organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Hy­droxy­benzyl­­idene)-3-methyl­isoxazol-5(4H)-one

aHuaihai Institute of Technology, Lianyungang 222005, People's Republic of China
*Correspondence e-mail: cheng_qingfang@yahoo.com.cn

(Received 22 October 2009; accepted 29 October 2009; online 7 November 2009)

The mol­ecular skeleton of the title mol­ecule, C11H9NO3, is approximately planar (r.m.s. deviation = 0.0056 Å); the two rings form a dihedral angle of 6.5 (1)°. In the crystal structure, inter­molecular O—H⋯N hydrogen bonds involving the H atom of the hydr­oxy group and the N atom of the isoxazole ring link mol­ecules into chains running along the c axis.

Related literature

For the biological activity of aryl­methyl­ene isoxazolone derivatives, see: Ishioka et al. (2002[Ishioka, T., Kubo, A., Koiso, Y., Nagasawa, K., Itai, A. & Hashimoto, Y. (2002). Bioorg. Med. Chem. 10, 1555-1566.]); Liu et al. (2005[Liu, Z. G., Han, B., Liu, Q., Zhang, W., Yang, L., Liu, Z. L. & Yu, W. (2005). Synlett, pp. 1579-1580.]). For related structures, see: Cocivera et al. (1976[Cocivera, M., Effio, A., Chen, H. E. & Vaish, S. (1976). J. Am. Chem. Soc. 98, 7362-7366.]); Villemin et al. (1993[Villemin, D., Martin, B. & Garrigues, B. (1993). Synth. Commun. 23, 2251-2257.]); Zhang et al. (2008[Zhang, Y. Q., Ma, J. J., Wang, C., Li, J. C., Zhang, D. N., Zang, X. H. & Li, J. (2008). Chin. J. Org. Chem. 28, 141-144.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9NO3

  • Mr = 203.19

  • Monoclinic, P 21 /c

  • a = 8.0172 (12) Å

  • b = 6.8620 (9) Å

  • c = 17.535 (2) Å

  • β = 99.962 (2)°

  • V = 950.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.43 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.956, Tmax = 0.971

  • 4598 measured reflections

  • 1669 independent reflections

  • 1067 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.03

  • 1669 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1i 0.82 2.07 2.852 (2) 159
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn,Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Arylmethylene isoxazolone derivatives are effective anti-psychotics in the treatment of depression and schizophrenia. The study about arylmethylene isoxazolone derivatives mainly concentrates in the biological activities (Ishioka et al., 2002; Liu et al., 2005). However, structural studies of them have rarely been reported. As a part of our investigation on arylmethylene isoxazolone derivatives, we report here the structure of the title compound, (I), synthesized by three component condensation reaction of methyl acetoacetate, hydroxylamine with salicylaldehyde in aqueous media under ultrasonic irradiation.

In (I) (Fig. 1), all bond lengths and angles agree well with those reported for the related compounds (Cocivera et al., 1976; Villemin et al., 1993; Zhang et al., 2008). The molecular structure adopts a Z-configuration about the C2=C5 double bond. The hydroxy groups and the isoxazol groups are involved in intermolecular O—H···N hydrogen bonds (Table 1), which link the molecules into chain structure, hydroxy O atom in the molecule acts as hydrogen-bond donor to isoxazol N atom in the neighbouring molecule, so forming a chain structure.

Related literature top

For the biological activity of arylmethylene isoxazolone derivatives, see: Ishioka et al. (2002); Liu et al. (2005). For related structures, see: Cocivera et al. (1976); Villemin et al. (1993); Zhang et al. (2008).

Experimental top

A mixture of methyl acetoacetate (4 mol), hydroxylamine hydrochloride (4 mmol), and pyridine(4 mmol) in distilled water(10 ml) was irradiated in the water bath of an ultrasonic cleaner for 10 min., then salicylaldehyde(4 mmol) was slowly added to the mixture. The resulting mixture was irradiated in the water bath of an ultrasonic cleaner for 1.5 h. The solution was left at room temperature overnight, the obtained mushy solution was filtered and the solid was washed with cold water and ethanol. The crude product was recrystallized from ethanol to afford the desired product as a yellow solid. Single crystal of (I) were obtained by slow evaporation of aqueous ethanol(95%) solution at ambient temperature after 7 d. Elemental analysis, calculated for C11 H9 N O3: C 65.02, H 4.46, N 6.89%; found: C 65.09. H 4.49, N 6.92%.

Refinement top

All hydrogen atoms were geometrically positioned (C—H = 0.93–0.96 A °, O—H = 0.82 A °) and allowed to ride on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.
4-(2-Hydroxybenzylidene)-3-methylisoxazol-5(4H)-one top
Crystal data top
C11H9NO3F(000) = 424
Mr = 203.19Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1182 reflections
a = 8.0172 (12) Åθ = 2.4–22.5°
b = 6.8620 (9) ŵ = 0.11 mm1
c = 17.535 (2) ÅT = 298 K
β = 99.962 (2)°Prism, yellow
V = 950.1 (2) Å30.43 × 0.30 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1669 independent reflections
Radiation source: fine-focus sealed tube1067 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.956, Tmax = 0.971k = 87
4598 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.2598P]
where P = (Fo2 + 2Fc2)/3
1669 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C11H9NO3V = 950.1 (2) Å3
Mr = 203.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0172 (12) ŵ = 0.11 mm1
b = 6.8620 (9) ÅT = 298 K
c = 17.535 (2) Å0.43 × 0.30 × 0.28 mm
β = 99.962 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1669 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1067 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.971Rint = 0.034
4598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
1669 reflectionsΔρmin = 0.18 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1424 (3)0.7335 (3)0.29966 (10)0.0495 (6)
O10.2203 (2)0.5472 (2)0.29343 (8)0.0573 (5)
O20.3282 (3)0.3078 (3)0.37132 (10)0.0668 (6)
O30.1516 (2)0.6467 (2)0.64469 (8)0.0579 (5)
H30.14160.65050.69040.087*
C10.2599 (3)0.4642 (4)0.36509 (12)0.0474 (6)
C20.2013 (3)0.5995 (3)0.41967 (12)0.0372 (6)
C30.1320 (3)0.7584 (3)0.37120 (12)0.0404 (6)
C40.0543 (3)0.9391 (3)0.39499 (13)0.0541 (7)
H4A0.01851.01950.35040.081*
H4B0.13581.00850.43160.081*
H4C0.04180.90650.41840.081*
C50.2050 (3)0.5923 (3)0.49738 (12)0.0388 (6)
H50.15410.69920.51650.047*
C60.2713 (3)0.4536 (3)0.55603 (11)0.0377 (5)
C70.2432 (3)0.4893 (3)0.63213 (12)0.0406 (6)
C80.3061 (3)0.3630 (4)0.69154 (13)0.0483 (6)
H80.28660.38710.74140.058*
C90.3967 (3)0.2032 (4)0.67709 (14)0.0567 (7)
H90.43940.11940.71750.068*
C100.4262 (3)0.1639 (4)0.60287 (15)0.0572 (7)
H100.48760.05430.59340.069*
C110.3640 (3)0.2882 (3)0.54405 (13)0.0481 (6)
H110.38410.26150.49440.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0615 (14)0.0559 (13)0.0319 (11)0.0024 (11)0.0107 (9)0.0008 (9)
O10.0808 (13)0.0632 (11)0.0295 (9)0.0095 (10)0.0140 (8)0.0030 (8)
O20.0956 (15)0.0587 (12)0.0470 (11)0.0183 (11)0.0150 (10)0.0060 (9)
O30.0894 (14)0.0585 (11)0.0271 (8)0.0131 (10)0.0142 (8)0.0018 (7)
C10.0577 (17)0.0501 (15)0.0351 (13)0.0025 (13)0.0100 (10)0.0013 (11)
C20.0395 (14)0.0437 (13)0.0291 (11)0.0061 (10)0.0074 (9)0.0026 (10)
C30.0402 (14)0.0482 (14)0.0331 (12)0.0072 (11)0.0072 (10)0.0003 (10)
C40.0650 (18)0.0524 (15)0.0454 (14)0.0074 (14)0.0109 (12)0.0061 (12)
C50.0410 (14)0.0423 (13)0.0343 (12)0.0040 (11)0.0101 (10)0.0030 (10)
C60.0385 (13)0.0441 (13)0.0304 (11)0.0061 (11)0.0056 (9)0.0018 (10)
C70.0434 (14)0.0433 (13)0.0349 (12)0.0046 (11)0.0060 (9)0.0011 (10)
C80.0493 (16)0.0619 (16)0.0338 (13)0.0047 (13)0.0078 (11)0.0089 (12)
C90.0494 (17)0.0666 (18)0.0532 (16)0.0012 (14)0.0067 (12)0.0243 (13)
C100.0520 (17)0.0590 (16)0.0622 (17)0.0088 (14)0.0144 (13)0.0145 (14)
C110.0470 (15)0.0562 (15)0.0438 (14)0.0009 (13)0.0151 (11)0.0003 (12)
Geometric parameters (Å, º) top
N1—C31.283 (3)C5—C61.434 (3)
N1—O11.435 (2)C5—H50.9300
O1—C11.366 (3)C6—C111.392 (3)
O2—C11.201 (3)C6—C71.413 (3)
O3—C71.346 (3)C7—C81.382 (3)
O3—H30.8200C8—C91.363 (3)
C1—C21.467 (3)C8—H80.9300
C2—C51.359 (3)C9—C101.389 (4)
C2—C31.434 (3)C9—H90.9300
C3—C41.479 (3)C10—C111.364 (3)
C4—H4A0.9600C10—H100.9300
C4—H4B0.9600C11—H110.9300
C4—H4C0.9600
C3—N1—O1107.22 (17)C6—C5—H5113.4
C1—O1—N1109.63 (16)C11—C6—C7117.43 (19)
C7—O3—H3109.5C11—C6—C5125.0 (2)
O2—C1—O1119.1 (2)C7—C6—C5117.5 (2)
O2—C1—C2134.3 (2)O3—C7—C8121.2 (2)
O1—C1—C2106.7 (2)O3—C7—C6118.35 (19)
C5—C2—C3124.1 (2)C8—C7—C6120.4 (2)
C5—C2—C1132.6 (2)C9—C8—C7120.1 (2)
C3—C2—C1103.26 (18)C9—C8—H8120.0
N1—C3—C2113.2 (2)C7—C8—H8120.0
N1—C3—C4119.3 (2)C8—C9—C10120.9 (2)
C2—C3—C4127.5 (2)C8—C9—H9119.6
C3—C4—H4A109.5C10—C9—H9119.6
C3—C4—H4B109.5C11—C10—C9119.2 (3)
H4A—C4—H4B109.5C11—C10—H10120.4
C3—C4—H4C109.5C9—C10—H10120.4
H4A—C4—H4C109.5C10—C11—C6122.0 (2)
H4B—C4—H4C109.5C10—C11—H11119.0
C2—C5—C6133.2 (2)C6—C11—H11119.0
C2—C5—H5113.4
C3—N1—O1—C11.5 (3)C1—C2—C5—C62.1 (4)
N1—O1—C1—O2179.2 (2)C2—C5—C6—C114.8 (4)
N1—O1—C1—C21.5 (2)C2—C5—C6—C7176.4 (2)
O2—C1—C2—C50.0 (5)C11—C6—C7—O3178.9 (2)
O1—C1—C2—C5179.1 (2)C5—C6—C7—O32.2 (3)
O2—C1—C2—C3179.9 (3)C11—C6—C7—C80.1 (3)
O1—C1—C2—C31.0 (2)C5—C6—C7—C8179.0 (2)
O1—N1—C3—C20.9 (3)O3—C7—C8—C9179.2 (2)
O1—N1—C3—C4179.32 (19)C6—C7—C8—C90.3 (4)
C5—C2—C3—N1180.0 (2)C7—C8—C9—C100.5 (4)
C1—C2—C3—N10.0 (3)C8—C9—C10—C110.3 (4)
C5—C2—C3—C40.2 (4)C9—C10—C11—C60.1 (4)
C1—C2—C3—C4179.7 (2)C7—C6—C11—C100.1 (3)
C3—C2—C5—C6177.8 (2)C5—C6—C11—C10178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.822.072.852 (2)159
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H9NO3
Mr203.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.0172 (12), 6.8620 (9), 17.535 (2)
β (°) 99.962 (2)
V3)950.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.43 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.956, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
4598, 1669, 1067
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.03
No. of reflections1669
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N1i0.822.072.852 (2)158.5
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

We are grateful to the Foundation of Jiangsu Key Laboratory of Marine Biotechnology for financial support (grant No. 2007HS009).

References

First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn,Germany.  Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCocivera, M., Effio, A., Chen, H. E. & Vaish, S. (1976). J. Am. Chem. Soc. 98, 7362–7366.  CrossRef CAS Web of Science Google Scholar
First citationIshioka, T., Kubo, A., Koiso, Y., Nagasawa, K., Itai, A. & Hashimoto, Y. (2002). Bioorg. Med. Chem. 10, 1555–1566.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Z. G., Han, B., Liu, Q., Zhang, W., Yang, L., Liu, Z. L. & Yu, W. (2005). Synlett, pp. 1579–1580.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVillemin, D., Martin, B. & Garrigues, B. (1993). Synth. Commun. 23, 2251–2257.  CrossRef CAS Web of Science Google Scholar
First citationZhang, Y. Q., Ma, J. J., Wang, C., Li, J. C., Zhang, D. N., Zang, X. H. & Li, J. (2008). Chin. J. Org. Chem. 28, 141–144.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds