organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3252-o3253

Methyl­ergometrine maleate from synchrotron powder diffraction data

aInstitute of Chemical Technology Prague, Technická 5, 16628 Prague 6, Czech Republic, and bTeva Czech Industries s.r.o., R&D, Branišovská 31, 370 05 České Budějovice, Czech Republic
*Correspondence e-mail: rohlicej@vscht.cz

(Received 13 October 2009; accepted 23 November 2009; online 28 November 2009)

The title compound {systematic name: 9,10-didehydro-N-[1-(hydroxy­meth­yl)prop­yl]-D-lysergamide maleate}, C20H26N3O2+·C4H3O4, contains a large rigid ergolene group. This group consists of an indole plane connected to a six-membered carbon ring adopting an envelope conformation and N-methyl­tetra­hydro­pyridine where the methyl group is in an equatorial position. In the crystal, inter­molecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds form an extensive three-dimensional hydrogen-bonding network, which holds the cations and anions together.

Related literature

For background to ergometrine, see: Dudley & Moir (1935[Dudley, H. W. & Moir, C. (1935). Br. Med. J. 1, 520-523.]); Kharasch & Legault (1935[Kharasch, M. S. & Legault, R. R. (1935). Science, 81, 388.]). Formethyl­ergometrine, see Stoll & Hofmann (1943[Stoll, A. & Hofmann, A. (1943). Helv. Chim. Acta, 26, 944-965.]). For crystal structure determinations of ergometrine, see: Čejka et al. (1996[Čejka, J., Hušák, M., Kratochvíl, B., Jegorov, A. & Cvak, L. (1996). Coll. Czech. Chem. Commun. 61 1396-1404.]); Hušák et al. (1998[Hušák, M., Kratochvíl, B. & Jegorov, A. (1998). Z. Kristallogr. 213, 195-196.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26N3O2+·C4H3O4

  • Mr = 455.51

  • Orthorhombic, P 21 21 21

  • a = 5.71027 (5) Å

  • b = 12.76978 (17) Å

  • c = 33.1455 (4) Å

  • V = 2416.93 (5) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.6996 Å

  • T = 293 K

  • Specimen shape: cylinder

  • 40 × 1 × 1 mm

  • Specimen prepared at 101 kPa

  • Specimen prepared at 293 K

  • Particle morphology: needle, white

Data collection
  • BM01B, ESRF, Grenoble

  • Specimen mounting: 1.0 mm borosilicate glass capillary

  • Specimen mounted in transmission mode

  • Scan method: step

  • Absorption correction: none

  • 2θmin = 0.5, 2θmax = 29.5°

  • Increment in 2θ = 0.003°

Refinement
  • Rp = 0.060

  • Rwp = 0.080

  • Rexp = 0.021

  • RB = 0.088

  • S = 3.76

  • Wavelength of incident radiation: 0.6996 Å

  • Excluded region(s): none

  • Profile function: pseudo-Voigt profile coefficients as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]), asymmetry correction according to Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.])

  • 617 reflections

  • 100 parameters

  • 96 restraints

  • H-atom parameters not refined

  • Preferred orientation correction: March–Dollase (Dollase, 1986[Dollase, W. A. (1986). J. Appl. Cryst. 19, 267-272.]); direction of preferred orientation - 011, MD = 1.26

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2s—H202⋯O4s 1.20 1.28 2.479 (5) 179
N13—H131⋯O3s 0.86 1.77 2.634 (4) 173
O23—H232⋯O19i 0.83 2.12 2.925 (8) 160
N20—H201⋯O1sii 0.87 2.04 2.912 (5) 177
N1—H11⋯O19iii 0.88 2.03 2.852 (4) 154
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: ESRF SPEC package (Certified Scientific Software, 2003[Certified Scientific Software (2003). SPEC. Certified Scientific Software, Cambridge, MA, USA.]); cell refinement: GSAS (Larson & Von Dreele, 1994[Larson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.]); data reduction: CRYSFIRE (Shirley, 2000[Shirley, R. (2000). CRYSFIRE User's Manual. Guildford, England: The Lattice Press.]); program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002[Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734-743.]); program(s) used to refine structure: GSAS; molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Methylergometrine is a semisynthetic ergot alkaloid derived from (+)-lysergic acid and (S)-(+)-2-amino-1-butanol (Stoll & Hofmann, 1943). It is nearly isostructural with natural ergot alkaloid ergometrine maleate (Čejka et al., 1996). Previous attempts to solve this structure by molecular modeling using ergometrine maleate as the starting model were successful, but the result was not very precise (Čejka et al., 1996). Hence the crystal structure was not published. In this paper we report crystal structure determination of the title compound (I) from synchrotron powder diffraction data.

The asymmetric unit of (I) contains a methylergometrinium cation and one molecule of maleate (Fig. 1). All bond lengths and angles in (I) are comparable with reported structure of ergometrine maleate (Čejka et al., 1996). The molecule of maleate is situated in the same position and the hydrogen bonding system is practically the same. Intermolecular N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1) form an extensive three-dimensional hydrogen-bonding network which held cations and anions together.

Related literature top

For background to ergometrine, see: Dudley & Moir (1935); Kharasch & Legault (1935). Formethylergometrine, see Stoll & Hofmann (1943). For crystal structure dterminations of ergometrine, see: Čejka et al. (1996); Hušák et al. (1998).

Experimental top

Crystallization of methylergometrine maleate from various solvents (alcohols, acetic acid esters, acetone, dioxane, dimethyl sulphoxide) provided hair-like long needle crystals in all cases. One crystalline form with distinct powder patterns was found.

Refinement top

The powder diffraction data measurement was done on BM01B beamline (Swiss-Norwegian Beamlines) at the ESRF, Grenoble. Before the measurement the diffractometer was calibrated by using LaB6 standard sample and the value of wavelength was checked (0.6996 Å). The powder sample was placed in a 1 mm capillary. The measurement was done at room temperature. The capillary was rotating during the data collection. The diffractogram was measured from 0.515° to 29.49° 2θ with 0.0025° step scan and the sample was irradiated for 1 s per step. The data from all six detectors were finally binned.

The indexation confirmed unit-cell parameters and space group obtained from previous measurement (Čejka et al., 1996): a =5.71 Å, b=12.77 Å, c =33.15 Å, Z = 4, V = 2 417 Å3, P212121. Molecule of ergometrine (Čejka et al., 1996) was used as a starting model for structure solution. This model was transferred to the z-matrix and the missing methyl group was added in the standard C—C distance (1.52 Å). This way changed z-matrix was loaded into the program FOX (Favre-Nicolin & Černý, 2002) and structure was solved by using parallel tempering algorithm. The structure solution result confirmed similarity with ergometrine maleate, see Fig.2. Refinement of this result was carried out in GSAS (Larson & Von Dreele, 1994). Hydrogen atoms were placed in their theoretical positions and structure was refined with bonds, angles and planar groups restraints (N1—C10,C9/C10/C12/C16, C17/C18/O19/N20, C6s/C5s/O1s/O2s, C7s/C8s/O3s/O4s andC5s/C6s/C7s/C8s). All atomic coordinates and Uiso parameters of non-hydrogen atoms were refined. Hydrogen atoms were not refined, it was necessary to relocate H atoms into the correct positions after few cycles. Hydrogen atom H202 was manually placed between oxygen atoms O2s and O4s. At the final stage of the refinement, only atomic coordinates of non-hydrogen atoms were refined to the final agreement factors Rp = 0.0631 and Rwp = 0.0831. The diffraction profiles and differences between the measured and calculated profiles are shown in Fig. 3.

Computing details top

Data collection: ESRF SPEC package (Certified Scientific Software, 2003); cell refinement: GSAS (Larson & Von Dreele, 1994); data reduction: CRYSFIRE (Shirley, 2000); program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002); program(s) used to refine structure: GSAS (Larson & Von Dreele, 1994); molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2003); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of methylergometrine maleate showing the atomic numbering. Displacement spheres are drawn at the 30% probability level.
[Figure 2] Fig. 2. Overlaid asymmetric parts of unit cells of methylergometrine maleate (blue) and ergometrine maleate (red)
[Figure 3] Fig. 3. The final Rietveld plot showing the measured data (black thin-plus), calculated data (red line) and difference curve (blue line). Calculated positions of the reflection are shown by vertical bars.
9,10-didehydro-N-[1-(hydroxymethyl)propyl]-D-lysergamide maleate top
Crystal data top
C20H26N3O2+·C4H3O4F(000) = 960.0
Mr = 455.51Dx = 1.246 Mg m3
Orthorhombic, P212121Synchrotron radiation, λ = 0.6996 Å
a = 5.71027 (5) ÅT = 293 K
b = 12.76978 (17) ÅParticle morphology: needle
c = 33.1455 (4) Åwhite
V = 2416.93 (5) Å3cylinder, 40 × 1 mm
Z = 4Specimen preparation: Prepared at 293 K and 101 kPa
Data collection top
ID31
diffractometer
Data collection mode: transmission
Radiation source: X-RayScan method: step
Si(111) monochromator2θmin = 0.515°, 2θmax = 29.49°, 2θstep = 0.003°
Specimen mounting: 1.0 mm borosilicate glass capillary
Refinement top
Least-squares matrix: fullProfile function: Pseudo-Voigt profile coefficients as parameterized in Thompson et al. (1987), asymmetry correction according to Finger et al. (1994)
Rp = 0.060100 parameters
Rwp = 0.08096 restraints
Rexp = 0.0210 constraints
RBragg = 0.088H-atom parameters not refined
R(F2) = 0.08232Weighting scheme based on measured s.u.'s w = 1/σ(Yobs)2
χ2 = 14.138(Δ/σ)max = 0.03
11591 data pointsBackground function: Shifted Chebyschev
Excluded region(s): noPreferred orientation correction: March–Dollase (Dollase, 1986); direction of preferred orientation - 011, MD = 1.26
Crystal data top
C20H26N3O2+·C4H3O4V = 2416.93 (5) Å3
Mr = 455.51Z = 4
Orthorhombic, P212121Synchrotron radiation, λ = 0.6996 Å
a = 5.71027 (5) ÅT = 293 K
b = 12.76978 (17) Åcylinder, 40 × 1 mm
c = 33.1455 (4) Å
Data collection top
ID31
diffractometer
Scan method: step
Specimen mounting: 1.0 mm borosilicate glass capillary2θmin = 0.515°, 2θmax = 29.49°, 2θstep = 0.003°
Data collection mode: transmission
Refinement top
Rp = 0.060χ2 = 14.138
Rwp = 0.08011591 data points
Rexp = 0.021100 parameters
RBragg = 0.08896 restraints
R(F2) = 0.08232H-atom parameters not refined
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2972 (5)0.6888 (3)0.29856 (7)0.07305*
C20.1311 (5)0.6344 (2)0.27627 (8)0.04511*
C30.0706 (4)0.6910 (2)0.24331 (7)0.03699*
C40.2019 (3)0.7843 (2)0.24509 (6)0.03942*
C50.3442 (4)0.7819 (3)0.27994 (6)0.05116*
C60.4884 (4)0.8647 (3)0.28782 (7)0.04053*
C70.4901 (4)0.9470 (3)0.26187 (8)0.03292*
C80.3485 (4)0.9500 (2)0.22692 (7)0.02676*
C90.2007 (3)0.86750 (18)0.21789 (6)0.04409*
C100.0384 (3)0.85683 (16)0.18355 (6)0.05585*
C110.0703 (5)0.66917 (18)0.20642 (8)0.01406*
C120.1520 (3)0.77235 (18)0.18765 (6)0.02621*
N130.2572 (4)0.7525 (2)0.14658 (7)0.02834*
C140.4543 (6)0.6780 (3)0.14769 (10)0.04728*
C150.3333 (4)0.8518 (2)0.12743 (7)0.0149*
C160.0506 (3)0.9178 (3)0.15108 (8)0.01827*
C170.1276 (3)0.9217 (2)0.11776 (6)0.05457*
C180.2054 (3)1.0353 (2)0.11406 (5)0.01555*
O190.3842 (5)1.0675 (3)0.13078 (10)0.03564*
N200.0695 (5)1.0956 (2)0.09146 (10)0.0567*
C210.0846 (6)1.2096 (2)0.08735 (7)0.12048*
C220.1555 (8)1.2575 (4)0.09008 (13)0.13815*
O230.2828 (7)1.2409 (7)0.12481 (15)0.18992*
C240.1859 (9)1.2439 (4)0.04775 (12)0.16384*
C250.254 (2)1.3598 (5)0.0502 (2)0.24862*
O1s0.1598 (8)0.5073 (3)0.05735 (10)0.05346*
O2s0.3200 (5)0.6095 (3)0.01229 (11)0.09409*
O3s0.0518 (7)0.6674 (3)0.09751 (9)0.05776*
O4s0.2452 (6)0.6788 (3)0.05636 (10)0.06078*
C5s0.1379 (6)0.56141 (17)0.02617 (8)0.06152*
C6s0.0894 (5)0.57248 (19)0.00445 (9)0.0169*
C7s0.1334 (5)0.61043 (19)0.03209 (9)0.05644*
C8s0.0294 (5)0.65414 (14)0.06283 (8)0.01622*
H210.07020.56490.28360.0541*
H610.58330.86310.31160.0486*
H710.58681.00270.2680.0395*
H810.35141.00680.21010.0324*
H1110.20340.62520.21410.0169*
H1120.02220.6290.18810.0169*
H1210.2730.79690.20490.0315*
H1410.51320.66490.12160.0567*
H1420.57460.70140.1650.0567*
H1430.40120.60940.15850.0567*
H1510.43580.88440.14580.0179*
H1520.41470.83260.10360.0179*
H1610.18310.95880.14910.0219*
H1710.05790.89640.09360.0655*
H2110.18641.23370.10820.1804*
H2210.12571.33140.09010.2258*
H2220.23931.23620.06850.2258*
H2410.06781.22550.02720.1966*
H2420.31751.19550.04150.1966*
H2510.31321.37210.02220.4183*
H2520.1181.39430.05360.4183*
H2530.36771.36430.0680.4183*
H6010.2230.5490.0190.0203*
H7010.2920.610.040.0677*
H110.36030.66510.32110.0877*
H2010.05021.06310.08110.068*
H1310.1480.7250.1320.0411*
H2020.2850.6430.0210.1129*
H2320.39961.20150.12350.27*
Geometric parameters (Å, º) top
N13—C141.474 (4)N13—H1310.86
N13—C151.483 (4)N20—H2010.87
N20—C181.325 (4)C2—H210.98
N20—C211.465 (4)C6—H610.96
C2—C31.355 (4)C7—H710.92
C3—C41.409 (3)C8—H810.91
C3—C111.490 (4)C11—H1110.98
C4—C51.413 (3)C11—H1120.95
C4—C91.393 (3)C12—H1210.95
C5—C61.365 (5)C14—H1410.94
C6—C71.358 (5)C14—H1420.94
C7—C81.413 (3)C14—H1430.99
C8—C91.383 (3)C15—H1510.94
C9—C101.474 (3)C15—H1520.95
C10—C121.538 (3)C16—H1610.92
C10—C161.330 (4)C17—H1710.95
C11—C121.530 (3)C21—H2110.95
C15—C171.510 (3)C22—H2210.96
C16—C171.503 (3)C22—H2220.90
C17—C181.522 (4)C24—H2410.99
C21—C221.504 (6)C24—H2420.99
C21—C241.500 (5)C25—H2511.00
C24—C251.532 (9)C25—H2520.90
O23—H2320.84C25—H2530.88
N1—H110.88
C2—N1—C5109.2 (2)C3—C2—H21126
C12—N13—C14112.9 (2)C5—C6—H61119
C12—N13—C15111.0 (2)C7—C6—H61122
C14—N13—C15109.8 (2)C6—C7—H71117
C18—N20—C21126.6 (3)C8—C7—H71120
N1—C2—C3109.7 (2)C7—C8—H81121
C2—C3—C4106.4 (2)C9—C8—H81119
C2—C3—C11134.4 (2)C3—C11—H111108
C4—C3—C11118.7 (2)C3—C11—H112109
C3—C4—C5108.8 (2)C12—C11—H111111
C3—C4—C9127.96 (19)C12—C11—H112112
C5—C4—C9123.3 (2)H111—C11—H112107
N1—C5—C4106.0 (3)N13—C12—H121108
N1—C5—C6134.9 (2)C10—C12—H121110
C4—C5—C6119.1 (3)C11—C12—H121105
C5—C6—C7118.8 (2)N13—C14—H141111
C6—C7—C8122.4 (3)N13—C14—H142112
C7—C8—C9120.4 (2)N13—C14—H143110
C4—C9—C8115.97 (19)H141—C14—H142111
C4—C9—C10115.61 (18)H141—C14—H143106
C8—C9—C10128.4 (2)H142—C14—H143106
C9—C10—C12116.18 (17)N13—C15—H151106
C9—C10—C16122.53 (19)N13—C15—H152106
C12—C10—C16121.28 (18)C17—C15—H151111
C3—C11—C12109.71 (19)C17—C15—H152111
N13—C12—C10108.63 (17)H151—C15—H152110
N13—C12—C11110.09 (19)C10—C16—H161116
C10—C12—C11115.12 (17)C17—C16—H161119
N13—C15—C17111.62 (19)C15—C17—H171108
C10—C16—C17125.4 (2)C16—C17—H171109
C15—C17—C16110.6 (2)C18—C17—H171112
C15—C17—C18110.70 (16)N20—C21—H211107
C16—C17—C18106.8 (2)C22—C21—H211112
O19—C18—N20123.1 (3)C24—C21—H211108
O19—C18—C17121.6 (2)O23—C22—H221104
N20—C18—C17115.37 (19)O23—C22—H222110
N20—C21—C22110.2 (3)C21—C22—H221104
N20—C21—C24113.2 (3)C21—C22—H222108
C22—C21—C24106.6 (3)H221—C22—H222113
O23—C22—C21117.9 (4)C21—C24—H241106
C21—C24—C25109.5 (4)C21—C24—H242107
C22—O23—H232118C25—C24—H241116
C2—N1—H11124C25—C24—H242115
C5—N1—H11127H241—C24—H242103
C12—N13—H131107C24—C25—H251101
C14—N13—H131108C24—C25—H252105
C15—N13—H131109C24—C25—H253107
C18—N20—H201114H251—C25—H252109
C21—N20—H201119H251—C25—H253111
N1—C2—H21124H252—C25—H253121
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2s—H202···O4s1.201.282.479 (5)179
N13—H131···O3s0.861.772.634 (4)173
O23—H232···O19i0.832.122.925 (8)160
N20—H201···O1sii0.872.042.912 (5)177
N1—H11···O19iii0.882.032.852 (4)154
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H26N3O2+·C4H3O4
Mr455.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.71027 (5), 12.76978 (17), 33.1455 (4)
V3)2416.93 (5)
Z4
Radiation typeSynchrotron, λ = 0.6996 Å
µ (mm1)?
Specimen shape, size (mm)Cylinder, 40 × 1
Data collection
DiffractometerID31
diffractometer
Specimen mounting1.0 mm borosilicate glass capillary
Data collection modeTransmission
Scan methodStep
2θ values (°)2θmin = 0.515 2θmax = 29.49 2θstep = 0.003
Refinement
R factors and goodness of fitRp = 0.060, Rwp = 0.080, Rexp = 0.021, RBragg = 0.088, R(F2) = 0.08232, χ2 = 14.138
No. of data points11591
No. of parameters100
No. of restraints96
H-atom treatmentH-atom parameters not refined

Computer programs: ESRF SPEC package (Certified Scientific Software, 2003), GSAS (Larson & Von Dreele, 1994), CRYSFIRE (Shirley, 2000), FOX (Favre-Nicolin & Černý, 2002), Mercury (Macrae et al., 2006) and PLATON (Spek, 2003), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2s—H202···O4s1.201.282.479 (5)179
N13—H131···O3s0.861.772.634 (4)173
O23—H232···O19i0.832.122.925 (8)160
N20—H201···O1sii0.872.042.912 (5)177
N1—H11···O19iii0.882.032.852 (4)154
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z; (iii) x, y1/2, z+1/2.
 

Acknowledgements

This study was supported by the grant of the Czech Grant Agency (GAČR 203/07/0040) and by the research programs MSM6046137302 and NPV II 2B08021of the Ministry of Education, Youth and Sports of the Czech Republic. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and we thank Denis Testemale for assistance in using beamline BM01B.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationČejka, J., Hušák, M., Kratochvíl, B., Jegorov, A. & Cvak, L. (1996). Coll. Czech. Chem. Commun. 61 1396–1404.  Google Scholar
First citationCertified Scientific Software (2003). SPEC. Certified Scientific Software, Cambridge, MA, USA.  Google Scholar
First citationDollase, W. A. (1986). J. Appl. Cryst. 19, 267–272.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDudley, H. W. & Moir, C. (1935). Br. Med. J. 1, 520–523.  CrossRef CAS PubMed Google Scholar
First citationFavre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHušák, M., Kratochvíl, B. & Jegorov, A. (1998). Z. Kristallogr. 213, 195–196.  Google Scholar
First citationKharasch, M. S. & Legault, R. R. (1935). Science, 81, 388.  CrossRef PubMed Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirley, R. (2000). CRYSFIRE User's Manual. Guildford, England: The Lattice Press.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoll, A. & Hofmann, A. (1943). Helv. Chim. Acta, 26, 944–965.  CrossRef CAS Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages o3252-o3253
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds