metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(Z)-N-(3-Chloro­phen­yl)-O-ethyl­thio­carbamato-κS](tri­phenyl­phosphine-κP)gold(I)

aDepartment of Chemistry, National University of Singapore, Singapore 117543, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 17 November 2009; accepted 19 November 2009; online 25 November 2009)

The title compound, [Au(C9H9ClNOS)(C18H15P)], reveals a near linear geometry for the Au atom defined by a S,P-donor set [S—Au—P = 175.86 (3)°]. The deviation from linearity is ascribed to the proximate O atom derived from the thio­carbamato anion [Au⋯O = 2.967 (3) Å].

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006[Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165-8174.]); Ho & Tiekink (2007[Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368-378.]); Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For the synthesis, see: Hall et al. (1993[Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561-570.]).

[Scheme 1]

Experimental

Crystal data
  • [Au(C9H9ClNOS)(C18H15P)]

  • Mr = 673.92

  • Triclinic, [P \overline 1]

  • a = 8.7561 (4) Å

  • b = 12.3514 (6) Å

  • c = 13.0432 (6) Å

  • α = 110.076 (1)°

  • β = 105.289 (1)°

  • γ = 97.481 (1)°

  • V = 1239.52 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.21 mm−1

  • T = 223 K

  • 0.11 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.620, Tmax = 1

  • 10396 measured reflections

  • 5662 independent reflections

  • 5184 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.03

  • 5662 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 1.79 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Systematic studies of phosphinegold(I) thiocarbamides (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), have been motivated by delineating crystal packing characteristics of these compounds, e.g. the propensity to form aurophilic (Au···Au) interactions, as well as examining their luminescence characteristics. The title compound, (C5H5)3PAu[SC(OEt)N(C6H4Cl-o)], was synthesized during the course of these studies.

The thiocarbamato anion functions as a thiolate ligand as seen in the magnitudes of the C1—S1 and C1N1 bond distances of 1.759 (4) and 1.265 (4) Å, respectively; the conformation about the C1N1 double bond is Z. The central SC(O)N chromophore is planar as seen in the S1–C1–N1–C2 and O1–C1–N1–C2 torsion angles of 2.0 (5) and -179.7 (3) °, respectively. The N-bound aryl ring is twisted out of this plane as seen in the C1–N1–C2–C3 torsion angle of 60.1 (5)°. The thiocarbamato and phosphine ligands define a S,P donor set. The deviation of the S1—Au—P1 angle [175.86 (3)°] from linearity is ascribed to the close approach of the O1 atom [2.967 (3) Å] to Au.

The crystal structure is dominated by π···π and C—H···π interactions. Centrosymmetrically related C16–C21 rings form π···π contacts: the Cg···Cgi distance is 3.534 (2) Å; symmetry code (i) 1 - x, -y, -z. Two short C—H···π contacts are also noted, viz. C7—H7···Cg(C22—C27)ii = 2.77 Å, C7···Cg(C22—C27)ii = 3.630 (5) Å with an angle at H7 = 152 °; and C26—H26···Cg(C10—C15)iii = 2.68 Å, C26···Cg(C10—C15)iii = 3.560 (4) Å with an angle at H26 = 156 °; symmetry codes (ii) -x, 1 - y, -z; (iii) -x, -y, -1 - z.

Related literature top

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothioates, see: Ho et al. (2006); Ho & Tiekink (2007); Kuan et al. (2008). For the synthesis, see: Hall et al. (1993).

Experimental top

The title compound was prepared following the standard literature procedure from the reaction of Ph3AuCl and EtOC(S)N(H)(C6H4Cl-o) in the presence of base (Hall et al., 1993).

Refinement top

The H atoms were geometrically placed (C-H = 0.94–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). A rotating group model was used for the methyl group. The maximum and minimum residual electron density peaks of 1.79 and 0.51 e Å-3, respectively, were located 0.85 Å and 1.44 Å from the Au atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[(Z)-N-(3-Chlorophenyl)-O-ethylthiocarbamato- κS](triphenylphosphine-κP)gold(I) top
Crystal data top
[Au(C9H9ClNOS)(C18H15P)]Z = 2
Mr = 673.92F(000) = 656
Triclinic, P1Dx = 1.806 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.7561 (4) ÅCell parameters from 5349 reflections
b = 12.3514 (6) Åθ = 2.5–29.7°
c = 13.0432 (6) ŵ = 6.21 mm1
α = 110.076 (1)°T = 223 K
β = 105.289 (1)°Block, colourless
γ = 97.481 (1)°0.11 × 0.10 × 0.05 mm
V = 1239.52 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5662 independent reflections
Radiation source: fine-focus sealed tube5184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.620, Tmax = 1k = 1416
10396 measured reflectionsl = 1612
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0376P)2]
where P = (Fo2 + 2Fc2)/3
5662 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 1.79 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Au(C9H9ClNOS)(C18H15P)]γ = 97.481 (1)°
Mr = 673.92V = 1239.52 (10) Å3
Triclinic, P1Z = 2
a = 8.7561 (4) ÅMo Kα radiation
b = 12.3514 (6) ŵ = 6.21 mm1
c = 13.0432 (6) ÅT = 223 K
α = 110.076 (1)°0.11 × 0.10 × 0.05 mm
β = 105.289 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5662 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5184 reflections with I > 2σ(I)
Tmin = 0.620, Tmax = 1Rint = 0.022
10396 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.03Δρmax = 1.79 e Å3
5662 reflectionsΔρmin = 0.51 e Å3
298 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au0.129193 (15)0.238137 (11)0.027706 (10)0.02816 (5)
Cl0.38116 (14)0.55776 (11)0.65290 (9)0.0512 (3)
S10.15605 (12)0.37252 (8)0.20892 (7)0.0345 (2)
P10.10947 (10)0.09758 (8)0.14385 (7)0.02494 (17)
O10.2140 (3)0.4991 (2)0.0947 (2)0.0326 (5)
N10.1960 (4)0.6110 (3)0.2686 (3)0.0331 (7)
C10.1923 (4)0.5102 (3)0.1967 (3)0.0303 (7)
C20.1738 (4)0.6210 (3)0.3749 (3)0.0312 (8)
C30.2780 (4)0.5892 (3)0.4543 (3)0.0336 (8)
H30.36650.55960.43840.040*
C40.2509 (4)0.6011 (3)0.5561 (3)0.0338 (8)
C50.1230 (5)0.6436 (4)0.5839 (3)0.0409 (9)
H50.10460.64900.65300.049*
C60.0223 (5)0.6783 (4)0.5051 (4)0.0459 (10)
H60.06470.70930.52220.055*
C70.0478 (5)0.6679 (4)0.4030 (3)0.0424 (9)
H70.02090.69290.35160.051*
C80.2069 (5)0.5990 (3)0.0607 (3)0.0362 (8)
H8A0.29210.66940.11780.043*
H8B0.10030.61800.05400.043*
C90.2333 (5)0.5609 (4)0.0537 (4)0.0406 (9)
H9A0.22930.62450.08120.061*
H9B0.14860.49080.10890.061*
H9C0.33920.54260.04540.061*
C100.0985 (4)0.0188 (3)0.2372 (3)0.0262 (7)
C110.1568 (4)0.1021 (3)0.2693 (3)0.0308 (7)
H110.08610.14680.24630.037*
C120.3194 (4)0.1571 (4)0.3353 (3)0.0379 (9)
H120.35870.23890.35640.045*
C130.4228 (4)0.0924 (4)0.3697 (3)0.0416 (10)
H130.53280.12990.41420.050*
C140.3654 (5)0.0279 (4)0.3389 (3)0.0418 (9)
H140.43660.07180.36300.050*
C150.2039 (4)0.0843 (4)0.2728 (3)0.0345 (8)
H150.16540.16610.25220.041*
C160.2160 (4)0.0128 (3)0.1206 (3)0.0255 (7)
C170.3041 (5)0.0661 (3)0.1893 (3)0.0373 (8)
H170.30250.05080.25530.045*
C180.3940 (5)0.1415 (4)0.1609 (4)0.0429 (9)
H180.45550.17590.20680.051*
C190.3949 (4)0.1669 (3)0.0666 (3)0.0374 (8)
H190.45680.21830.04780.045*
C200.3047 (5)0.1168 (4)0.0007 (4)0.0413 (9)
H200.30310.13560.06450.050*
C210.2165 (4)0.0390 (3)0.0253 (3)0.0360 (8)
H210.15680.00380.02170.043*
C220.1982 (4)0.1559 (3)0.2303 (3)0.0270 (7)
C230.3065 (4)0.2674 (3)0.1774 (3)0.0306 (7)
H230.32970.31250.09820.037*
C240.3804 (4)0.3123 (3)0.2411 (3)0.0354 (8)
H240.45280.38790.20530.042*
C250.3477 (4)0.2458 (4)0.3569 (3)0.0369 (8)
H250.39890.27610.39970.044*
C260.2395 (4)0.1344 (4)0.4110 (3)0.0341 (8)
H260.21770.08960.49010.041*
C270.1640 (4)0.0897 (3)0.3484 (3)0.0320 (7)
H270.08970.01480.38510.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.03676 (8)0.02413 (8)0.02236 (8)0.00739 (5)0.01005 (5)0.00752 (5)
Cl0.0597 (6)0.0573 (7)0.0413 (6)0.0284 (5)0.0125 (5)0.0232 (5)
S10.0550 (5)0.0237 (4)0.0238 (4)0.0093 (4)0.0137 (4)0.0079 (3)
P10.0299 (4)0.0239 (4)0.0207 (4)0.0058 (3)0.0096 (3)0.0079 (3)
O10.0441 (14)0.0262 (13)0.0291 (13)0.0099 (10)0.0136 (10)0.0109 (10)
N10.0367 (15)0.0286 (16)0.0304 (16)0.0084 (12)0.0098 (12)0.0081 (12)
C10.0289 (16)0.0289 (18)0.0291 (17)0.0059 (13)0.0054 (13)0.0103 (14)
C20.0325 (17)0.0243 (17)0.0290 (17)0.0047 (13)0.0094 (14)0.0027 (14)
C30.0323 (17)0.0282 (18)0.0333 (19)0.0090 (14)0.0080 (14)0.0054 (14)
C40.0368 (18)0.0289 (18)0.0277 (18)0.0087 (14)0.0043 (14)0.0065 (14)
C50.044 (2)0.047 (2)0.032 (2)0.0134 (18)0.0151 (16)0.0127 (17)
C60.040 (2)0.058 (3)0.040 (2)0.0272 (19)0.0174 (17)0.013 (2)
C70.043 (2)0.046 (2)0.035 (2)0.0221 (18)0.0096 (16)0.0107 (17)
C80.0394 (19)0.0261 (18)0.042 (2)0.0057 (15)0.0076 (16)0.0172 (16)
C90.051 (2)0.036 (2)0.043 (2)0.0110 (17)0.0185 (18)0.0225 (17)
C100.0280 (15)0.0312 (18)0.0196 (15)0.0065 (13)0.0126 (12)0.0070 (13)
C110.0346 (17)0.0335 (19)0.0272 (17)0.0055 (14)0.0125 (14)0.0147 (14)
C120.0345 (18)0.043 (2)0.0333 (19)0.0013 (16)0.0128 (15)0.0140 (16)
C130.0273 (17)0.063 (3)0.032 (2)0.0043 (17)0.0120 (15)0.0154 (19)
C140.0369 (19)0.058 (3)0.038 (2)0.0227 (18)0.0159 (16)0.0200 (19)
C150.0400 (19)0.037 (2)0.0305 (18)0.0159 (16)0.0162 (15)0.0121 (15)
C160.0260 (15)0.0230 (16)0.0228 (15)0.0022 (12)0.0054 (12)0.0068 (12)
C170.051 (2)0.037 (2)0.036 (2)0.0180 (17)0.0224 (17)0.0182 (16)
C180.043 (2)0.042 (2)0.053 (2)0.0162 (17)0.0254 (18)0.0208 (19)
C190.0345 (18)0.0284 (19)0.047 (2)0.0068 (15)0.0077 (16)0.0161 (16)
C200.050 (2)0.043 (2)0.040 (2)0.0135 (18)0.0150 (17)0.0259 (18)
C210.0414 (19)0.038 (2)0.037 (2)0.0134 (16)0.0184 (16)0.0199 (16)
C220.0298 (16)0.0279 (17)0.0276 (16)0.0088 (13)0.0120 (13)0.0135 (13)
C230.0298 (16)0.0311 (18)0.0280 (17)0.0040 (14)0.0067 (13)0.0117 (14)
C240.0300 (17)0.033 (2)0.044 (2)0.0038 (14)0.0097 (15)0.0198 (16)
C250.0353 (18)0.049 (2)0.042 (2)0.0157 (16)0.0198 (16)0.0291 (18)
C260.0352 (18)0.045 (2)0.0271 (18)0.0139 (16)0.0155 (14)0.0152 (16)
C270.0335 (17)0.0342 (19)0.0305 (18)0.0086 (14)0.0129 (14)0.0135 (15)
Geometric parameters (Å, º) top
Au—P12.2588 (8)C11—H110.94
Au—S12.3041 (9)C12—C131.370 (6)
Cl—C41.745 (4)C12—H120.94
S1—C11.759 (4)C13—C141.383 (6)
P1—C221.807 (3)C13—H130.94
P1—C161.813 (3)C14—C151.384 (5)
P1—C101.817 (3)C14—H140.94
O1—C11.356 (4)C15—H150.94
O1—C81.451 (4)C16—C171.386 (5)
N1—C11.265 (4)C16—C211.387 (5)
N1—C21.416 (5)C17—C181.378 (5)
C2—C71.386 (5)C17—H170.94
C2—C31.392 (5)C18—C191.368 (6)
C3—C41.372 (5)C18—H180.94
C3—H30.94C19—C201.377 (6)
C4—C51.377 (5)C19—H190.94
C5—C61.392 (6)C20—C211.384 (5)
C5—H50.94C20—H200.94
C6—C71.375 (6)C21—H210.94
C6—H60.94C22—C231.391 (5)
C7—H70.94C22—C271.400 (5)
C8—C91.494 (6)C23—C241.387 (5)
C8—H8A0.98C23—H230.94
C8—H8B0.98C24—C251.377 (5)
C9—H9A0.97C24—H240.94
C9—H9B0.97C25—C261.389 (6)
C9—H9C0.97C25—H250.94
C10—C111.387 (5)C26—C271.382 (5)
C10—C151.396 (5)C26—H260.94
C11—C121.390 (5)C27—H270.94
P1—Au—S1175.86 (3)C13—C12—C11120.2 (4)
C1—S1—Au103.15 (12)C13—C12—H12119.9
C22—P1—C16106.60 (15)C11—C12—H12119.9
C22—P1—C10104.86 (15)C12—C13—C14120.1 (4)
C16—P1—C10107.11 (15)C12—C13—H13120.0
C22—P1—Au113.34 (12)C14—C13—H13120.0
C16—P1—Au110.08 (11)C13—C14—C15120.5 (4)
C10—P1—Au114.33 (10)C13—C14—H14119.7
C1—O1—C8117.8 (3)C15—C14—H14119.7
C1—N1—C2119.6 (3)C14—C15—C10119.6 (4)
N1—C1—O1120.3 (3)C14—C15—H15120.2
N1—C1—S1127.7 (3)C10—C15—H15120.2
O1—C1—S1111.9 (2)C17—C16—C21119.1 (3)
C7—C2—C3118.6 (4)C17—C16—P1123.0 (3)
C7—C2—N1119.2 (3)C21—C16—P1117.7 (3)
C3—C2—N1122.2 (3)C18—C17—C16120.1 (4)
C4—C3—C2119.6 (3)C18—C17—H17120.0
C4—C3—H3120.2C16—C17—H17120.0
C2—C3—H3120.2C19—C18—C17120.8 (4)
C3—C4—C5122.6 (3)C19—C18—H18119.6
C3—C4—Cl118.6 (3)C17—C18—H18119.6
C5—C4—Cl118.7 (3)C18—C19—C20119.7 (4)
C4—C5—C6117.2 (4)C18—C19—H19120.1
C4—C5—H5121.4C20—C19—H19120.1
C6—C5—H5121.4C19—C20—C21120.2 (4)
C7—C6—C5121.2 (4)C19—C20—H20119.9
C7—C6—H6119.4C21—C20—H20119.9
C5—C6—H6119.4C20—C21—C16120.1 (3)
C6—C7—C2120.7 (4)C20—C21—H21119.9
C6—C7—H7119.6C16—C21—H21119.9
C2—C7—H7119.6C23—C22—C27119.4 (3)
O1—C8—C9105.7 (3)C23—C22—P1119.2 (3)
O1—C8—H8A110.6C27—C22—P1121.4 (3)
C9—C8—H8A110.6C24—C23—C22120.2 (3)
O1—C8—H8B110.6C24—C23—H23119.9
C9—C8—H8B110.6C22—C23—H23119.9
H8A—C8—H8B108.7C25—C24—C23120.0 (3)
C8—C9—H9A109.5C25—C24—H24120.0
C8—C9—H9B109.5C23—C24—H24120.0
H9A—C9—H9B109.5C24—C25—C26120.5 (3)
C8—C9—H9C109.5C24—C25—H25119.8
H9A—C9—H9C109.5C26—C25—H25119.8
H9B—C9—H9C109.5C27—C26—C25119.9 (3)
C11—C10—C15119.5 (3)C27—C26—H26120.0
C11—C10—P1122.3 (3)C25—C26—H26120.0
C15—C10—P1118.2 (3)C26—C27—C22120.0 (3)
C10—C11—C12120.2 (4)C26—C27—H27120.0
C10—C11—H11119.9C22—C27—H27120.0
C12—C11—H11119.9
C2—N1—C1—O1179.7 (3)C11—C10—C15—C140.6 (5)
C2—N1—C1—S12.0 (5)P1—C10—C15—C14176.6 (3)
C8—O1—C1—N112.7 (5)C22—P1—C16—C1719.4 (3)
C8—O1—C1—S1165.9 (2)C10—P1—C16—C1792.4 (3)
Au—S1—C1—N1170.7 (3)Au—P1—C16—C17142.7 (3)
Au—S1—C1—O17.7 (2)C22—P1—C16—C21156.6 (3)
C1—N1—C2—C7122.2 (4)C10—P1—C16—C2191.6 (3)
C1—N1—C2—C360.1 (5)Au—P1—C16—C2133.3 (3)
C7—C2—C3—C42.1 (5)C21—C16—C17—C181.7 (5)
N1—C2—C3—C4179.8 (3)P1—C16—C17—C18174.3 (3)
C2—C3—C4—C50.2 (6)C16—C17—C18—C191.4 (6)
C2—C3—C4—Cl178.8 (3)C17—C18—C19—C200.1 (6)
C3—C4—C5—C61.9 (6)C18—C19—C20—C211.5 (6)
Cl—C4—C5—C6179.5 (3)C19—C20—C21—C161.3 (6)
C4—C5—C6—C71.4 (7)C17—C16—C21—C200.3 (5)
C5—C6—C7—C20.8 (7)P1—C16—C21—C20175.8 (3)
C3—C2—C7—C62.6 (6)C16—P1—C22—C23103.6 (3)
N1—C2—C7—C6179.6 (4)C10—P1—C22—C23143.0 (3)
C1—O1—C8—C9179.6 (3)Au—P1—C22—C2317.6 (3)
C22—P1—C10—C11119.2 (3)C16—P1—C22—C2774.4 (3)
C16—P1—C10—C116.1 (3)C10—P1—C22—C2739.0 (3)
Au—P1—C10—C11116.1 (3)Au—P1—C22—C27164.4 (2)
C22—P1—C10—C1563.8 (3)C27—C22—C23—C240.3 (5)
C16—P1—C10—C15176.8 (3)P1—C22—C23—C24177.8 (3)
Au—P1—C10—C1561.0 (3)C22—C23—C24—C250.6 (5)
C15—C10—C11—C120.8 (5)C23—C24—C25—C260.7 (6)
P1—C10—C11—C12176.3 (3)C24—C25—C26—C270.0 (6)
C10—C11—C12—C130.4 (5)C25—C26—C27—C220.8 (5)
C11—C12—C13—C140.1 (6)C23—C22—C27—C261.0 (5)
C12—C13—C14—C150.3 (6)P1—C22—C27—C26177.0 (3)
C13—C14—C15—C100.0 (6)

Experimental details

Crystal data
Chemical formula[Au(C9H9ClNOS)(C18H15P)]
Mr673.92
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)8.7561 (4), 12.3514 (6), 13.0432 (6)
α, β, γ (°)110.076 (1), 105.289 (1), 97.481 (1)
V3)1239.52 (10)
Z2
Radiation typeMo Kα
µ (mm1)6.21
Crystal size (mm)0.11 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.620, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
10396, 5662, 5184
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.03
No. of reflections5662
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.79, 0.51

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008), PATTY in DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

 

Acknowledgements

The National University of Singapore (grant No. R-143-000-213-112) is thanked for support.

References

First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem. 46, 561–570.  CSD CrossRef CAS Google Scholar
First citationHo, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem. 45, 8165–8174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHo, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds