organic compounds
Methylergometrine maleate from synchrotron powder diffraction data
aInstitute of Chemical Technology Prague, Technická 5, 16628 Prague 6, Czech Republic, and bTeva Czech Industries s.r.o., R&D, Branišovská 31, 370 05 České Budějovice, Czech Republic
*Correspondence e-mail: rohlicej@vscht.cz
The title compound {systematic name: 9,10-didehydro-N-[1-(hydroxymethyl)propyl]-D-lysergamide maleate}, C20H26N3O2+·C4H3O4−, contains a large rigid ergolene group. This group consists of an indole plane connected to a six-membered carbon ring adopting an and N-methyltetrahydropyridine where the methyl group is in an equatorial position. In the crystal, intermolecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds form an extensive three-dimensional hydrogen-bonding network, which holds the cations and anions together.
Related literature
For background to ergometrine, see: Dudley & Moir (1935); Kharasch & Legault (1935). Formethylergometrine, see Stoll & Hofmann (1943). For determinations of ergometrine, see: Čejka et al. (1996); Hušák et al. (1998).
Experimental
Crystal data
|
Data collection
|
Refinement
Data collection: ESRF SPEC package (Certified Scientific Software, 2003); cell GSAS (Larson & Von Dreele, 1994); data reduction: CRYSFIRE (Shirley, 2000); program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002); program(s) used to refine structure: GSAS; molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2003); software used to prepare material for publication: enCIFer (Allen et al., 2004).
Supporting information
10.1107/S1600536809050351/cv2630sup1.cif
contains datablocks global, I. DOI:Rietveld powder data: contains datablock I. DOI: 10.1107/S1600536809050351/cv2630Isup2.rtv
Crystallization of methylergometrine maleate from various solvents (alcohols, acetic acid
acetone, dioxane, dimethyl sulphoxide) provided hair-like long needle crystals in all cases. One crystalline form with distinct powder patterns was found.The powder diffraction data measurement was done on BM01B beamline (Swiss-Norwegian Beamlines) at the ESRF, Grenoble. Before the measurement the diffractometer was calibrated by using LaB6 standard sample and the value of wavelength was checked (0.6996 Å). The powder sample was placed in a 1 mm capillary. The measurement was done at room temperature. The capillary was rotating during the data collection. The diffractogram was measured from 0.515° to 29.49° 2θ with 0.0025° step scan and the sample was irradiated for 1 s per step. The data from all six detectors were finally binned.
The indexation confirmed unit-cell parameters and
obtained from previous measurement (Čejka et al., 1996): a =5.71 Å, b=12.77 Å, c =33.15 Å, Z = 4, V = 2 417 Å3, P212121. Molecule of ergometrine (Čejka et al., 1996) was used as a starting model for structure solution. This model was transferred to the z-matrix and the missing methyl group was added in the standard C—C distance (1.52 Å). This way changed z-matrix was loaded into the program FOX (Favre-Nicolin & Černý, 2002) and structure was solved by using parallel tempering algorithm. The structure solution result confirmed similarity with ergometrine maleate, see Fig.2. of this result was carried out in GSAS (Larson & Von Dreele, 1994). Hydrogen atoms were placed in their theoretical positions and structure was refined with bonds, angles and planar groups restraints (N1—C10,C9/C10/C12/C16, C17/C18/O19/N20, C6s/C5s/O1s/O2s, C7s/C8s/O3s/O4s andC5s/C6s/C7s/C8s). All atomic coordinates and Uiso parameters of non-hydrogen atoms were refined. Hydrogen atoms were not refined, it was necessary to relocate H atoms into the correct positions after few cycles. Hydrogen atom H202 was manually placed between oxygen atoms O2s and O4s. At the final stage of the only atomic coordinates of non-hydrogen atoms were refined to the final agreement factors Rp = 0.0631 and Rwp = 0.0831. The diffraction profiles and differences between the measured and calculated profiles are shown in Fig. 3.Data collection: ESRF SPEC package (Certified Scientific Software, 2003); cell
GSAS (Larson & Von Dreele, 1994); data reduction: CRYSFIRE (Shirley, 2000); program(s) used to solve structure: FOX (Favre-Nicolin & Černý, 2002); program(s) used to refine structure: GSAS (Larson & Von Dreele, 1994); molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2003); software used to prepare material for publication: enCIFer (Allen et al., 2004).C20H26N3O2+·C4H3O4− | F(000) = 960.0 |
Mr = 455.51 | Dx = 1.246 Mg m−3 |
Orthorhombic, P212121 | Synchrotron radiation, λ = 0.6996 Å |
a = 5.71027 (5) Å | T = 293 K |
b = 12.76978 (17) Å | Particle morphology: needle |
c = 33.1455 (4) Å | white |
V = 2416.93 (5) Å3 | cylinder, 40 × 1 mm |
Z = 4 | Specimen preparation: Prepared at 293 K and 101 kPa |
ID31 diffractometer | Data collection mode: transmission |
Radiation source: X-Ray | Scan method: step |
Si(111) monochromator | 2θmin = 0.515°, 2θmax = 29.49°, 2θstep = 0.003° |
Specimen mounting: 1.0 mm borosilicate glass capillary |
Least-squares matrix: full | Profile function: Pseudo-Voigt profile coefficients as parameterized in Thompson et al. (1987), asymmetry correction according to Finger et al. (1994) |
Rp = 0.060 | 100 parameters |
Rwp = 0.080 | 96 restraints |
Rexp = 0.021 | 0 constraints |
RBragg = 0.088 | H-atom parameters not refined |
R(F2) = 0.08232 | Weighting scheme based on measured s.u.'s w = 1/σ(Yobs)2 |
χ2 = 14.138 | (Δ/σ)max = 0.03 |
11591 data points | Background function: Shifted Chebyschev |
Excluded region(s): no | Preferred orientation correction: March–Dollase (Dollase, 1986); direction of preferred orientation - 011, MD = 1.26 |
C20H26N3O2+·C4H3O4− | V = 2416.93 (5) Å3 |
Mr = 455.51 | Z = 4 |
Orthorhombic, P212121 | Synchrotron radiation, λ = 0.6996 Å |
a = 5.71027 (5) Å | T = 293 K |
b = 12.76978 (17) Å | cylinder, 40 × 1 mm |
c = 33.1455 (4) Å |
ID31 diffractometer | Scan method: step |
Specimen mounting: 1.0 mm borosilicate glass capillary | 2θmin = 0.515°, 2θmax = 29.49°, 2θstep = 0.003° |
Data collection mode: transmission |
Rp = 0.060 | χ2 = 14.138 |
Rwp = 0.080 | 11591 data points |
Rexp = 0.021 | 100 parameters |
RBragg = 0.088 | 96 restraints |
R(F2) = 0.08232 | H-atom parameters not refined |
x | y | z | Uiso*/Ueq | ||
N1 | −0.2972 (5) | 0.6888 (3) | 0.29856 (7) | 0.07305* | |
C2 | −0.1311 (5) | 0.6344 (2) | 0.27627 (8) | 0.04511* | |
C3 | −0.0706 (4) | 0.6910 (2) | 0.24331 (7) | 0.03699* | |
C4 | −0.2019 (3) | 0.7843 (2) | 0.24509 (6) | 0.03942* | |
C5 | −0.3442 (4) | 0.7819 (3) | 0.27994 (6) | 0.05116* | |
C6 | −0.4884 (4) | 0.8647 (3) | 0.28782 (7) | 0.04053* | |
C7 | −0.4901 (4) | 0.9470 (3) | 0.26187 (8) | 0.03292* | |
C8 | −0.3485 (4) | 0.9500 (2) | 0.22692 (7) | 0.02676* | |
C9 | −0.2007 (3) | 0.86750 (18) | 0.21789 (6) | 0.04409* | |
C10 | −0.0384 (3) | 0.85683 (16) | 0.18355 (6) | 0.05585* | |
C11 | 0.0703 (5) | 0.66917 (18) | 0.20642 (8) | 0.01406* | |
C12 | 0.1520 (3) | 0.77235 (18) | 0.18765 (6) | 0.02621* | |
N13 | 0.2572 (4) | 0.7525 (2) | 0.14658 (7) | 0.02834* | |
C14 | 0.4543 (6) | 0.6780 (3) | 0.14769 (10) | 0.04728* | |
C15 | 0.3333 (4) | 0.8518 (2) | 0.12743 (7) | 0.0149* | |
C16 | −0.0506 (3) | 0.9178 (3) | 0.15108 (8) | 0.01827* | |
C17 | 0.1276 (3) | 0.9217 (2) | 0.11776 (6) | 0.05457* | |
C18 | 0.2054 (3) | 1.0353 (2) | 0.11406 (5) | 0.01555* | |
O19 | 0.3842 (5) | 1.0675 (3) | 0.13078 (10) | 0.03564* | |
N20 | 0.0695 (5) | 1.0956 (2) | 0.09146 (10) | 0.0567* | |
C21 | 0.0846 (6) | 1.2096 (2) | 0.08735 (7) | 0.12048* | |
C22 | −0.1555 (8) | 1.2575 (4) | 0.09008 (13) | 0.13815* | |
O23 | −0.2828 (7) | 1.2409 (7) | 0.12481 (15) | 0.18992* | |
C24 | 0.1859 (9) | 1.2439 (4) | 0.04775 (12) | 0.16384* | |
C25 | 0.254 (2) | 1.3598 (5) | 0.0502 (2) | 0.24862* | |
O1s | 0.1598 (8) | 0.5073 (3) | −0.05735 (10) | 0.05346* | |
O2s | 0.3200 (5) | 0.6095 (3) | −0.01229 (11) | 0.09409* | |
O3s | −0.0518 (7) | 0.6674 (3) | 0.09751 (9) | 0.05776* | |
O4s | 0.2452 (6) | 0.6788 (3) | 0.05636 (10) | 0.06078* | |
C5s | 0.1379 (6) | 0.56141 (17) | −0.02617 (8) | 0.06152* | |
C6s | −0.0894 (5) | 0.57248 (19) | −0.00445 (9) | 0.0169* | |
C7s | −0.1334 (5) | 0.61043 (19) | 0.03209 (9) | 0.05644* | |
C8s | 0.0294 (5) | 0.65414 (14) | 0.06283 (8) | 0.01622* | |
H21 | −0.0702 | 0.5649 | 0.2836 | 0.0541* | |
H61 | −0.5833 | 0.8631 | 0.3116 | 0.0486* | |
H71 | −0.5868 | 1.0027 | 0.268 | 0.0395* | |
H81 | −0.3514 | 1.0068 | 0.2101 | 0.0324* | |
H111 | 0.2034 | 0.6252 | 0.2141 | 0.0169* | |
H112 | −0.0222 | 0.629 | 0.1881 | 0.0169* | |
H121 | 0.273 | 0.7969 | 0.2049 | 0.0315* | |
H141 | 0.5132 | 0.6649 | 0.1216 | 0.0567* | |
H142 | 0.5746 | 0.7014 | 0.165 | 0.0567* | |
H143 | 0.4012 | 0.6094 | 0.1585 | 0.0567* | |
H151 | 0.4358 | 0.8844 | 0.1458 | 0.0179* | |
H152 | 0.4147 | 0.8326 | 0.1036 | 0.0179* | |
H161 | −0.1831 | 0.9588 | 0.1491 | 0.0219* | |
H171 | 0.0579 | 0.8964 | 0.0936 | 0.0655* | |
H211 | 0.1864 | 1.2337 | 0.1082 | 0.1804* | |
H221 | −0.1257 | 1.3314 | 0.0901 | 0.2258* | |
H222 | −0.2393 | 1.2362 | 0.0685 | 0.2258* | |
H241 | 0.0678 | 1.2255 | 0.0272 | 0.1966* | |
H242 | 0.3175 | 1.1955 | 0.0415 | 0.1966* | |
H251 | 0.3132 | 1.3721 | 0.0222 | 0.4183* | |
H252 | 0.118 | 1.3943 | 0.0536 | 0.4183* | |
H253 | 0.3677 | 1.3643 | 0.068 | 0.4183* | |
H601 | −0.223 | 0.549 | −0.019 | 0.0203* | |
H701 | −0.292 | 0.61 | 0.04 | 0.0677* | |
H11 | −0.3603 | 0.6651 | 0.3211 | 0.0877* | |
H201 | −0.0502 | 1.0631 | 0.0811 | 0.068* | |
H131 | 0.148 | 0.725 | 0.132 | 0.0411* | |
H202 | 0.285 | 0.643 | 0.021 | 0.1129* | |
H232 | −0.3996 | 1.2015 | 0.1235 | 0.27* |
N13—C14 | 1.474 (4) | N13—H131 | 0.86 |
N13—C15 | 1.483 (4) | N20—H201 | 0.87 |
N20—C18 | 1.325 (4) | C2—H21 | 0.98 |
N20—C21 | 1.465 (4) | C6—H61 | 0.96 |
C2—C3 | 1.355 (4) | C7—H71 | 0.92 |
C3—C4 | 1.409 (3) | C8—H81 | 0.91 |
C3—C11 | 1.490 (4) | C11—H111 | 0.98 |
C4—C5 | 1.413 (3) | C11—H112 | 0.95 |
C4—C9 | 1.393 (3) | C12—H121 | 0.95 |
C5—C6 | 1.365 (5) | C14—H141 | 0.94 |
C6—C7 | 1.358 (5) | C14—H142 | 0.94 |
C7—C8 | 1.413 (3) | C14—H143 | 0.99 |
C8—C9 | 1.383 (3) | C15—H151 | 0.94 |
C9—C10 | 1.474 (3) | C15—H152 | 0.95 |
C10—C12 | 1.538 (3) | C16—H161 | 0.92 |
C10—C16 | 1.330 (4) | C17—H171 | 0.95 |
C11—C12 | 1.530 (3) | C21—H211 | 0.95 |
C15—C17 | 1.510 (3) | C22—H221 | 0.96 |
C16—C17 | 1.503 (3) | C22—H222 | 0.90 |
C17—C18 | 1.522 (4) | C24—H241 | 0.99 |
C21—C22 | 1.504 (6) | C24—H242 | 0.99 |
C21—C24 | 1.500 (5) | C25—H251 | 1.00 |
C24—C25 | 1.532 (9) | C25—H252 | 0.90 |
O23—H232 | 0.84 | C25—H253 | 0.88 |
N1—H11 | 0.88 | ||
C2—N1—C5 | 109.2 (2) | C3—C2—H21 | 126 |
C12—N13—C14 | 112.9 (2) | C5—C6—H61 | 119 |
C12—N13—C15 | 111.0 (2) | C7—C6—H61 | 122 |
C14—N13—C15 | 109.8 (2) | C6—C7—H71 | 117 |
C18—N20—C21 | 126.6 (3) | C8—C7—H71 | 120 |
N1—C2—C3 | 109.7 (2) | C7—C8—H81 | 121 |
C2—C3—C4 | 106.4 (2) | C9—C8—H81 | 119 |
C2—C3—C11 | 134.4 (2) | C3—C11—H111 | 108 |
C4—C3—C11 | 118.7 (2) | C3—C11—H112 | 109 |
C3—C4—C5 | 108.8 (2) | C12—C11—H111 | 111 |
C3—C4—C9 | 127.96 (19) | C12—C11—H112 | 112 |
C5—C4—C9 | 123.3 (2) | H111—C11—H112 | 107 |
N1—C5—C4 | 106.0 (3) | N13—C12—H121 | 108 |
N1—C5—C6 | 134.9 (2) | C10—C12—H121 | 110 |
C4—C5—C6 | 119.1 (3) | C11—C12—H121 | 105 |
C5—C6—C7 | 118.8 (2) | N13—C14—H141 | 111 |
C6—C7—C8 | 122.4 (3) | N13—C14—H142 | 112 |
C7—C8—C9 | 120.4 (2) | N13—C14—H143 | 110 |
C4—C9—C8 | 115.97 (19) | H141—C14—H142 | 111 |
C4—C9—C10 | 115.61 (18) | H141—C14—H143 | 106 |
C8—C9—C10 | 128.4 (2) | H142—C14—H143 | 106 |
C9—C10—C12 | 116.18 (17) | N13—C15—H151 | 106 |
C9—C10—C16 | 122.53 (19) | N13—C15—H152 | 106 |
C12—C10—C16 | 121.28 (18) | C17—C15—H151 | 111 |
C3—C11—C12 | 109.71 (19) | C17—C15—H152 | 111 |
N13—C12—C10 | 108.63 (17) | H151—C15—H152 | 110 |
N13—C12—C11 | 110.09 (19) | C10—C16—H161 | 116 |
C10—C12—C11 | 115.12 (17) | C17—C16—H161 | 119 |
N13—C15—C17 | 111.62 (19) | C15—C17—H171 | 108 |
C10—C16—C17 | 125.4 (2) | C16—C17—H171 | 109 |
C15—C17—C16 | 110.6 (2) | C18—C17—H171 | 112 |
C15—C17—C18 | 110.70 (16) | N20—C21—H211 | 107 |
C16—C17—C18 | 106.8 (2) | C22—C21—H211 | 112 |
O19—C18—N20 | 123.1 (3) | C24—C21—H211 | 108 |
O19—C18—C17 | 121.6 (2) | O23—C22—H221 | 104 |
N20—C18—C17 | 115.37 (19) | O23—C22—H222 | 110 |
N20—C21—C22 | 110.2 (3) | C21—C22—H221 | 104 |
N20—C21—C24 | 113.2 (3) | C21—C22—H222 | 108 |
C22—C21—C24 | 106.6 (3) | H221—C22—H222 | 113 |
O23—C22—C21 | 117.9 (4) | C21—C24—H241 | 106 |
C21—C24—C25 | 109.5 (4) | C21—C24—H242 | 107 |
C22—O23—H232 | 118 | C25—C24—H241 | 116 |
C2—N1—H11 | 124 | C25—C24—H242 | 115 |
C5—N1—H11 | 127 | H241—C24—H242 | 103 |
C12—N13—H131 | 107 | C24—C25—H251 | 101 |
C14—N13—H131 | 108 | C24—C25—H252 | 105 |
C15—N13—H131 | 109 | C24—C25—H253 | 107 |
C18—N20—H201 | 114 | H251—C25—H252 | 109 |
C21—N20—H201 | 119 | H251—C25—H253 | 111 |
N1—C2—H21 | 124 | H252—C25—H253 | 121 |
D—H···A | D—H | H···A | D···A | D—H···A |
O2s—H202···O4s | 1.20 | 1.28 | 2.479 (5) | 179 |
N13—H131···O3s | 0.86 | 1.77 | 2.634 (4) | 173 |
O23—H232···O19i | 0.83 | 2.12 | 2.925 (8) | 160 |
N20—H201···O1sii | 0.87 | 2.04 | 2.912 (5) | 177 |
N1—H11···O19iii | 0.88 | 2.03 | 2.852 (4) | 154 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+3/2, −z; (iii) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C20H26N3O2+·C4H3O4− |
Mr | 455.51 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 5.71027 (5), 12.76978 (17), 33.1455 (4) |
V (Å3) | 2416.93 (5) |
Z | 4 |
Radiation type | Synchrotron, λ = 0.6996 Å |
µ (mm−1) | ? |
Specimen shape, size (mm) | Cylinder, 40 × 1 |
Data collection | |
Diffractometer | ID31 diffractometer |
Specimen mounting | 1.0 mm borosilicate glass capillary |
Data collection mode | Transmission |
Scan method | Step |
2θ values (°) | 2θmin = 0.515 2θmax = 29.49 2θstep = 0.003 |
Refinement | |
R factors and goodness of fit | Rp = 0.060, Rwp = 0.080, Rexp = 0.021, RBragg = 0.088, R(F2) = 0.08232, χ2 = 14.138 |
No. of data points | 11591 |
No. of parameters | 100 |
No. of restraints | 96 |
H-atom treatment | H-atom parameters not refined |
Computer programs: ESRF SPEC package (Certified Scientific Software, 2003), GSAS (Larson & Von Dreele, 1994), CRYSFIRE (Shirley, 2000), FOX (Favre-Nicolin & Černý, 2002), Mercury (Macrae et al., 2006) and PLATON (Spek, 2003), enCIFer (Allen et al., 2004).
D—H···A | D—H | H···A | D···A | D—H···A |
O2s—H202···O4s | 1.20 | 1.28 | 2.479 (5) | 179 |
N13—H131···O3s | 0.86 | 1.77 | 2.634 (4) | 173 |
O23—H232···O19i | 0.83 | 2.12 | 2.925 (8) | 160 |
N20—H201···O1sii | 0.87 | 2.04 | 2.912 (5) | 177 |
N1—H11···O19iii | 0.88 | 2.03 | 2.852 (4) | 154 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+3/2, −z; (iii) −x, y−1/2, −z+1/2. |
Acknowledgements
This study was supported by the grant of the Czech Grant Agency (GAČR 203/07/0040) and by the research programs MSM6046137302 and NPV II 2B08021of the Ministry of Education, Youth and Sports of the Czech Republic. We acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and we thank Denis Testemale for assistance in using beamline BM01B.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Čejka, J., Hušák, M., Kratochvíl, B., Jegorov, A. & Cvak, L. (1996). Coll. Czech. Chem. Commun. 61 1396–1404. Google Scholar
Certified Scientific Software (2003). SPEC. Certified Scientific Software, Cambridge, MA, USA. Google Scholar
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267–272. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dudley, H. W. & Moir, C. (1935). Br. Med. J. 1, 520–523. CrossRef CAS PubMed Google Scholar
Favre-Nicolin, V. & Černý, R. (2002). J. Appl. Cryst. 35, 734–743. Web of Science CrossRef CAS IUCr Journals Google Scholar
Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hušák, M., Kratochvíl, B. & Jegorov, A. (1998). Z. Kristallogr. 213, 195–196. Google Scholar
Kharasch, M. S. & Legault, R. R. (1935). Science, 81, 388. CrossRef PubMed Google Scholar
Larson, A. C. & Von Dreele, R. B. (1994). GSAS. Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA. Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shirley, R. (2000). CRYSFIRE User's Manual. Guildford, England: The Lattice Press. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoll, A. & Hofmann, A. (1943). Helv. Chim. Acta, 26, 944–965. CrossRef CAS Google Scholar
Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83. CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Methylergometrine is a semisynthetic ergot alkaloid derived from (+)-lysergic acid and (S)-(+)-2-amino-1-butanol (Stoll & Hofmann, 1943). It is nearly isostructural with natural ergot alkaloid ergometrine maleate (Čejka et al., 1996). Previous attempts to solve this structure by molecular modeling using ergometrine maleate as the starting model were successful, but the result was not very precise (Čejka et al., 1996). Hence the crystal structure was not published. In this paper we report crystal structure determination of the title compound (I) from synchrotron powder diffraction data.
The asymmetric unit of (I) contains a methylergometrinium cation and one molecule of maleate (Fig. 1). All bond lengths and angles in (I) are comparable with reported structure of ergometrine maleate (Čejka et al., 1996). The molecule of maleate is situated in the same position and the hydrogen bonding system is practically the same. Intermolecular N—H···O, O—H···N and O—H···O hydrogen bonds (Table 1) form an extensive three-dimensional hydrogen-bonding network which held cations and anions together.