metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1637-m1638

Bis[μ-1,2-di­phenyl-N,N′-bis­­(di-2-pyridyl­methyl­ene­amino)ethane-1,2-di­imine]disilver(I) bis­­(hexa­fluorido­phosphate) aceto­nitrile disolvate

aDepartment of Materials Chemistry, School of Materials Science and Engineering, Key Laboratory of Nonferrous Metals, Ministry of Education, Central South University, Changsha 410083, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China
*Correspondence e-mail: rosesunqz@yahoo.com.cn

(Received 7 September 2009; accepted 16 November 2009; online 21 November 2009)

In the centrosymmetric dinuclear title compound, [Ag2(C36H26N8)2](PF6)2·2C2H3N, the Ag+ ion is bound to four N atoms from two 1,2-diphenyl-N,N′-bis­(di-2-pyridyl­methyl­eneamino)ethane-1,2-diimine ligands in a distorted tetra­hedral geometry. The ligand adopts a twist conformation, coordinating two metal centers by three pyridyl N atoms and one imine N atom and spanning two Ag+ ions, resulting in the formation of a helical dimeric structure.

Related literature

For the role of helicity in self-assembly processes in supra­molecular chemistry, see: Stefankiewicz et al. (2008[Stefankiewicz, A. R., Walesa, M., Jankowski, P., Ciesielski, A., Patroniak, V., Kubicki, M., Hnatejko, Z., Harrowfield, J. M. & Lehn, J. M. (2008). Eur. J. Inorg. Chem. pp. 2910-2920.]). For examples of single- and double-stranded architectures, see: Chowdhury et al. (2003[Chowdhury, S., Iveson, P. B., Drew, M. G. B., Tocher, D. A. & Datta, D. (2003). New J. Chem. 27, 193-196.]); Stefankiewicz et al. (2008[Stefankiewicz, A. R., Walesa, M., Jankowski, P., Ciesielski, A., Patroniak, V., Kubicki, M., Hnatejko, Z., Harrowfield, J. M. & Lehn, J. M. (2008). Eur. J. Inorg. Chem. pp. 2910-2920.]). The basic features to give predicta­ble products have been established, see: Constable et al. (1997[Constable, E. C., Heirltzer, F., Neuburger, M. & Zehnder, M. (1997). J. Am. Chem. Soc. 119, 5606-5617.]). We have previously reported the spontaneous resolution of silver double helicates (Sun et al., 2006[Sun, Q. Z., Bai, Y., He, G. J., Duan, C. Y., Lin, Z. H. & Meng, Q. J. (2006). Chem. Commun. pp. 2777-2779.]) and entanglemental coordination polymers of silver helicates (Sun et al., 2007[Sun, Q. Z., Wei, M. L., Bai, Y., He, C., Meng, Q. J. & Duan, C. Y. (2007). Dalton Trans. pp. 4089-4094.]). For a related structure, see: He et al. (2000[He, C., Duan, C. Y., Fang, C. J. & Meng, Q. J. (2000). J. Chem. Soc. Dalton Trans. pp. 2419-2424.]). For related literature, see: Beckmann & Brooker (2003[Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17-29.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C36H26N8)2](PF6)2·2C2H3N

  • Mr = 1729.08

  • Triclinic, [P \overline 1]

  • a = 11.595 (2) Å

  • b = 12.544 (3) Å

  • c = 13.893 (3) Å

  • α = 110.037 (4)°

  • β = 90.798 (4)°

  • γ = 101.192 (4)°

  • V = 1855.1 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 293 K

  • 0.36 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.766, Tmax = 0.813

  • 9153 measured reflections

  • 6299 independent reflections

  • 3860 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.132

  • S = 1.00

  • 6299 reflections

  • 496 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Helicity continues to receive considerable attention as it allows for a greater understanding of the self-assembly processes involved in supramolecular chemistry (Stefankiewicz et al., 2008). Many examples of both single- and double-stranded architectures have been reported (Chowdhury et al., 2003; Stefankiewicz et al., 2008). The basic features to give predictable products are established (Constable et al., 1997). We have previously reported the spontaneous resolution of silver double helicates (Sun et al., 2006) and entanglemental coordination polymers of silver helicates (Sun et al., 2007).

The title complex is a double helical silver(I) coordination compound with the similar ligands, benzil dihydrazone-N, N'-(di-2-pyridyl-ketimine) (Fig. 1). In the dimeric double helicate, each silver(I) centre coordinates to one imine nitrogen atoms, two pyridyl N atoms from one ligand and one pyridyl N atom from symmetry related ligand, forming a distorted tetrahedral geometry. Meanwhile, we notice that unlike the structure we reported before (Sun et al., 2007), each ligand coordinates with metal ions by using three pyridyl N atoms and one imine N atom, leaving one pyridyl ring of 2-pyridyl-ketimine uncoordinated. After coordination with Ag ions, the two sets of pyridine rings distorted differently with one set showing the dihedral angles of cca. 70°, and the other displaying the angles with ca. 100°. It is the twisting angle in the latter set that displaces one of the pyridyl groups unfavorable for coordination. An interesting feature of the dication is that the ligand spans both silver ions, but does not wrap around the metal-metal axis as demonstrated by the bis(pyridylmine) Schiff base ligands (He et al., 2000). One of the two ligands pass above the Ag—Ag axis and the other goes beneath, with the [Ag2L2]2+ cation appearing more like a box than a double helix. The close distance of the silver(I) cations (Ag···Ag distance: cca. 5.02Å) seem unfavourable for helicate formation. However, it should be noted that coordination to the metal centers forces helical twisting of the ligand with the torsion angle of cca. 98° about the bond N(1)—C(7)—C(30)—N(8). Two di-2-pyridyl-ketimine moieties are found on the opposite sides of the N(1)—C(7)—C(30)—N(8) fragment, giving rise to a double helix.

Related literature top

For the role of helicity in self-assembly processes in supramolecular chemistry, see: Stefankiewicz et al. (2008). For examples of single- and double-stranded architectures, see: Chowdhury et al. (2003); Stefankiewicz et al. (2008). The basic features to give predictable products have been established, see: Constable et al. (1997). We have previously reported the spontaneous resolution of silver double helicates (Sun et al., 2006) and entanglemental coordination polymers of silver helicates (Sun et al., 2007). For a related structure, see: He et al. (2000). For related literature, see: Beckmann & Brooker (2003).

Experimental top

Preparation of ligand L: An ethanolic solution (5 mL) of di-2-pyridyl-ketone (1.27 g, 8.2 mmol) was added slowly to a ethanolic solution (20 mL) of benzildihydrazone (0.98 g, 4.1 mmol) and the resulting solution was refluxed for four hours. The reaction mixture was condensed and cooled to room temperature. Upon standing overnight the resultant yellow solid was filtered off, washed with diethyl ether and dried under vacuum. Yield: 85%. Elemental analyses calcd (%): 75.8; H, 4.6; N, 19.6. Found: C, 75.6; H, 4.7; N, 19.7. 1H NMR (500 MHz, DMSO, 298 K): 8.55(d, 2H), 8.47 (d, 2H), 7.85 (t, 2H), 7.64 (d, 4H), 7.60 (t, 4H), 7.47 (t, 2H), 7.46 (d, 2H), 7.45 (d, 2H), 7.43 (d, 2H), 7.42 (t, 2H), 7.37 (t, 2H).

Preparation of the title complex: The ligand L (0.1 mmol, 0.057 g) and AgNO3 (0.15 mmol, 0.027 g) were mixed in methanol and refluxed for two hours, then added 5 mL acetonitrile solution of KPF6, the yellow solution was filtered and evaporated at room temperature. A few days later orange block crystals were obtained.

Refinement top

All of the non-hydrogen atoms were refined with anisotropic thermal displacement coefficients. H atoms were placed at calculated positions with C—H = 0.93–0.96Å and included in a riding-model approximation with Uiso(H) = 1.2Ueq(C). The order HADD was used to restraint the H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The double helical title compound showing the atom-numbering for the non-H and non-C atoms only, with the H atoms omitted for clarity, too. Displacement ellipsoids are drawn at the 50% probability level.
Bis[µ-1,2-diphenyl-N,N'-bis(di-2- pyridylmethyleneamino)ethane-1,2-diimine]disilver(I) bis(hexafluoridophosphate) acetonitrile disolvate top
Crystal data top
[Ag2(C36H26N8)2](PF6)2·2C2H3NZ = 1
Mr = 1729.08F(000) = 872
Triclinic, P1Dx = 1.548 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.595 (2) ÅCell parameters from 1917 reflections
b = 12.544 (3) Åθ = 2.3–19.8°
c = 13.893 (3) ŵ = 0.66 mm1
α = 110.037 (4)°T = 293 K
β = 90.798 (4)°Block, yellow
γ = 101.192 (4)°0.36 × 0.30 × 0.30 mm
V = 1855.1 (7) Å3
Data collection top
Bruker SMART CCD
diffractometer
6299 independent reflections
Radiation source: fine-focus sealed tube3860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 135
Tmin = 0.766, Tmax = 0.813k = 1414
9153 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.042P)2]
where P = (Fo2 + 2Fc2)/3
6299 reflections(Δ/σ)max < 0.001
496 parametersΔρmax = 0.94 e Å3
12 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ag2(C36H26N8)2](PF6)2·2C2H3Nγ = 101.192 (4)°
Mr = 1729.08V = 1855.1 (7) Å3
Triclinic, P1Z = 1
a = 11.595 (2) ÅMo Kα radiation
b = 12.544 (3) ŵ = 0.66 mm1
c = 13.893 (3) ÅT = 293 K
α = 110.037 (4)°0.36 × 0.30 × 0.30 mm
β = 90.798 (4)°
Data collection top
Bruker SMART CCD
diffractometer
6299 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3860 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.813Rint = 0.058
9153 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06212 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.00Δρmax = 0.94 e Å3
6299 reflectionsΔρmin = 0.43 e Å3
496 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.12500 (5)0.95781 (4)0.12566 (4)0.0597 (2)
N10.0264 (4)0.6675 (4)0.0581 (4)0.0477 (12)
N20.0614 (4)0.7111 (4)0.1186 (4)0.0484 (12)
N30.1775 (5)0.8631 (4)0.2274 (4)0.0518 (13)
N40.0751 (5)0.8984 (5)0.3691 (4)0.0589 (14)
N60.2588 (5)1.0100 (4)0.0189 (4)0.0550 (13)
N70.0420 (4)0.8746 (4)0.0466 (3)0.0439 (12)
N80.0692 (4)0.8050 (4)0.0812 (3)0.0481 (12)
N90.1326 (7)0.5150 (7)0.4160 (6)0.103 (2)
C10.2128 (6)0.6376 (6)0.0729 (5)0.0656 (19)
H1B0.23640.67520.00320.079*
C20.2942 (6)0.6007 (7)0.1391 (6)0.089 (2)
H2B0.37250.61390.11420.107*
C30.2617 (7)0.5442 (6)0.2420 (7)0.081 (2)
H3A0.31730.51940.28740.098*
C40.1464 (7)0.5249 (6)0.2767 (5)0.070 (2)
H4B0.12280.48520.34620.083*
C50.0646 (6)0.5635 (5)0.2103 (5)0.0576 (17)
H5A0.01350.55100.23550.069*
C60.0966 (5)0.6205 (5)0.1069 (4)0.0449 (15)
C70.0102 (5)0.6614 (4)0.0354 (4)0.0418 (14)
C80.0267 (5)0.7660 (5)0.2139 (4)0.0456 (15)
C90.0976 (5)0.7900 (5)0.2574 (4)0.0449 (14)
C100.1285 (6)0.7424 (6)0.3259 (5)0.0615 (18)
H10A0.07100.69310.34580.074*
C110.2428 (7)0.7662 (6)0.3658 (5)0.072 (2)
H11A0.26420.73140.41070.086*
C120.3251 (6)0.8425 (6)0.3385 (5)0.0665 (19)
H12A0.40300.86410.36650.080*
C130.2877 (6)0.8860 (6)0.2675 (5)0.0673 (19)
H13A0.34400.93500.24630.081*
C140.1161 (6)0.8080 (5)0.2831 (4)0.0479 (15)
C150.2335 (6)0.7572 (6)0.2609 (5)0.074 (2)
H15A0.25940.69330.20120.089*
C160.3131 (7)0.8019 (7)0.3282 (6)0.086 (2)
H16A0.39330.76850.31460.104*
C170.2723 (7)0.8959 (7)0.4149 (6)0.077 (2)
H17A0.32360.92820.46170.092*
C180.1534 (7)0.9410 (6)0.4309 (5)0.072 (2)
H18A0.12591.00620.48940.086*
C240.0996 (5)0.9089 (5)0.1129 (4)0.0431 (14)
C250.2171 (5)0.9865 (5)0.0784 (5)0.0495 (15)
C260.2823 (6)1.0298 (6)0.1438 (5)0.068 (2)
H26A0.25281.01230.21130.082*
C270.3915 (8)1.0991 (7)0.1073 (7)0.094 (3)
H27A0.43601.12970.15060.113*
C280.4358 (7)1.1240 (7)0.0110 (7)0.087 (2)
H28A0.51051.17050.01350.105*
C290.3656 (6)1.0772 (6)0.0511 (6)0.073 (2)
H29A0.39481.09390.11850.087*
C300.0869 (5)0.7038 (5)0.0724 (4)0.0443 (14)
C310.2037 (5)0.6277 (5)0.1080 (4)0.0472 (15)
C320.2863 (6)0.6554 (6)0.1619 (5)0.0625 (18)
H32A0.26820.72400.17570.075*
C330.3952 (6)0.5833 (8)0.1957 (6)0.085 (2)
H33A0.45020.60310.23220.102*
C340.4231 (7)0.4823 (7)0.1759 (6)0.092 (3)
H34A0.49750.43420.19710.110*
C350.3411 (8)0.4533 (7)0.1249 (7)0.106 (3)
H35A0.35930.38400.11240.127*
C360.2317 (6)0.5243 (6)0.0915 (6)0.078 (2)
H36A0.17610.50220.05750.094*
C370.3081 (8)0.4417 (8)0.4581 (7)0.117 (3)
H37B0.36210.43770.40580.140*
H37A0.28090.36570.46120.140*
H37C0.34740.49330.52340.140*
C380.2105 (9)0.4837 (7)0.4343 (6)0.083 (3)
P10.47556 (19)0.79693 (19)0.62145 (17)0.0765 (6)
F10.3401 (4)0.7611 (5)0.5937 (3)0.1205 (17)
F20.6120 (4)0.8324 (5)0.6505 (5)0.150 (2)
F30.4756 (5)0.6863 (5)0.6438 (5)0.171 (3)
F40.4932 (5)0.7295 (6)0.5091 (4)0.169 (2)
F50.4802 (6)0.9025 (6)0.5900 (7)0.205 (3)
F60.4586 (6)0.8673 (7)0.7292 (5)0.199 (3)
N50.0396 (5)0.9091 (4)0.2430 (3)0.0515 (13)
C190.0838 (6)0.8697 (5)0.3419 (5)0.0620 (18)
H19A0.14780.89670.35850.074*
C200.0392 (7)0.7925 (6)0.4184 (5)0.069 (2)
H20A0.07360.76580.48560.082*
C210.0560 (7)0.7547 (6)0.3959 (5)0.071 (2)
H21A0.08810.70240.44770.085*
C220.1044 (6)0.7941 (6)0.2965 (5)0.0628 (18)
H22A0.17060.77020.27970.075*
C230.0535 (5)0.8690 (5)0.2228 (4)0.0473 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0740 (4)0.0575 (3)0.0531 (3)0.0185 (3)0.0034 (3)0.0240 (2)
N10.051 (3)0.047 (3)0.045 (3)0.014 (3)0.002 (3)0.013 (2)
N20.049 (3)0.056 (3)0.044 (3)0.015 (3)0.009 (3)0.021 (3)
N30.049 (3)0.055 (3)0.055 (3)0.014 (3)0.007 (3)0.021 (3)
N40.067 (4)0.067 (4)0.043 (3)0.021 (3)0.007 (3)0.015 (3)
N60.052 (4)0.046 (3)0.065 (4)0.007 (3)0.000 (3)0.019 (3)
N70.039 (3)0.040 (3)0.055 (3)0.010 (2)0.002 (3)0.019 (2)
N80.049 (3)0.051 (3)0.050 (3)0.016 (3)0.005 (2)0.023 (3)
N90.122 (7)0.080 (5)0.102 (6)0.028 (5)0.001 (5)0.021 (4)
C10.054 (5)0.075 (5)0.060 (4)0.014 (4)0.002 (4)0.013 (4)
C20.054 (5)0.114 (7)0.084 (6)0.017 (5)0.011 (5)0.016 (5)
C30.068 (6)0.080 (5)0.097 (6)0.028 (5)0.033 (5)0.024 (5)
C40.083 (6)0.072 (5)0.053 (4)0.026 (4)0.021 (4)0.016 (4)
C50.056 (4)0.063 (4)0.051 (4)0.016 (3)0.002 (3)0.013 (3)
C60.044 (4)0.039 (3)0.053 (4)0.011 (3)0.005 (3)0.016 (3)
C70.042 (4)0.034 (3)0.043 (3)0.000 (3)0.006 (3)0.010 (3)
C80.057 (4)0.044 (3)0.043 (4)0.013 (3)0.005 (3)0.023 (3)
C90.051 (4)0.047 (4)0.039 (3)0.018 (3)0.010 (3)0.015 (3)
C100.073 (5)0.066 (4)0.054 (4)0.014 (4)0.002 (4)0.032 (4)
C110.080 (6)0.084 (5)0.063 (5)0.029 (5)0.011 (4)0.034 (4)
C120.057 (5)0.071 (5)0.069 (5)0.015 (4)0.016 (4)0.021 (4)
C130.057 (5)0.068 (5)0.083 (5)0.010 (4)0.004 (4)0.035 (4)
C140.052 (4)0.054 (4)0.043 (4)0.012 (3)0.005 (3)0.023 (3)
C150.066 (5)0.064 (5)0.076 (5)0.006 (4)0.015 (4)0.007 (4)
C160.057 (5)0.088 (6)0.092 (6)0.008 (4)0.021 (5)0.008 (5)
C170.073 (6)0.084 (6)0.077 (5)0.028 (5)0.032 (5)0.025 (5)
C180.094 (6)0.068 (5)0.051 (4)0.024 (5)0.017 (4)0.014 (4)
C240.049 (4)0.039 (3)0.049 (4)0.017 (3)0.009 (3)0.021 (3)
C250.051 (4)0.046 (4)0.054 (4)0.015 (3)0.010 (3)0.019 (3)
C260.066 (5)0.067 (5)0.064 (5)0.003 (4)0.011 (4)0.025 (4)
C270.084 (7)0.091 (6)0.098 (7)0.010 (5)0.023 (6)0.036 (5)
C280.062 (5)0.072 (5)0.109 (7)0.010 (4)0.003 (5)0.021 (5)
C290.059 (5)0.062 (5)0.087 (5)0.003 (4)0.010 (4)0.019 (4)
C300.047 (4)0.053 (4)0.031 (3)0.015 (3)0.006 (3)0.012 (3)
C310.042 (4)0.052 (4)0.045 (4)0.010 (3)0.003 (3)0.015 (3)
C320.047 (4)0.068 (4)0.076 (5)0.006 (4)0.007 (4)0.034 (4)
C330.052 (5)0.110 (7)0.101 (6)0.017 (5)0.007 (4)0.047 (5)
C340.062 (6)0.085 (6)0.124 (7)0.003 (5)0.016 (5)0.041 (6)
C350.079 (6)0.078 (6)0.155 (8)0.018 (5)0.034 (6)0.053 (6)
C360.062 (5)0.064 (5)0.110 (6)0.004 (4)0.029 (4)0.042 (4)
C370.108 (8)0.110 (7)0.117 (8)0.032 (6)0.011 (6)0.017 (6)
C380.099 (8)0.065 (6)0.075 (6)0.016 (5)0.009 (6)0.011 (4)
P10.0690 (15)0.0782 (14)0.0797 (15)0.0159 (12)0.0054 (12)0.0246 (12)
F10.063 (3)0.180 (5)0.110 (4)0.010 (3)0.004 (3)0.049 (4)
F20.074 (4)0.120 (4)0.229 (6)0.016 (3)0.035 (4)0.032 (4)
F30.136 (5)0.168 (5)0.264 (7)0.013 (4)0.009 (5)0.156 (6)
F40.162 (6)0.213 (7)0.112 (5)0.029 (5)0.035 (4)0.037 (5)
F50.189 (6)0.147 (5)0.310 (8)0.018 (4)0.041 (5)0.133 (5)
F60.168 (4)0.237 (5)0.139 (4)0.086 (4)0.004 (3)0.025 (4)
N50.067 (4)0.049 (3)0.042 (3)0.013 (3)0.005 (3)0.019 (2)
C190.072 (5)0.063 (4)0.053 (4)0.017 (4)0.004 (4)0.022 (4)
C200.097 (6)0.058 (4)0.046 (4)0.017 (4)0.002 (4)0.013 (4)
C210.101 (6)0.062 (5)0.055 (5)0.026 (4)0.027 (4)0.021 (4)
C220.075 (5)0.065 (4)0.057 (4)0.027 (4)0.017 (4)0.026 (4)
C230.055 (4)0.044 (3)0.049 (4)0.012 (3)0.012 (3)0.023 (3)
Geometric parameters (Å, º) top
Ag1—N32.277 (5)C17—H17A0.93
Ag1—N5i2.291 (5)C18—H18A0.93
Ag1—N62.317 (5)C24—C251.477 (8)
Ag1—N72.361 (5)C24—C231.490 (8)
N1—C71.284 (6)C25—C261.375 (8)
N1—N21.402 (6)C26—C271.367 (9)
N2—C81.281 (6)C26—H26A0.93
N3—C131.324 (7)C27—C281.336 (10)
N3—C91.348 (7)C27—H27A0.93
N4—C181.321 (8)C28—C291.389 (10)
N4—C141.336 (7)C28—H28A0.93
N6—C291.328 (7)C29—H29A0.93
N6—C251.342 (7)C30—C311.465 (7)
N7—C241.287 (6)C31—C361.372 (8)
N7—N81.385 (6)C31—C321.373 (8)
N8—C301.294 (7)C32—C331.372 (8)
N9—C381.112 (10)C32—H32A0.93
C1—C21.361 (9)C33—C341.366 (10)
C1—C61.373 (8)C33—H33A0.93
C1—H1B0.93C34—C351.352 (10)
C2—C31.370 (9)C34—H34A0.93
C2—H2B0.93C35—C361.371 (9)
C3—C41.362 (9)C35—H35A0.93
C3—H3A0.93C36—H36A0.93
C4—C51.371 (8)C37—C381.416 (11)
C4—H4B0.93C37—H37B0.96
C5—C61.375 (7)C37—H37A0.96
C5—H5A0.93C37—H37C0.96
C6—C71.460 (7)P1—F61.493 (6)
C7—C301.489 (8)P1—F31.522 (6)
C8—C141.473 (8)P1—F51.522 (6)
C8—C91.488 (8)P1—F41.537 (6)
C9—C101.362 (8)P1—F11.552 (4)
C10—C111.366 (8)P1—F21.565 (5)
C10—H10A0.93N5—C231.340 (7)
C11—C121.369 (9)N5—C191.345 (7)
C11—H11A0.93N5—Ag1i2.291 (5)
C12—C131.381 (8)C19—C201.356 (8)
C12—H12A0.93C19—H19A0.93
C13—H13A0.93C20—C211.355 (9)
C14—C151.368 (8)C20—H20A0.93
C15—C161.381 (9)C21—C221.367 (9)
C15—H15A0.93C21—H21A0.93
C16—C171.363 (9)C22—C231.362 (8)
C16—H16A0.93C22—H22A0.93
C17—C181.368 (9)
N3—Ag1—N5i99.33 (17)N6—C25—C26121.5 (6)
N3—Ag1—N6119.34 (18)N6—C25—C24116.9 (5)
N5i—Ag1—N6122.00 (16)C26—C25—C24121.5 (6)
N3—Ag1—N7127.26 (16)C27—C26—C25118.4 (7)
N5i—Ag1—N7119.22 (17)C27—C26—H26A120.8
N6—Ag1—N770.27 (17)C25—C26—H26A120.8
C7—N1—N2112.5 (5)C28—C27—C26121.6 (8)
C8—N2—N1114.4 (5)C28—C27—H27A119.2
C13—N3—C9116.7 (5)C26—C27—H27A119.2
C13—N3—Ag1120.8 (4)C27—C28—C29117.1 (7)
C9—N3—Ag1122.2 (4)C27—C28—H28A121.5
C18—N4—C14117.2 (6)C29—C28—H28A121.5
C29—N6—C25118.1 (6)N6—C29—C28123.3 (7)
C29—N6—Ag1124.5 (5)N6—C29—H29A118.3
C25—N6—Ag1116.4 (4)C28—C29—H29A118.3
C24—N7—N8116.3 (5)N8—C30—C31117.7 (5)
C24—N7—Ag1116.6 (4)N8—C30—C7121.5 (5)
N8—N7—Ag1126.5 (3)C31—C30—C7120.5 (5)
C30—N8—N7116.2 (5)C36—C31—C32118.2 (6)
C2—C1—C6121.4 (6)C36—C31—C30120.5 (6)
C2—C1—H1B119.3C32—C31—C30121.3 (6)
C6—C1—H1B119.3C33—C32—C31120.9 (7)
C1—C2—C3120.5 (7)C33—C32—H32A119.5
C1—C2—H2B119.7C31—C32—H32A119.5
C3—C2—H2B119.7C34—C33—C32120.1 (7)
C4—C3—C2118.7 (7)C34—C33—H33A119.9
C4—C3—H3A120.6C32—C33—H33A119.9
C2—C3—H3A120.6C35—C34—C33119.2 (8)
C3—C4—C5120.7 (7)C35—C34—H34A120.4
C3—C4—H4B119.6C33—C34—H34A120.4
C5—C4—H4B119.6C34—C35—C36121.2 (8)
C4—C5—C6120.8 (6)C34—C35—H35A119.4
C4—C5—H5A119.6C36—C35—H35A119.4
C6—C5—H5A119.6C35—C36—C31120.3 (7)
C1—C6—C5117.7 (6)C35—C36—H36A119.8
C1—C6—C7121.0 (5)C31—C36—H36A119.8
C5—C6—C7121.3 (6)C38—C37—H37B109.5
N1—C7—C6118.6 (5)C38—C37—H37A109.5
N1—C7—C30123.0 (5)H37B—C37—H37A109.5
C6—C7—C30118.1 (5)C38—C37—H37C109.5
N2—C8—C14117.2 (5)H37B—C37—H37C109.5
N2—C8—C9123.8 (5)H37A—C37—H37C109.5
C14—C8—C9118.9 (5)N9—C38—C37178.7 (11)
N3—C9—C10121.7 (6)F6—P1—F394.9 (4)
N3—C9—C8116.8 (5)F6—P1—F590.1 (4)
C10—C9—C8121.5 (6)F3—P1—F5174.8 (5)
C9—C10—C11120.8 (6)F6—P1—F4177.3 (5)
C9—C10—H10A119.6F3—P1—F487.8 (4)
C11—C10—H10A119.6F5—P1—F487.2 (4)
C10—C11—C12118.6 (6)F6—P1—F190.8 (3)
C10—C11—H11A120.7F3—P1—F191.2 (3)
C12—C11—H11A120.7F5—P1—F190.1 (3)
C11—C12—C13117.3 (6)F4—P1—F189.2 (3)
C11—C12—H12A121.3F6—P1—F288.8 (3)
C13—C12—H12A121.3F3—P1—F288.2 (3)
N3—C13—C12124.8 (6)F5—P1—F290.5 (3)
N3—C13—H13A117.6F4—P1—F291.2 (4)
C12—C13—H13A117.6F1—P1—F2179.3 (4)
N4—C14—C15122.2 (6)C23—N5—C19116.5 (5)
N4—C14—C8115.7 (6)C23—N5—Ag1i125.8 (4)
C15—C14—C8122.0 (6)C19—N5—Ag1i117.7 (4)
C14—C15—C16119.2 (6)N5—C19—C20123.0 (6)
C14—C15—H15A120.4N5—C19—H19A118.5
C16—C15—H15A120.4C20—C19—H19A118.5
C17—C16—C15118.9 (7)C21—C20—C19119.2 (6)
C17—C16—H16A120.6C21—C20—H20A120.4
C15—C16—H16A120.6C19—C20—H20A120.4
C16—C17—C18117.9 (7)C20—C21—C22119.5 (7)
C16—C17—H17A121.0C20—C21—H21A120.3
C18—C17—H17A121.0C22—C21—H21A120.3
N4—C18—C17124.4 (7)C23—C22—C21118.4 (7)
N4—C18—H18A117.8C23—C22—H22A120.8
C17—C18—H18A117.8C21—C22—H22A120.8
N7—C24—C25118.1 (5)N5—C23—C22123.4 (6)
N7—C24—C23122.1 (5)N5—C23—C24116.5 (5)
C25—C24—C23119.7 (5)C22—C23—C24120.1 (6)
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Ag2(C36H26N8)2](PF6)2·2C2H3N
Mr1729.08
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.595 (2), 12.544 (3), 13.893 (3)
α, β, γ (°)110.037 (4), 90.798 (4), 101.192 (4)
V3)1855.1 (7)
Z1
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.36 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.766, 0.813
No. of measured, independent and
observed [I > 2σ(I)] reflections
9153, 6299, 3860
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.132, 1.00
No. of reflections6299
No. of parameters496
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.43

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from the Innovation Program for College Students of Central South University (grant No. 081053308) and the Central South University Science Development Foundation (grant No. 09SDF06). We thank Mr J. L. Yan for revision of the grammar.

References

First citationBeckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17–29.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChowdhury, S., Iveson, P. B., Drew, M. G. B., Tocher, D. A. & Datta, D. (2003). New J. Chem. 27, 193–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationConstable, E. C., Heirltzer, F., Neuburger, M. & Zehnder, M. (1997). J. Am. Chem. Soc. 119, 5606–5617.  CSD CrossRef CAS Web of Science Google Scholar
First citationHe, C., Duan, C. Y., Fang, C. J. & Meng, Q. J. (2000). J. Chem. Soc. Dalton Trans. pp. 2419–2424.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStefankiewicz, A. R., Walesa, M., Jankowski, P., Ciesielski, A., Patroniak, V., Kubicki, M., Hnatejko, Z., Harrowfield, J. M. & Lehn, J. M. (2008). Eur. J. Inorg. Chem. pp. 2910–2920.  Web of Science CSD CrossRef Google Scholar
First citationSun, Q. Z., Bai, Y., He, G. J., Duan, C. Y., Lin, Z. H. & Meng, Q. J. (2006). Chem. Commun. pp. 2777–2779.  Web of Science CSD CrossRef Google Scholar
First citationSun, Q. Z., Wei, M. L., Bai, Y., He, C., Meng, Q. J. & Duan, C. Y. (2007). Dalton Trans. pp. 4089–4094.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1637-m1638
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds