.424 (1)° |
Bruker SMART APEXII diffractometer | 3630 reflections with I > 2σ(I) |
10198 measured reflections | Rint = 0.018 |
4231 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 8 restraints |
wR(F2) = 0.137 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.93 e Å−3 |
4231 reflections | Δρmin = −0.63 e Å−3 |
114 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.62982 (10) | 0.32676 (8) | 0.59353 (6) | 0.03101 (11) | |
O2 | 0.12442 (8) | −0.12559 (9) | 0.85708 (8) | 0.03186 (11) | |
O1W | 0.74166 (12) | 0.53141 (12) | 0.78141 (13) | 0.0496 (2) | |
O2W | 0.81111 (10) | 0.46492 (8) | 0.23874 (7) | 0.03194 (11) | |
N1 | 0.35398 (7) | 0.15628 (7) | 0.93656 (6) | 0.01863 (8) | |
N2 | 0.53643 (7) | −0.16882 (6) | 0.93673 (6) | 0.01882 (8) | |
C3 | 0.30946 (11) | −0.01190 (10) | 0.73791 (8) | 0.02651 (11) | |
H3A | 0.2599 | 0.1154 | 0.6697 | 0.032* | |
H3B | 0.3856 | −0.0844 | 0.6586 | 0.032* | |
C1 | 0.67667 (9) | 0.13379 (9) | 0.69956 (7) | 0.02297 (10) | |
H1A | 0.7819 | 0.1472 | 0.7609 | 0.028* | |
H1B | 0.7435 | 0.0517 | 0.6262 | 0.028* | |
C2 | 0.46871 (8) | 0.02767 (7) | 0.83271 (6) | 0.01806 (9) | |
H1O | 0.661 (3) | 0.409 (2) | 0.640 (2) | 0.051 (4)* | |
H2O | 0.140 (3) | −0.2396 (16) | 0.839 (2) | 0.052 (4)* | |
H1W1 | 0.8827 (15) | 0.535 (3) | 0.765 (2) | 0.057 (4)* | |
H1W2 | 0.688 (3) | 0.6353 (19) | 0.810 (2) | 0.055 (4)* | |
H2W1 | 0.753 (2) | 0.430 (2) | 0.3464 (12) | 0.053 (4)* | |
H2W2 | 0.754 (3) | 0.5766 (18) | 0.198 (3) | 0.069 (5)* | |
H1N | 0.2237 (14) | 0.1097 (17) | 0.9941 (14) | 0.026 (2)* | |
H2N | 0.4192 (16) | −0.2420 (16) | 0.9932 (15) | 0.027 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0395 (3) | 0.0239 (2) | 0.02234 (19) | −0.00194 (17) | −0.00506 (17) | 0.00069 (15) |
O2 | 0.02304 (19) | 0.0353 (2) | 0.0423 (3) | −0.00251 (16) | −0.00474 (17) | −0.0211 (2) |
O1W | 0.0348 (3) | 0.0488 (4) | 0.0794 (6) | 0.0026 (3) | −0.0098 (3) | −0.0437 (4) |
O2W | 0.0353 (2) | 0.0254 (2) | 0.0306 (2) | 0.00639 (17) | −0.00462 (18) | −0.00747 (17) |
N1 | 0.01946 (16) | 0.01761 (16) | 0.01842 (16) | 0.00258 (12) | −0.00506 (12) | −0.00561 (12) |
N2 | 0.02248 (17) | 0.01557 (15) | 0.01876 (16) | 0.00090 (12) | −0.00525 (12) | −0.00611 (12) |
C3 | 0.0297 (2) | 0.0293 (3) | 0.0242 (2) | −0.00180 (19) | −0.01135 (18) | −0.00917 (19) |
C1 | 0.0244 (2) | 0.0221 (2) | 0.01861 (18) | −0.00032 (16) | −0.00180 (15) | −0.00427 (15) |
C2 | 0.02086 (18) | 0.01704 (17) | 0.01609 (16) | 0.00065 (13) | −0.00472 (13) | −0.00510 (13) |
O1—C1 | 1.4169 (7) | N1—H1N | 0.86 (1) |
O1—H1O | 0.851 (9) | N2—N1i | 1.4441 (6) |
O2—C3 | 1.4198 (9) | N2—C2 | 1.4724 (6) |
O2—H2O | 0.86 (1) | N2—H2N | 0.87 (1) |
O1W—H1W1 | 0.86 (1) | C3—C2 | 1.5305 (8) |
O1W—H1W2 | 0.86 (1) | C3—H3A | 0.97 |
O2W—H2W1 | 0.84 (1) | C3—H3B | 0.97 |
O2W—H2W2 | 0.84 (1) | C1—C2 | 1.5382 (7) |
N1—N2i | 1.4441 (6) | C1—H1A | 0.97 |
N1—C2 | 1.4712 (7) | C1—H1B | 0.97 |
C1—O1—H1O | 105.1 (11) | C2—C3—H3B | 109.4 |
C3—O2—H2O | 104.1 (11) | H3A—C3—H3B | 108.0 |
H1W1—O1W—H1W2 | 107.6 (16) | O1—C1—C2 | 112.12 (5) |
H2W1—O2W—H2W2 | 105.0 (18) | O1—C1—H1A | 109.2 |
N2i—N1—C2 | 113.59 (4) | C2—C1—H1A | 109.2 |
N2i—N1—H1N | 106.4 (8) | O1—C1—H1B | 109.2 |
C2—N1—H1N | 110.2 (8) | C2—C1—H1B | 109.2 |
N1i—N2—C2 | 113.72 (4) | H1A—C1—H1B | 107.9 |
N1i—N2—H2N | 107.4 (8) | N1—C2—N2 | 114.01 (4) |
C2—N2—H2N | 108.2 (8) | N1—C2—C3 | 107.44 (4) |
O2—C3—C2 | 111.33 (5) | N2—C2—C3 | 107.54 (4) |
O2—C3—H3A | 109.4 | N1—C2—C1 | 110.36 (4) |
C2—C3—H3A | 109.4 | N2—C2—C1 | 107.54 (4) |
O2—C3—H3B | 109.4 | C3—C2—C1 | 109.89 (4) |
N2i—N1—C2—N2 | 47.54 (6) | O2—C3—C2—N1 | −65.11 (6) |
N2i—N1—C2—C3 | 166.60 (4) | O2—C3—C2—N2 | 58.02 (6) |
N2i—N1—C2—C1 | −73.60 (5) | O2—C3—C2—C1 | 174.80 (5) |
N1i—N2—C2—N1 | −47.60 (6) | O1—C1—C2—N1 | −54.32 (6) |
N1i—N2—C2—C3 | −166.60 (4) | O1—C1—C2—N2 | −179.24 (4) |
N1i—N2—C2—C1 | 75.09 (5) | O1—C1—C2—C3 | 63.98 (6) |
Symmetry code: (i) −x+1, −y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O1W | 0.85 (1) | 1.87 (1) | 2.704 (1) | 166 (2) |
O2—H2O···O2Wii | 0.86 (1) | 1.87 (1) | 2.723 (1) | 171 (2) |
N1—H1N···O2iii | 0.86 (1) | 2.23 (1) | 3.036 (1) | 155 (1) |
N2—H2N···O1Wi | 0.87 (1) | 2.36 (1) | 3.130 (1) | 148 (1) |
O1W—H1W1···O2Wiv | 0.86 (1) | 1.92 (1) | 2.782 (1) | 172 (2) |
O1W—H1W2···N2v | 0.86 (1) | 2.03 (1) | 2.869 (1) | 166 (2) |
O2W—H2W1···O1 | 0.84 (1) | 1.92 (1) | 2.759 (1) | 175 (2) |
O2W—H2W2···N1vi | 0.84 (1) | 2.02 (1) | 2.853 (1) | 171 (2) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y, −z+1; (iii) −x, −y, −z+2; (iv) −x+2, −y+1, −z+1; (v) x, y+1, z; (vi) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C6H16N4O4·4H2O |
Mr | 280.29 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 6.3067 (1), 7.0317 (2), 8.4015 (2) |
α, β, γ (°) | 71.010 (1), 74.424 (1), 85.055 (1) |
V (Å3) | 339.36 (1) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.40 × 0.40 × 0.40 |
Data collection | |
Diffractometer | Bruker SMART APEXII diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10198, 4231, 3630 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.908 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.137, 1.01 |
No. of reflections | 4231 |
No. of parameters | 114 |
No. of restraints | 8 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.93, −0.63 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O1W | 0.85 (1) | 1.87 (1) | 2.704 (1) | 166 (2) |
O2—H2O···O2Wi | 0.86 (1) | 1.87 (1) | 2.723 (1) | 171 (2) |
N1—H1N···O2ii | 0.86 (1) | 2.23 (1) | 3.036 (1) | 155 (1) |
N2—H2N···O1Wiii | 0.87 (1) | 2.36 (1) | 3.130 (1) | 148 (1) |
O1W—H1W1···O2Wiv | 0.86 (1) | 1.92 (1) | 2.782 (1) | 172 (2) |
O1W—H1W2···N2v | 0.86 (1) | 2.03 (1) | 2.869 (1) | 166 (2) |
O2W—H2W1···O1 | 0.84 (1) | 1.92 (1) | 2.759 (1) | 175 (2) |
O2W—H2W2···N1vi | 0.84 (1) | 2.02 (1) | 2.853 (1) | 171 (2) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+2; (iii) −x+1, −y, −z+2; (iv) −x+2, −y+1, −z+1; (v) x, y+1, z; (vi) −x+1, −y+1, −z+1. |
Acknowledgements
The authors acknowledge support from Chulalongkorn University and the Center of Excellence for Petroleum, Petrochemicals and Advanced Materials of Thailand.
References
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Skorianetz, W. & Kovats, E. Sz. (1970). Helv. Chim. Acta, 53, 251–262. CrossRef CAS Web of Science Google Scholar
Sun, Y.-Q., Hu, W.-X. & Yuan, Q. (2003). Synth. Commun. 33, 2769–2775. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
Zhou, M., Cai, Z.-B., Yang, Z.-Y. & Hu, W.-X. (1999). Jingxi Huagong, 16, 1–4. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.